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Abstract

Tractable Deep Probabilistic Models (TPMs) are
generative models based on arithmetic circuits that
allow for exact marginal inference in linear time.
These models have obtained promising results in
several machine learning tasks. Like many other
models, TPMs can produce over-confident incor-
rect inferences, especially on regions with small
statistical support. In this work, we will develop ef-
ficient estimators of the predictive uncertainty that
are robust to data scarcity and outliers. We investi-
gate two approaches. The first approach measures
the variability of the output to perturbations of the
model weights. The second approach captures the
variability of the prediction to changes in the model
architecture. We will evaluate the approaches on
challenging tasks such as image completion and
multilabel classification.

1 Introduction

Despite the enormous success of deep models in several ma-
chine learning tasks, there exists a concern about their robust-
ness, reliability and interpretability [Caruana et al., 2015].
Several efforts have been made to deal with these issues,
such as estimating the uncertainty about predictions to mea-
sure how much the model “knows what it knows” [Lakshmi-
narayanan et al., 2017]. A growing consensus in that sense
holds that the model “may simply not be the best judge of its
trustworthiness” [Jiang et al., 2018].

Sum-Product Networks (SPNs) are a popular type of TPMs
[Poon and Domingos, 2011] that can be viewed as a specific
type of compositional deep neural networks. An SPN is an
acyclic computation graph with an input layer that computes
univariate probability distributions and internal neurons com-
puting either weighted sums or products. It is important to
note that each neuron of an SPN represents a joint probability
distribution over the variables connected directly or indirectly
to it. Selective SPNs are a subclass of SPNs that additionally
allows for efficient Maximum-A-Posteriori (MAP) inference
and parameter learning [Peharz et al., 2014]. Probabilistic
Sentential Decision Diagrams (PSDDs) further constrain se-
lective SPNs to allow for the representation of logical con-
straints on the domain [Kisa et al., 2014].
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Despite the vantages of the probabilistic semantic of SPNs
against general deep models, such the efficient architecture
learning from data, SPNs can also generalize poorly on re-
gions with insufficient statistical support or conflicting data,
leading to unreliable, overconfident and prior-dependent in-
ferences. It is thus relevant to ascertain the predictive uncer-
tainty of inferences, that is, to provide a confidence measure
for each prediction.

Predictive uncertainty arises from two different sources:
aleatory uncertainty and model uncertainty. Aleatory uncer-
tainty is the irreducible uncertainty which derives from the
natural complexity of the data. Model uncertainty is the (ide-
ally) reducible uncertainty in selecting a model (parameters
and structure) that reasonably explain the data [Gal, 2016].

This project aims to investigate new approaches to estimate
predictive uncertainty for TPMs. To build scalable estima-
tors, we will focus on efficient estimators that can be obtained
in time proportional to the computation of a prediction (of-
ten linear in the size of the model), excluding many of the
current Bayesian inference approaches, making the problem
non-trivial.

2 Research Proposal

In order to increase the robustness of TPMs, we propose two
approaches to obtain robust predictive uncertainty estimators.
The first approach estimates the uncertainty introduced by the
misfit of model parameters by the sensitivity of the predic-
tions to perturbations in the parameters [Maua et al., 2018;
Antonucci et al., 2019]. Initially, we consider measuring
the sensitivity while varying all parameters independently.
Since many of the parameters are usually correlated (e.g. they
are estimated using overlapping portions of the dataset), we
will also consider connecting the perturbations of correlated
weights. As this is a more challenging task than the previ-
ous one it may involve using approximate solutions to ensure
efficiency.

The second approach estimates the uncertainty introduced
by a mis-specification of the architecture (or structure). This
consists in estimating the variability of the predictions as the
network structure changes by using an ensemble of SPNs
(not limited to the highest score models). One approach to
obtaining a diverse set of architectures is by sampling struc-
tures. For that purpose, we can sample uniformly or sample
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the high-score structures while ensuring diversity. The algo-
rithms developed will be evaluated by their performance on
real-world tasks such as image completion, missing data im-
putation and multilabel classification.

3 Contribution

As our first contribution, we devised a polynomial-time al-
gorithm to decide whether a given MAP configuration is ro-
bust with respect to changes in multiples parameters of a Se-
lective SPN. We evaluated our algorithms in data imputation
and multilabel classification tasks. The results showed that
our approach can discriminate easy- and hard-to-classify in-
stances, often more accurately than criteria based on the prob-
abilities induced by the model [Villanueva and Maud, 2019].
We are currently carrying out more extensive empirical eval-
uation, and adapting some of the algorithms to the formalism
of PSDDs.

4 Related Work

There have been several proposals for performing Bayesian
inference with SPNs, although not with the aim of estimat-
ing predictive uncertainty. Computing the posterior distri-
bution is intractable for SPNs [Rashwan et al., 2016], and
one usually resorts to approximate techniques such as mo-
ment matching [Rashwan et al., 2016] and variational infer-
ence [Zhao er al., 2016] and Gibbs sampling [Vergari et al.,
2019]. Even though they are approximate, prior dependent
and very inefficient compared to the computational cost of a
typical SPN inference.

Recently, there has been many proposals for achieving pre-
dictive uncertainty estimation for general neural networks.
Drop-out is a popular approach, that efficiently approximates
Bayesian inference [Gal and Ghahramani, 2016]; note that
drop-out violates the structural assumptions of TPMs. An-
other development consists in approximating Bayesian in-
ference using an ensemble of neural networks [Lakshmi-
narayanan ef al., 2017; Hu et al., 2020], similar to what we
propose for TPMs.

There is recent work on uniform sampling of PSDD struc-
tures [Mattei er al., 2019]; this can be used for generating a
diverse ensemble of selective SPNs that can be used to esti-
mate predictive uncertainty.
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