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Abstract
Numerous tasks at the core of statistics, learn-
ing, and vision areas are specific cases of ill-
posed inverse problems. Recently, learning-based
(e.g., deep) iterative methods have been empirically
shown to be useful for these problems. Nevertheless,
integrating learnable structures into iterations is still
a laborious process, which can only be guided by
intuitions or empirical insights. Moreover, there is
a lack of rigorous analysis of the convergence be-
haviors of these reimplemented iterations, and thus
the significance of such methods is a little bit vague.
We move beyond these limits and propose a theoret-
ically guaranteed optimization learning paradigm,
a generic and provable paradigm for nonconvex in-
verse problems, and develop a series of convergent
deep models. Our theoretical analysis reveals that
the proposed optimization learning paradigm allows
us to generate globally convergent trajectories for
learning-based iterative methods. Thanks to the
superiority of our framework, we achieve state-of-
the-art performance on different real applications.

1 Introduction
In applications throughout statistics, machine learning and
computer vision, one is often faced with the challenge of
solving ill-posed inverse problems. In general, the basic in-
verse problem leads to a discrete linear system of the form
T (x) = y + n, where x ∈ RD is the latent variable to be
estimated, T denotes some given linear operations on x, and
y,n ∈ RD are the observation and an unknown error term, re-
spectively. Typically, these inverse problems can be addressed
by solving the composite minimization model:

min
x

Ψ(x) := f(x; T ,y) + g(x), (1)

where f is the fidelity that captures the loss of data fitting,
and g refers to the prior that promotes desired distribution
on the solution. Recent studies illustrate that many problems
(e.g., image deconvolution, matrix factorization and dictio-
nary learning) naturally require to be solved in the nonconvex
scenario. This trend motivates us to investigate Nonconvex
Inverse Problems (NIPs) in the form of Eq. (1) and with the

practical configuration that f is continuously differentiable, g
is nonsmooth, and both f and g are possibly nonconvex.

Over the past decades, a broad class of first-order method-
s have been developed to solve special instances of Eq. (1).
Many learning and vision tasks have been formulated as the
problems of optimizing hand-designed mathematical convex
models. Unfortunately, abstractly designed general optimiza-
tion models may be lack of flexibility and robustness, espe-
cially in real-world scenarios.

In recent years, various learning-based strategies have been
proposed to address practical inverse problems in the form
of Eq. (1). A variety of deep neural networks (DNNs) have
been established and trained for different learning and vision
problems ( e.g., [LeCun et al., 2015][He et al., 2016]). Though
with relatively good practical performance on specific applica-
tions, the theoretical investigations ( e.g., the interpretability
and guarantees) are the most important missing footstones for
existing experience-based DNNs.

Some preliminary works have been developed to design
DNNs based on optimization process ( e.g., [Chen et al.,
2017]). However, due to the naive combination strategies
( e.g., directly replace iterations by networks), it is still chal-
lenging to strictly analyze their propagation behaviors.

To break the limits of prevalent approaches, we establish an
optimization learning paradigm [Liu et al., 2019a], a generic
and convergent algorithmic framework that combines together
the learnable architecture (e.g., mainstream deep network-
s) with principled knowledges (formulated by mathematical
models), illustrated in Fig. 1. Based on the optimization learn-
ing paradigm, we develop a series of deep models [Liu et
al., 2018c][Liu et al., 2018b][Liu et al., 2018d][Liu et al.,
2019c][Liu et al., 2019b][Liu et al., 2018a][Liu et al., 2019d]
to incorporate optimization process and trainable architectures
to design knowledge-driven deep learning models.

On the one hand, our framework actually provides a way to
learn data-dependent numerical solvers [Liu et al., 2018c][Li-
u et al., 2018b][Liu et al., 2018a][Liu et al., 2019b][Liu et
al., 2019a] for the instances of Eq. (1). Compared with these
naive unrolling-based approaches ( e.g., [Chen et al., 2017]),
which lack theoretical guarantees, our main advantage is that
we can obtain iterative process, which strictly converge to the
critical point of the considered optimization model, even in
the complex nonconvex and nonsmooth scenarios. On the oth-
er hand, by slightly relaxing the exact optimality constraints
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Figure 1: Illustration of our knowledge-driven deep learning paradigm.

during propagations, we can obtain an interpretable frame-
work to integrate mathematical principles ( i.e., formulated
by model-based building-block) and experience of the tasks
( i.e., network structures designed in heuristic manners) for
collaborative end-to-end learning [Liu et al., 2018b][Liu et al.,
2018a][Liu et al., 2019b][Liu et al., 2019a].

In summary, the contributions of our works mainly include:
• We provided a model-inspired paradigm to establish

building-block modules for deep model design. Different
from existing trainable iteration methods, in which the
architectures are built either from specific prior formu-
lations or completely in heuristic manners, we develop
a flexible framework to integrate both data (investigat-
ed from training set) and knowledge (incorporated into
principled priors) for deep propagations construction.

• By introducing an optimality error checking condition
together with a proximal feedback mechanism, we prove
in theory that our generated deep propagation is globally
convergent to the critical point of the given optimization
model. Such strict convergent guarantee is just the main
advantage against these existing deep iterations designed
in heuristic manner.

• We provide a practical and effective ensemble of domain
knowledge and sophisticated learned data distributions
and design a series of algorithms to address practical
vision applications. We bring the expressive power of
knowledge-based and data-driven methodologies to yield
state-of-the-art performance on real vision tasks.

2 Our Convergent Optimization Paradigm
This section develops our general and convergent optimization
learning paradigm for nonconvex inverse problems in Eq. (1).
The convergence behaviors are also investigated according-
ly. Hereafter, some fairly loose assumptions are enforced on
Eq. (1): f is proper and Lipschitz smooth (with modulus L)
on a bounded set, g is proper, lower semi-continuous and
proximable1 and Ψ is coercive.

2.1 Abstract Iterative Modularization
A large amount of first-order methods can be summarized
as forward-backward-type iterations. This motivates us to

1The function g is proximable if minx g(x) + γ
2
‖x − y‖2 can

be easily solved by the given y and γ > 0.

Algorithm 1 General Optimization Learning Paradigm

Require: x0, A = {Ag,Af}, {0 < 2Ck < µk < ∞}, and
{0 < γk < 1/L}.

1: while not converged do
2: uk = Ag ◦ Af (xk).
3: ũk ∈ proxγkg

(
uk − γk

(
∇f(uk) + µk(uk − xk)

))
.

4: if ‖dũk

Ψk‖ ≤ Ck‖ũk − xk‖ then
5: vk = ũk.
6: else
7: vk = xk.
8: end if
9: xk+1 ∈ proxγkg

(
vk − γk∇f(vk)

)
.

10: end while

consider the following even more abstract updating principle:

xk+1 = Ag ◦ Af (xk), (2)
where Af and Ag respectively stand for the user-specified
modules for f and g, and ◦ denotes operation composition.
Building upon this formulation, it is easy to see that designing
a learning-based iterative method reduces to the problem of
iteratively specifying and learning Af and Ag .

It is straightforward that most prevalent approaches natural-
ly fall into this general formulation. Nevertheless, currently it
is still impossible to provide any strict theoretical results for
practical trajectories of Eq. (2). This is mainly due to the lack
of efficient mechanisms to control the propagations generated
by these handcrafted operations. Fortunately, in the following,
we will introduce our policies to automatically guide the itera-
tions in Eq. (2), resulting in a series of theoretically convergent
learning-based iterative methods.

2.2 Implicit Momentum via Error Control
In this subsection, we show how to address this issue by
controlling the first-order optimality error during iterations.
Specifically, we consider the auxiliary of Ψ at xk (denoted as
Ψk) and denote its sub-differential (denoted as dx

Ψk )2 as

Ψk(x) = f(x) + g(x) + µk

2 ‖x− xk‖2,
dx

Ψk = dx
g +∇f (x) + µk(x− xk) ∈ ∂Ψk(x),

(3)

2Strictly speaking, ∂Ψk(x) is the so-called limiting Frechét sub-
differential. We state its formal definition and propose a practical
computation scheme for dũ

Ψk in Appendix of [Liu et al., 2019a].
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Input DerainNet DetailNet UGSM Ours

Figure 2: Rain streaks removal results of our algorithm with comparisons to the state-of-the-art approaches on real-world rainy images.

Input SRIE (4.9465) WVM (4.6018)

JIEP (4.6658) HDRNet (4.7889) Ours (4.5799)

Figure 3: Low-light image enhancement results on an example select-
ed from NASA benchmark. The scores in the brackets are the NIQE
values.

19.9339 / 0.6232 27.2389 / 0.8432 27.9410 / 0.8300
Blurred EPLL IDD-BM3D

27.2311 / 0.8590 32.4017 / 0.8935 32.3983 / 0.8935
CSF Ours (I) Ours (E)

Figure 4: Non-blind deblurring results. The PSNR / SSIM scores are
reported below each image.

where µk > 0 is the penalty parameter and dx
g ∈ ∂g(x).

As shown in Alg. 1, at stage k, a variable ũk is obtained
by proximally minimizing Ψk at uk (i.e., Step 3 of Alg. 1).
Roughly, this new variable is just an ensemble of the last
updated xk and the output uk of user-specified A following
the specific proximal structure in Eq. (1). Then the monitor is
obtained by checking the boundedness of dũ

Ψk . Notice that the
constant Ck actually reveals our tolerance to the inexactness
of A at k-th iteration.
Proposition 1. Let {xk, ũk,vk}k∈N be the sequences gen-
erated by Alg. 1. Then there exist two sequences {αk|αk >
0}k∈N and {βk|βk > 0}k∈N and Ψ(ũk) ≤ Ψ(xk)−βk‖ũk−
xk‖2 are respectively satisfied.

Equipped with Proposition 1, it will be straightforward to
guarantee that the objective values generated by Alg. 1 (i.e.,
{Ψ(xk)}k∈N) also has sufficient descent. Then the global
convergence of our flexible iterative modularization algorithm
is proved as follows. Please refer to [Liu et al., 2019a] for
more details.
Theorem 1. Let {xk}k∈N be the sequence generated by iFI-
MA. Then {xk}k∈N is bounded and any of its accumulation
points are the critical points of Ψ. If Ψ is semi-algebraic, we
further have that {xk}k∈N is a Cauchy sequence, thus globally
converges to a critical point of Ψ(x) in Eq. (1).

3 Applications
This section illustrates how to apply the proposed general op-
timization learning paradigm to tackle practical inverse prob-
lems in different practical computer vision applications, such
as low-light image enhancement, rain streaks removal, im-
age restoration problems, and medical image analysis [Liu
et al., 2018d][Liu et al., 2019c][Liu et al., 2019d] and so on.
This section also compares the performance of our algorithm
with other state-of-the-art learning-based iterative methods on
real-world inverse problems.

3.1 Low-level Vision Problems
We conduct experiments on various low-level vision tasks
(i.e., rain streaks removal and low-light image enhancement)
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Ground Truth ZeroFilling (22.33) TV (25.22) SIDWT (25.10) PBDW (27.39)

PANO (28.77) FDLCP (29.78) ADMM-Net (27.91) BM3D-MRI (29.35) Ours (30.48)

Figure 6: Qualitative comparisons on T1-weighted brain MRI data using Gaussian mask at a sampling ratio of 10% .

(a) Input (b) BLF (c) WLS

(d) L0 (e) RTV (f) Ours

Figure 5: Edge-preserved smoothing results on an example with
abundant textures.

and demonstrate the superiority of our proposed framework,
compared with existing state-of-the-art approaches in [Liu et
al., 2019a][Liu et al., 2019b]. Fig. 2 shows the rain streaks
removal results of our paradigm on real-world rainy images.
As can be observed, our proposed method can remove more
rain streaks and preserve the more detail textures than others.
Fig. 3 shows quantitative results on low-light image enhance-
ment. As it shows, our method recover more details in the
dark and presents a high contrast with a lower NIQE score.

3.2 Image Restoration Problems
Non-blind Deconvolution aims to restore the latent image
z from corrupted observation y with known blur kernel b.
We propose a collaborative learning framework in [Liu et
al., 2018d] to address the blind image deblurring issues. We
design two modules, named Generator and Corrector, to ex-
tract the intrinsic image structures from the data-driven and
knowledge-based perspectives, respectively. By introducing a
collaborative methodology to cascade these modules, we can
strictly prove the convergence of our image propagations to a
deblurring-related optimal solution. As a nontrivial byproduct,

we also apply the proposed method to address other related
tasks, such as edge-preserved smoothing. Edge-preserved im-
age smoothing is a fundamental tool for image editing and
processing, such as pencil sketch rendering and cartoon artifac-
t removal. This task aims to increase the steepness of transition
while eliminating a manageable degree of low-amplitude struc-
tures in the image. Fig. 4 illustrate the non-blind deblurring
results. As shown, our algorithm maintains the advantage to
recover more details and textures. Fig. 5 illustrates the edge-
preserved smoothing results on an example image. It can be
seen that our method removes most of the horizontal shutter
door textures, while there still exists some horizontal lines in
the results of other methods.

3.3 Medical Image Analysis Problems
Compressed Sensing Magnetic Resonance Imaging (CS-MRI)
enables fast acquisition at sampling rate much lower than
Nyquist rate with performance guarantee. However, exist-
ing CS-MRI deep optimization techniques have limitation in
providing a theoretically converged scheme to restore MR
images utilizing both domain knowledge and learnable archi-
tecture. To address this issue, we propose a deep optimization
framework in [Liu et al., 2019d], which can integrate do-
main knowledge and learning-based architectures by checking
the first-order optimal condition. By the automatic checking
mechanism from optimal condition, we can obtain a converged
sequence which trends to the critical point of specific model.
We further extend out paradigm to address real-world CS-MRI
with Rician noise. Fig.6 offers the qualitative comparison.
Visualized results demonstrate our method has better perfor-
mance on both artifacts removing and details restoration.

4 Conclusions
We establish a theoretically guaranteed paradigm to design
deep models for different learning tasks. We propose our novel
mechanisms to adaptively guide the trajectories of learning-
based iterations and proved their strict convergence. We also
showed how to apply our guaranteed paradigm for different
real-world applications, such as low-level vision problems,
image restoration problems, and medical image analysis.
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