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Abstract

Deep neural networks perform well on test data
when they are highly overparameterized, which,
however, also leads to large cost to train and deploy
them. As a leading approach to address this prob-
lem, sparse neural networks have been widely used
to significantly reduce the size of networks, mak-
ing them more efficient during training and deploy-
ment, without compromising performance. Re-
cently, sparse neural networks, either compressed
from a pre-trained model or obtained by training
from scratch, have been observed to be able to gen-
eralize as well as or even better than their dense
counterparts. However, conventional techniques to
find well fitted sparse sub-networks are expensive
and the mechanisms underlying this phenomenon
are far from clear. To tackle these problems, this
Ph.D. research aims to study the generalization of
sparse neural networks, and to propose more effi-
cient approaches that can yield sparse neural net-
works with generalization bounds.

1 Introduction

Occam’s razor is a well-known principle of parsimony, an-
chored in scientific thinking in general and incorporated in
practical statistical problems. Applied to deep learning, it im-
plies that given two hypotheses explaining the data equally
well, the simpler hypothesis is preferable. While modern
deep neural networks generalize well with high overparam-
eterization, the resources required to train and infer these net-
works can be prohibitive. It is difficult to deploy those models
with hundreds of millions of parameters to resource-limited
devices.

As an active area of current research, sparse neural net-
works [LeCun et al., 1990; Han et al., 2015] have been
shown to be an effective approach to address these challenges.
Sparse neural network structures are also more in line with
the natural structure of the human brain where the connec-
tions between neurons are highly sparse. Motivated by the
limited computational capacity and memory storage on mo-
bile devices, various techniques including but not limited to
pruning, Ly and L; regularization and Bayesian methods, can
effectively achieve inference efficiency by yielding a sparse
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neural network as an output of a pre-training phase which,
however, add extra computational cost during the training
phase. Recently, several approaches [Mocanu ef al., 2018;
Mostafa and Wang, 2019] have been proposed to train sparse
neural networks from scratch with a fixed parameter budget
based on adaptive sparse connectivity instantiated by Sparse
Evolutionary Training (SET) [Mocanu et al, 2018]. By
solving a combinatorial optimization problem (weights and
sparse sub-networks), these techniques can find sparse neu-
ral networks reach test accuracy comparable to the dense
network without retraining and fine-tuning. However, off-
the-shelf methods are mainly for feedforward networks (e.g.,
convolutional neural networks, multi-layer perceptrons) on
image recognition. Besides, due to the lack of hardware
and libraries, the training efficiency provided by unstructured
sparse neural networks can not be mapped to the parallel pro-
cessors. Thus, novel and more efficient approaches are re-
quired.

Furthermore, recent research has shown that sparse neu-
ral networks with a small fraction of parameters can gen-
eralize better than the dense networks [Liu et al., 2019b;
Liu et al., 2019c; Liu et al., 2019a]. These observations can
be treated as empirical evidence standing for the effective-
ness of Occam’s razor in the neural network regime. How-
ever, these insights have been found empirically, and a theory
explaining these effects is still pending.

Based on the above-mentioned challenges, this research at-
tempts to highlight the efficiency and effectiveness of sparse
neural networks with three long term research goals: (1) to
propose scalable sparsity inducing techniques that can yield
sparse neural networks with state-of-the-art sparse perfor-
mance on various neural network architectures; (2) to propose
novel techniques inducing sparse neural networks that can be
optimized by modern libraries and hardware; (3) to study the
generalization of sparse neural networks from a theoretical
perspective and study generalization bounds for sparse neural
networks with adaptive sparse connectivity.

2 Contributions

For the first goal, we have proposed a novel class of spar-
sity inducing approaches. We develop intrinsically sparse
recurrent neural networks (RNNs), which is more challeng-
ing to compress than CNNs and MLPs, due to the recur-
rent structure and the long-term dependencies over different



Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Doctoral Consortium Track

time steps. The results demonstrate that our method can dis-
cover a sparse sub-network with a single run, which usually
achieves better performance than dense RNNs [Liu et al.,
2019b]. Furthermore, we invested a novel approach, termed
Selfish-RNNss, that yields sparse RNNs significantly improv-
ing the language modeling performance for various RNN-
based models on large scale datasets. The main contributions
are two-fold. (1) We optionally allow redistributing weights
across different RNN cells during training to better regulate
information. (2) We proposed a new optimizer, sparse non-
monotonically triggered averaged stochastic gradient descent
(Sparse NT-ASGD), a variant of NT-ASGD [Merity erf al.,
2017] that remedies the structural damage caused by the av-
erage operation of NT-ASGD.

For the second goal, we have devised the first truly sparse
implementation for adaptive sparse connectivity [Liu ef al.,
2019al'. Although adaptive sparse connectivity has shown its
ability to reduce parameter-counts and to reach higher test ac-
curacy, the sparsity is enforced by binary masks in the off-the-
shelf work, since GPU-accelerated libraries have limited sup-
port for sparse operations. In this work, we address the above
limitations of adaptive sparse connectivity and implemented
SET from scratch using just Python, Scipy and Cython. With
this efficient implementation, we are able to train truly sparse
MLPs with over one million neurons on a typical laptop with-
out GPU, which scales dramatically better than state-of-the-
art techniques.

For the third goal, we have empirically shown that intrin-
sically sparse MLPs have better generalization capabilities
than their fully-connected counterparts [Liu ef al., 2019c].
We have also developed a method to understand sparse neu-
ral network topologies from the perspective of graph theory.
More specifically, we have introduced an approach to mea-
sure the topology similarity between different sparse neural
networks based on Graph Edit Distance (GED). By visualiz-
ing the topological optimization process of adaptive sparse
connectivity, we have shown that there are a lot of low-
dimensional structures (sparse neural networks) that have the
potential to substitute the highly overparameterized dense
models via sparse topology optimization. Moreover, we have
shown that sparse neural networks with high sparsity can sig-
nificantly reduce sharpness of the minimizers. [Keskar et al.,
2016].

3 Conclusion and Future Research

In this research work, we have proposed some techniques to
yield efficient and effective sparse neural networks and to pro-
vide some intuitions of sparse neural networks. However, the
mechanisms underlying the superior generalization of sparse
neural networks have not been fully explored yet. Our conjec-
ture is that adaptive sparse connectivity helps the continuous
optimization (for connection weights) escape the local optima
or a local saddle point by changing the loss function land-
scape iteratively. In our future work, we intend to develop a
theory on sparse neural networks and provide state-of-the-art
generalization guarantees for them.

SET-MLP-ONE-MILLION-NEURONS
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