Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Demonstrations Track

An Anomaly Detection and Explainability Framework using Convolutional
Autoencoders for Data Storage Systems

Roy Assaf' | Toana Giurgiu', Jonas Pfefferle!, Serge Monney?, Haris Pozidis' and Anika
Schumann'!
IBM Research, Zurich

2IBM, Switzerland
{roa, igi, jpf} @zurich.ibm.com, smo@ch.ibm.com, {hap, ikh} @zurich.ibm.com

Abstract

Anomaly detection in data storage systems is a
challenging problem due to the high dimensional
sequential data involved, and lack of labels. The
state of the art for automating anomaly detection in
these systems typically relies on hand crafted rules
and thresholds which mainly allow to distinguish
between normal and abnormal behavior of each in-
dicator in isolation. In this work we present an end-
to-end framework based on convolutional autoen-
coders which not only allows for anomaly detec-
tion on multivariate time series data, but also pro-
vides explainability. This is done by identifying
similar historic anomalies and extracting the most
influential indicators. These are then presented to
relevant personnel such as system designers and ar-
chitects, or to support engineers for further analy-
sis. We demonstrate the application of this frame-
work along with an intuitive interactive web inter-
face which was developed for data storage system
anomaly detection. We discuss how this framework
along with its explainability aspects enables sup-
port engineers to effectively tackle abnormal be-
haviors, all while allowing for crucial feedback.

1 Introduction

Storage systems are a crucial and ubiquitous part of comput-
ing infrastructures be it on premise or in the cloud. While
failures of components like hard disks, etc. are typically eas-
ily detectable, changes in performance require more involved
knowledge about the system. For example, systems can suf-
fer from abnormally long response times which leads to loss
in productivity and ultimately impact the client. The perfor-
mance of a system is gauged by a set of key performance indi-
cators, each of which measures a particular system character-
istic. These indicators are made available via a data collection
tool and are collected at system level. Example indicators are:
Overall Back-end Response Time ™5/op, Port Send I/O Rate
ops/s, and Read Data Rate MiB/s.

The state of the art in the industry for automatically detect-
ing performance anomalies usually relies on expert knowl-
edge for setting rules and thresholds which mainly allow to
distinguish between normal and abnormal behavior of each

5228

indicator in isolation. However, this presents many shortcom-
ings, particularly ignoring the interactions between different
indicators. Considering the multivariate time-series nature
of the data, we tackle this problem using convolutional neu-
ral networks (CNNs) which have shown to be both effective
[Fawaz er al., 2018; Zheng et al., 2014; Yang et al., 2015];
and superior to other methods [Bai et al., 2018] since they
require less computational time and resources, and due to
their ability to learn meaningful patterns from the data with-
out the need for manual feature engineering. We do this us-
ing autoencoders which allow for unsupervised learning since
labels are scarce in this domain. In this work, we demon-
strate our framework for anomaly detection and explainabil-
ity on multivariate time series data using convolutional au-
toencoders in storage systems. We show that this approach,
which is coupled with explainability aspects, enables support
engineers to more effectively tackle abnormal behaviors. And
allows for feedback which is later used for improving the
framework and building a rich anomaly signature database.

2 Anomaly Detection Framework

Here we describe our framework which is illustrated in Figure
1. The framework consists of three main parts: 1) The con-
volutional autoencoder, 2) the anomaly post-processing and
explainability, and 3) the interactive web interface.

2.1 Model Architecture

We base our architecture design on the fact that labels are
scarce, and the hypothesis that most storage system data re-
flect normal behavior.

Therefore, we use an autoencoder architecture with stacked
1D convolutional layers [LeCun et al., 1995]. The multivari-
ate time series are handled by m x n kernels where n is the
total number of indicators, and m the number of time steps
considered by the kernels. These slide across the time axis
with a stride s = 2 and their weights are optimized for all
data samples which allows the network to learn associations
between all indicators across time. This unsupervised learn-
ing approach aims to reconstruct the input data after signif-
icantly reducing dimensionality. This bottleneck along with
the restricted capacity of the network force the network to
only learn common patterns in order to optimize its [2-norm
loss. This is essential since common patterns are associated

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Demonstrations Track

a) Convolutional autoencoder

.. L
Original AAVER,
Data
©
< - -
In Time
e Mo Encoder
[=

c) Interactive Interface

n Layers
—

Reconstructed
Data
- —> -——>
@
a.
X
Embedding Time \J\ - :
I S | VRl K 0) W et o &
Decoder U~ o

& i e) = & E = s &
& & ¥ ¥ # & e # &

b) Sum of reconstruction errors for all indicators

Figure 1: An overview of the anomaly detection and explainability framework. a) shows the convolutional autoencoder architecture, b) shows
the sum of reconstruction errors over all KPIs for one storage system, and c) shows the interactive web interface used by support engineers.

with normal behavior; therefore the network will have diffi-
culty reconstructing novel and abnormal behavior [Sakurada
and Yairi, 2014].

The architecture of the encoder network consists of three
convolutional layers that use ReLLU activation with 64, 128
and 256 filter maps and kernel size 8, 6 and 4 respectively.
The decoder is symmetric to the encoder. The embedding di-
mension is chosen to be 256. We train the network for a max-
imum of 120 epochs and use the Adam optimizer [Kingma
and Ba, 2014] with a learning rate set to 0.0001. We train
a model for every system and do this for 1000s of systems.
This is because different storage systems have different con-
figurations and experience different workloads. These mod-
els are retrained either periodically or on demand, in order to
consider the latest workload patterns, or to reflect patches or
updates to the storage systems.

2.2 Post-Processing and Explainability

We use reconstruction-error based anomaly detection since
the models have less accuracy reconstructing anomalous be-
havior. More importantly, we are interested in the relative
error vs the absolute magnitude of the error. After the recon-
struction errors are computed, we post-process these by first
summing up the errors across all indicators per time step as
e = >, > ||zt — @i||>, where 2" is the time series of
indicator ¢ and ¢ is the time step. Then, we apply a 1D convo-
lution filter with equal weights, identical to a moving average
as e; = y_, e[t:t+w] x v, where v is the filter of size w of
identical values % A larger w indicates more smoothing.
This is done so that point anomalies are damped and allows
us to focus on range anomalies. This is important since in
data storage systems we are concerned with sustained perfor-
mance anomalies.

Accordingly, a relative threshold is extracted following a
k-sigma rule and is adjusted based on validation feedback. If
the smoothed reconstruction error e, exceeds this threshold it
is considered an anomaly.

5229

Once an anomaly is detected, we perform the explainabil-
ity step. First, the reconstruction error can be traced back
to each indicator. Then the indicators are sorted based on the
cumulative error registered within the anomalous time period.
This in turn allows us to compile a list of top-k most influen-
tial indicators that explain the model’s decision. Second, we
perform cosine similarity on the embedding space with his-
toric anomalies. This allows us to identify the most similar
anomalies and therefore explain the anomaly via association.

Placing our explainability work in perspective, typical ex-
plainability approaches for deep networks using time se-
ries data fit under explanations of deep network processing
[Gilpin et al., 2018]. They make use of saliency maps for
highlighting network attention such as in [Assaf er al., 2019;
Yang et al., 2015]. These approaches either treat indica-
tors in separation or require the usage of a particular net-
work design which constrict the anomaly detection capability
of our framework. Accordingly, the explainability approach
described in this work fits under explanations of deep net-
work representations, particularly under generated explana-
tions [Gilpin et al., 2018]. This is because we designed our
network with the aim of explaining anomalies by extracting
the influence of the indicators, and by associating the anoma-
lies to previous similar anomalies. Hence the use of the au-
toencoder architecture and the use of the reconstruction error
paradigm.

2.3 Interactive Interface

A front-end is developed using Grafana as an interactive web
interface for support engineers. This allows them to effort-
lessly lookup anomalies per storage system. These anoma-
lies are visualized from start time to end as an overlay over
key performance indicators such as response time, e.g. 1 c).
Additional options are provided to display events, tickets or
threshold-based alerts that might have occurred. This is done
for the sake of completeness of having all the relative infor-
mation easily accessible in one place, and more importantly

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Demonstrations Track

because some support engineers might still be reliant on that
additional information. Once an anomaly is selected, the list
of top-k indicators are visualized, this is essential as going
through all the indicators (> 200) would be infeasible and
overwhelming. These explain the model’s main reasons for
flagging an anomaly. Also, similar historic anomalies can be
displayed along with their closing actions. This allows for
quicker analysis and leads to resolving anomalies in a shorter
amount of time. The support engineers can further analyze
the anomaly by either choosing to view other indicators, or by
overlaying a lagged time series of that indicator e.g. 7 days,
1 month, etc. This is done for the sake of comparison and for
distinguishing seasonal performance patterns. Notably, the
interactive interface allows the support engineers to log de-
tails about the anomaly in a set of fields. Mainly the accuracy
of the anomaly, i.e. if it was a true positive or false posi-
tive. They also have the ability to flag true negatives where
they believe there was an anomaly, but none were detected.
Importantly, the support engineers can augment their valida-
tions using a rating representing their certitude. Likewise, in
the case of a true positive they can rate how much they think
the list of top-k indicators were representative of the anomaly.
Finally, this feedback is used for reducing false positives by
improving the models and tuning the post-processing hyper-
parameters. It also helps building a rich anomaly signature
database which in turn improves the explainability aspects of
the framework.

3 Demonstration

We demonstrate the interactive interface using non-
confidential data and allow users to act as support engineers.
Users can select different systems and display their corre-
sponding anomalies. They can view the list of top-k indica-
tors and the list of similar historic anomalies. The users can
also perform manual analysis for validating these anomalies
and then provide their validation and feedback. Finally, we
demonstrate the deployment of the deep learning back-end,
explaining the approach and walking through all the steps de-
scribed in Sections 2.1 and 2.2.

References

[Assaf er al., 2019] Roy Assaf, Ioana Giurgiu, Frank Bage-
horn, and Anika Schumann. Mtex-cnn: Multivariate time
series explanations for predictions with convolutional neu-
ral networks. In 2019 IEEE International Conference on
Data Mining (ICDM), pages 952-957. IEEE, 2019.

[Bai et al., 2018] Shaojie Bai, J Zico Kolter, and Vladlen
Koltun. An empirical evaluation of generic convolutional

and recurrent networks for sequence modeling. arXiv
preprint arXiv:1803.01271, 2018.
[Fawaz et al., 2018] Hassan Ismail Fawaz, Germain

Forestier, Jonathan Weber, Lhassane Idoumghar, and
Pierre-Alain Muller. Deep learning for time series
classification: a review. arXiv preprint arXiv:1809.04356,
2018.

[Gilpin et al., 2018] Leilani H Gilpin, David Bau, Ben Z
Yuan, Ayesha Bajwa, Michael Specter, and Lalana Kagal.

5230

Explaining explanations: An overview of interpretability
of machine learning. In 2018 IEEE 5th International Con-
Jerence on data science and advanced analytics (DSAA),

pages 80-89. IEEE, 2018.

[Kingma and Ba, 2014] Diederik P Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[LeCun et al., 1995] Yann LeCun, Yoshua Bengio, et al.
Convolutional networks for images, speech, and time se-
ries. The handbook of brain theory and neural networks,
3361(10):1995, 1995.

[Sakurada and Yairi, 2014] Mayu Sakurada and Takehisa
Yairi. Anomaly detection using autoencoders with non-
linear dimensionality reduction. In Proceedings of the
MLSDA 2014 2nd Workshop on Machine Learning for
Sensory Data Analysis, pages 4-11, 2014.

[Yang et al., 2015] Jianbo Yang, Minh Nhut Nguyen,
Phyo Phyo San, Xiao Li Li, and Shonali Krishnaswamy.
Deep convolutional neural networks on multichannel time
series for human activity recognition. In Twenty-Fourth

International Joint Conference on Artificial Intelligence,
2015.

[Zheng et al., 2014] Yi Zheng, Qi Liu, Enhong Chen, Yong
Ge, and J Leon Zhao. Time series classification using
multi-channels deep convolutional neural networks. In In-
ternational Conference on Web-Age Information Manage-
ment, pages 298-310. Springer, 2014.

	Introduction
	Anomaly Detection Framework
	Model Architecture
	Post-Processing and Explainability
	Interactive Interface

	Demonstration

