
IKBT: Solving Symbolic Inverse Kinematics with Behavior Tree (Extended
Abstract) ∗

Dianmu Zhang1,2 and Blake Hannaford2

1Applied Sciences Group (ASG), Microsoft
2University of Washington
{dianmuz, blake}@uw.edu

Abstract
Inverse kinematics solves the problem of how to
control robot arm joints to achieve desired end ef-
fector positions, which is critical to any robot arm
design and implementations of control algorithms.
It is a common misunderstanding that closed-form
inverse kinematics analysis is solved. Popular
software and algorithms, such as gradient descent
or any multi-variant equations solving algorithm,
claims solving inverse kinematics but only on the
numerical level. While the numerical inverse kine-
matics solutions are relatively straightforward to
obtain, these methods often fail, even when the in-
verse kinematics solutions exist. Therefore, closed-
form inverse kinematics analysis is superior, but
there is no generalized automated algorithm. Up
till now, the high-level logical reasoning involved
in solving closed-form inverse kinematics made it
hard to automate, so it’s handled by human experts.
We developed IKBT, a knowledge-based intelligent
system that can mimic human experts’ behaviors in
solving closed-from inverse kinematics using Be-
havior Tree. Knowledge and rules used by engi-
neers when solving closed-from inverse kinematics
are encoded as actions in Behavior Tree. The or-
der of applying these rules is governed by higher
level composite nodes, which resembles the logi-
cal reasoning process of engineers. It is also the
first time that the dependency of joint variables, an
important issue in inverse kinematics analysis, is
automatically tracked in graph form. Besides gen-
erating closed-form solutions, IKBT also explains
its solving strategies in human (engineers) inter-
pretable form. This is a proof-of-concept of using
Behavior Trees to solve high-cognitive problems.

1 Introduction
Symbolic inverse kinematics analysis is a non-trivial task crit-
ical for operation and design of robot manipulators as well as

∗The full version of this paper has been published
as [Zhang and Hannaford, 2019], on JAIR link here
https://doi.org/10.1613/jair.1.11592

animated characters. The common misconception in robotics
community is that analytical inverse kinematics problem is
solved. In reality the numerical solutions are often substi-
tuted for closed form symbolic solutions, where all elements
in the desired end effector matrix are real numbers and solu-
tions for joint variables are numerical values, using two ma-
jor methods: A) gradient descent searches for a set of joint
angles/length that minimize the cost function. Convergence
of gradient descent can depend on the starting value and
only generates one solution. Most existing software pack-
ages [Corke, 1996; Kelmar and Khosla, 1990] use a version
of gradient descent as their core algorithm. The shared limita-
tions include finding only one of the multiple solutions, con-
vergence depending on the starting value, and problems with
convergence near singular configurations. B) Solving multi-
variant polynomial equations [Manocha and Canny, 1994;
Murray et al., 1994]. Though this method generates multiple
possible solutions, it fails when the augmented transforma-
tion matrix is ill-conditioned, which is unavoidable in prac-
tice. And this method is often DOF-specific.

Comparatively, closed-form inverse kinematics analysis
overcomes all these shortcomings of the numerical meth-
ods, but it’s difficult to automate conceptually, because of
the high-level symbolic reasoning needed. Though many ad-
vances have been made in the field of AI (especially deep neu-
ral networks) through increased capability of handling large
numerical computations, fewer was made on symbolic rea-
soning. Several groups have attempted to automate symbolic
inverse kinematics analysis starting in the 1990’s [Herrera-
Bendezu et al., 1988; Halperin, 1991], which laid the foun-
dation for our work. However, up until now, there was no
generalized, expandable, and human explainable AI agents
capable of solving this problem.

In this work we develop an AI agent that solves closed-
form inverse kinematics with the following goals: The agent

• Should solve closed-form inverse kinematics with a gen-
eralized algorithm applicable to most serial chain robot
arms, without assumptions of configuration or degree-
of-freedom

• Should explicitly use common knowledge that engineers
use when solving the inverse kinematics problems, such
as trig identities or the method of determinants, rather
than relying on tricks for specific kinematic configura-

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Journal Track

5145

https://www.jair.org/index.php/jair/article/view/11592
https://www.jair.org/index.php/jair/article/view/11592


tions

• Should have search and apply suitable knowledge or
rules to equations containing unsolved joint variables as
human experts do.

• Should be able to explain its solving strategy in an easy
to interpret format

• Should be extensible and modifiable

To address these goals, we adapt Behavior Trees to con-
struct an expert system, “IKBT”, having the logical reason-
ing power to solve inverse kinematics symbolically without
human supervision. A Behavior Tree - initially popular in
video game AI, models intelligent agent behavior by incor-
porating specific tasks into action leaves [Lim et al., 2010;
Marzinotto et al., 2014; Colledanchise et al., 2017; Colledan-
chise et al., 2016]. Behavior Trees have the advantages of
composability and scalability compared to finite state ma-
chines.

The main contributions of this work [Zhang and Han-
naford, 2019] are:

• We compactly encode the inverse kinematics logic and
solution strategy in a Behavior Tree

• We code each knowledge-based solver into a modular
leaf, forming a “tool box” which is organized and ap-
plied to equations and intermediate results by the Be-
havior Tree. The structure is readily extensible.

• IKBT generates a dependency graph of joint variables in
the solutions, which specifies all possible poses. Track-
ing these dependencies facilitates grouping variables
into distinct solutions, essential to downstream control
softwares for robots.

• IKBT successfully solves complicated robots, such as
the 6-DOF commercial robot manipulator PUMA 560
and successfully solved 18 out of 19 test robots, with
recent expended support to solve the popular UR series
robots.

• On average, IKBT generates symbolic solutions and
source code in a few minutes on a normal PC. The same
work often takes a human expert hours to complete.

• IKBT generates a report of its results and solution
method in LATEX, and generates code in Python and C++,
creating functions which implement the derived solu-
tions including domain (reachability) checking of nu-
merical inputs.

• Inverse kinematics solutions from IKBT are verifiable
with numerical computations (facilitated by the IKBT
code generator).

• Implementation in a modern open-source, cross-
platform, programming language
(Python). IKBT requires few dependencies outside
of the standard Python distribution (mainly the sym-
bolic manipulation package sympy and the unit testing
framework unittest).

Figure 1: IKBT Structure. Node type explanation: Action nodes
(leaves) carry out specific tasks, and returns SUCCESS or FAIL-
URE. Succeeder is a special type of action nodes that only returns
SUCCESS. Selector node ticks its children in turn, returns SUC-
CESS and stops if one of the children succeeds, otherwise returns
FAILURE. Sequence node only returns SUCCESS if all its children
succeed. Parallel node tries out all its children regardless of their
return status, returns SUCCESS if any child succeeds.

2 Work Flow and Architecture

A Forward kinematics module computes symbolic kinematic
equations to be solved (Td = Ts) given the input DH parame-
ters. Then the equations are evaluated for closed-form inverse
kinematics solutions to each joint variable. Upon solving a
robot, along with the solutions, a dependency graph, Latex
report, and Python/C++ code are generated as convenience
features.

The work reported here is the first to our knowledge to
use Behavior Trees to encode algorithms for reasoning about
and solving mathematical equations symbolically. When im-
plementing intelligent behavior with Behavior Trees, the de-
signer of a robotic control system breaks the task down into
modules (Behavior Tree leaves) which return either “success”
or “failure” when called by parent nodes. Higher level nodes
define composition rules to combine the leaves including: Se-
quence, Selector, and Parallel node types which also return
“success” or “failure”. A Sequence node defines the order of
execution of leaves and returns success if all leaves succeed
in order. A Selector node (called “Priority” by some authors)
tries leaf behaviors in a fixed order, returns success when a
node succeeds, and returns failure if all leaves fail. We also
implemented a “Parallel” node (represented as “OR” in Fig.
1), which executes all leaves regardless of their return status,
and returns success if any one of the leaves succeeds. The
IKBT structure used for our current results is shown in Fig.1.

For detailed explanations on rule-based solvers, see [Zhang
and Hannaford, 2019].

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Journal Track

5146



Figure 2: PUMA 560 Solution Graph.

number of DOF Test examples Solved

4 4 4
5 10 10
6 5 4

Table 1: IKBT test results

3 Solution Graph and Result Verification

IKBT provides solution graph to track the dependency among
joint variables. IKBT traces these dependencies in a mathe-
matical sense, based on their symbolic solution equations. In-
tuitively, in the physical world, it can be interpreted as when
one joint is set to a new value, the dependent joints values
changes with it, in order to achieve certain end effector posi-
tion and orientation. The solutions produced by inverse kine-
matics are typically interdependent in that results obtained
early in the process are used to solve later results. In princi-
ple, it is possible to substitute these dependencies until there
are no joint variables on the right hand side, but this makes
the solutions difficult to compare with previously published
hand solutions. Thus the two sources of multiple solutions
are: A) each joint variable may have multiple solutions due
to its solver’s characteristic; and B) dependence of the solu-
tion on other solved joint variables. On top of basic depen-
dency tracking, IKBT also preforms redundancy elimination
and automatically groups variables. These are important for
outputting correct sets of joint variable solutions of all pos-
sible robot configurations. An example solution graph (for
commercial robot Puma 560) is shown in 2. More examples
and detailed explanations can be found in [Zhang and Han-
naford, 2019].

After solving an inverse kinematics problem, a few simple
steps can be taken to verify that the solutions are correct, as
shown in 3.

Figure 3: Result Verification. A numerical 4x4 homogeneous trans-
formation matrix, Td, is constructed from a reachable pose. Numer-
ical joint space poses are computed from Td using the closed-form
solutions. For each solution pose, forward kinematics is calculated.
The resulting transform matrices are compared against the original
matrix, matching value is indicative of correct IKBT inverse kine-
matics analysis. 2N indicates the number of solutions is always
even.

4 Results and Discussion

We tested IKBT on many sets of DH parameters, representing
serial arm robot designs (including commercial robots, and
solved design examples from student homework), the suc-
cessful solving rate is listed in Table 1. As the DOF number
increases, the problem becomes more complex and the suc-
cess rate decreases. In general it solves most of the robots,
up to 6 DOF. Note that IKBT can solve robots regardless
of their configurations, e.g. IKBT does not require robots
having three intersecting axes. Detailed examples including
analytical solutions with variable dependency graphs can be
found in [Zhang and Hannaford, 2019]. Code is available at
github.com/uw-biorobotics/IKBT.

The rule-based solvers included in IKBT’s toolbox are
commonly employed by human experts when solving inverse
kinematics problems. IKBT’s Behavior Tree represents an in-
terpretable strategy - vital for judging many AI applications.
This makes it easier to examine the correctness of the solution
and the strategy formulating process.

IKBT constructs a generalized solving scheme applicable
to an entire class of problems, using a small number of knowl-
edge leaves. While most of current AI work focuses on recog-
nizing and understanding scenarios, Behavior Trees emerge
as a path to an equally vital component - combinatorial rea-
soning. Such logical reasoning enables AI agents to use lim-
ited knowledge base to solve problems of much larger mag-
nitude. Intuitively, combinatorial reasoning is how human
interact with the world: we decompose a unseen problem
into solvable parts, then piece together modular knowledge
to solve the larger problem. We don’t get re-trained from
scratch whenever we face new problems.

Leveraging combinatorial reasoning of behavior tree and
the learning capabilities of modern machine learning tech-
niques (especially unsupervised), we might be on our way to
unlock the next level of autonomy.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Journal Track

5147

https://github.com/uw-biorobotics/IKBT


Acknowledgements
We thank Dr. Steve Tanimoto for the invaluable advice on
identifying the right audience and publication venue.

References
[Colledanchise et al., 2016] Michele Colledanchise, Alejan-

dro Marzinotto, Dimos V. Dimarogonas, and Petter Ogren.
The advantages of using behavior trees in multi-robot sys-
tems. In International Symposium on Robotics (ISR), June
2016.

[Colledanchise et al., 2017] M. Colledanchise, R. Murray,
and P. Ogren. Synthesis of Correct-by-Construction Be-
havior Trees. In Intelligent Robots and Systems (IROS
2017), 2017 IEEE/RSJ International Conference on, pages
1482–1488, Sept 2017.

[Corke, 1996] P. I. Corke. A robotics toolbox for matlab.
IEEE Robotics Automation Magazine, 3(1):24–32, Mar
1996.

[Halperin, 1991] Dan Halperin. Automatic kinematic mod-
elling of robot manipulators and symbolic generation
of their inverse kinematics solutions (extended abstract),
1991.

[Herrera-Bendezu et al., 1988] L. G. Herrera-Bendezu,
E. Mu, and J. T. Cain. Symbolic computation of robot
manipulator kinematics. In Proceedings. 1988 IEEE
International Conference on Robotics and Automation,
pages 993–998 vol.2, Apr 1988.

[Kelmar and Khosla, 1990] Laura Kelmar and Pradeep K.
Khosla. Automatic generation of forward and inverse kine-
matics for a reconfigurable modular manipulator system.
Journal of Robotic Systems, 7(4):599–619, 1990.

[Lim et al., 2010] Chong-U Lim, Robin Baumgarten, and Si-
mon Colton. Evolving behaviour trees for the commercial
game defcon. In European Conference on the Applications
of Evolutionary Computation, pages 100–110. Springer,
2010.

[Manocha and Canny, 1994] D. Manocha and J. F. Canny.
Efficient inverse kinematics for general 6r manipula-
tors. IEEE Transactions on Robotics and Automation,
10(5):648–657, Oct 1994.

[Marzinotto et al., 2014] Alejandro Marzinotto, Michele
Colledanchise, Christian Smith, and Petter Ogren. To-
wards a unified behavior trees framework for robot
control. In 2014 IEEE International Conference on
Robotics and Automation (ICRA), pages 5420–5427.
IEEE, 2014.

[Murray et al., 1994] Richard M. Murray, S. Shankar Sastry,
and Li Zexiang. A Mathematical Introduction to Robotic
Manipulation. CRC Press, Inc., Boca Raton, FL, USA, 1st
edition, 1994.

[Zhang and Hannaford, 2019] Dianmu Zhang and Blake
Hannaford. Ikbt: Solving symbolic inverse kinematics
with behavior tree. Journal of Artificial Intelligence Re-
search, 65:457–486, 07 2019.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Journal Track

5148


	Introduction
	Work Flow and Architecture
	Solution Graph and Result Verification
	Results and Discussion

