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Abstract

Deep reinforcement learning (DRL) methods tra-
ditionally struggle with tasks where environment
rewards are sparse or delayed, which entails that
exploration remains one of the key challenges of
DRL. Instead of solely relying on extrinsic rewards,
many state-of-the-art methods use intrinsic curios-
ity as exploration signal. While they hold promise
of better local exploration, discovering global ex-
ploration strategies is beyond the reach of current
methods. We propose a novel end-to-end intrinsic
reward formulation that introduces high-level ex-
ploration in reinforcement learning. Our curiosity
signal is driven by a fast reward that deals with lo-
cal exploration and a slow reward that incentivizes
long-time horizon exploration strategies. We for-
mulate curiosity as the error in an agent’s ability
to reconstruct the observations given their contexts.
Experimental results show that this high-level ex-
ploration enables our agents to outperform prior
work in several Atari games.

1 Introduction

In recent years, reinforcement learning (RL) methods have
led to remarkable successes in a wide variety of tasks, such as
game playing [Mnih et al., 2013] and robot control [Lillicrap
et al., 2015]. Despite their exciting results in environments
with complex goals, rich sensory inputs, exploring when re-
wards are sparse or delayed remains an open problem in RL.

Following similar curious behaviors in animals, one solu-
tion to this problem is to let the agent generate its own in-
trinsic exploration bonus (i.e. curiosity-driven learning). For
instance, count-based exploration [Bellemare et al., 2016]
keeps visit counts for states and incentivizes the exploration
of novel states. Another solution [Houthooft et al., 2016] re-
lies on information gain to assess novelty. A line of work
generates a bonus based on the inability to predict the future
[Pathak er al., 2017]; but may push the agent to seek out states
with stochastic transitions. This issue has motivated several
recent works [Burda et al., 2018; Savinov et al., 2019]. In
spite of their ability to deal with local exploration - capturing
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the consequences of short-term decisions, they may get stuck
in local optima and only detect local novelty.

In this paper, we propose a novel exploration bonus that
can deal with high-level exploration. Capturing the conse-
quences of actions on long-time horizon allows us to over-
come the known “local optima” issues of prior work - when
the agent cannot compensate easy immediate rewards or de-
ceptive rewards and therefore learns a sub-optimal policy. To
this end, we combine a fast reward dealing with local novelty
and a slow reward that assesses global novelty. In our formu-
lation, intrinsic rewards are based on the reconstruction errors
of the observations given their contexts. The intuition behind
this approach is that changing how are created the contexts
of the fast, and slow reward models, results in flexible explo-
ration behaviors. We benchmark our approach on a set of hard
exploration tasks from Atari games, and compare our method
with state-of-the-art curiosity methods.

2 Method

The proposed method (FaSo) is an effective way to incen-
tivize high-level exploration. Our curiosity formulation de-
composes the intrinsic reward ry into a fast reward r{ *! and
a slow reward r;!°%, Fast rewards assess the novelty of each
state, to deal with local exploration. One the other hand, slow
rewards 75!°% encourage global exploration behaviors.

We sum-up our exploration bonus with the task reward: r, =

3 t . o
e+ ri = 18 + [arf ! + Brslow]. We formulate intrinsic
rewards as the error in an agent’s ability to reconstruct obser-

vations given their contexts (context-driven curiosity).

2.1 Context-Driven Curiosity

We propose a measure of intrinsic motivation formulated as
the quality of the agent to reconstruct an observation given its
context. The module takes the current observation’s context
as its input and reconstructs the original image. The discrep-
ancy between the reconstructed image and the actual image
then serves as the intrinsic reward. In this work, the context
of an observation refers to a version of it with one or more
regions missing, noisy, or corrupted.

Context Creation

We introduce a simple method to extract the context of an ob-
servation based on image downsampling. The original image
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of size w x w is downscaled using a nearest-neighbor inter-
polation to a smaller image of size 7z X 72 and then upscaled
to the original size, introducing small artifacts. The hyperpa-

rameter K controls the amount of artifacts.

Reward Calculation

We now formulate the procedure to assign the intrinsic re-
ward. This involves the prediction error of a reconstructor
network trained to reconstruct an observation given as input
the observation’s context. Formally, let s; be the original ob-
servation at time ¢ and sj its context. The reconstructor net-
work Ry : s* +— s parameterized by ¢, takes the context of
an observation and reconstructs the original image s;. This
prediction will have some errors that can be measured using
a distance function. We can now assign an intrinsic bonus 7%
that penalizes states difficult to reconstruct via:

r(se) = ||se — Ry (s7)|l2 )]
2.2 Fast and Slow Rewards

Although a context-driven curiosity bonus can improve local
exploration, such as how to interact with a particular object;
global exploration is beyond the reach of a single curiosity-
based reward. Moreover, previous works [Burda er al., 2018;
Savinov et al., 2019] found that recent curiosity models will
fail to balance the loss of immediate extrinsic reward and tend
to exhaust their curiosity quickly. This paper introduces a
different approach where the intrinsic bonus 7 is the combi-
nation of two distinct context-driven rewards. They are esti-
mated by two distinct context-driven curiosity models which
reconstruct the original observation s given its fast s} and

slow s} contexts respectively, Rf; 87—~ sand Ry, ¢ 57— s
Thus, the overall intrinsic reward is:

ri = alls = RL(s7)lla + Bllsi = Ry(sDll2 @)

The key difference is how to generate s% and s to achieve
exploration behaviors with different ranges of time horizons.
Let K44 the parameter used to create the fast contexts, we
typically used K ¢qs¢ X 2 0r K g4 X 4 to create the slow con-
texts - slow contexts are more corrupted. When large regions
of images are missing or corrupted (i.e. slow contexts), sim-
ilar observations of a region of the state space have nearly
identical contexts. Therefore, a partial exploration of this re-
gion enables a satisfactory reconstruction. Since the agent
aims to maximize this prediction error, it drives the agent to
seek out more diverse and novel regions of the state space
(i.e. global exploration) to notably increase the prediction er-
rors. In contrast, contexts of fast rewards are nearly unique
which entails that slightly deviating from previous policies -
visiting novel states is sufficient to significantly increase the
reconstruction error; encouraging to locally explore.

3 Experimental Results

We evaluated the FaSo on two difficult exploration Atari 2600
games from the Arcade Learning Environment (ALE): Mon-
tezuma’s Revenge and Private Eye. The results are shown
in Table 1. On Montezuma’s Revenge and Private Eye, our
model outperforms prior approaches that mainly deal with lo-
cal exploration. It might be related to the very fact that slow
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Maximum Mean Score (at convergence)

Method Montezuma’s Revenge  Private Eye
PPO+EC [Savinov et al., 2019] 8,025 9,244
RND [Burda er al., 2018] 8,152 8,666
PPO+ICM [Pathak ez al., 20171 329 485
PPO+FaSo 8,951 11,150

Table 1: Final score of FaSo and baselines on Atari games. We re-
port the results achieved over total 600M steps of training (10 seeds).

rewards are large enough to encourage the agent to discover
and visit new rooms. As a result, FaSo explores a larger num-
ber of rooms as compared to RND. It suggests that high-level
exploration is crucial for exploring in sparse environments.

4 Conclusion

In this paper, we present a novel curiosity-based intrinsic for-
mulation, which introduces high-level exploration to solve
challenging sparse-reward problems. Our method leverages
two streams of intrinsic rewards to achieve flexible explo-
ration behaviors. We presented an evaluation on two Atari
games and found that it exceeds baseline agents in terms of
overall performance and convergence speed. As future work,
we would like to dynamically weight local and global explo-
ration during training. We are also willing to test our ap-
proach on different environments, as well as the method in
the absence of task reward.
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