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Abstract

Tracking physical effort from physiological sig-
nals has enabled people to manage required ac-
tivity levels in our increasingly sedentary and au-
tomated world. Breathing is a physiological pro-
cess that is a reactive and realistic representa-
tion of physical effort. In this demo, we present
DeepVentilation, a deep learning system to pre-
dict minute ventilation in litres of air a person
moves in one minute uniquely from real-time mea-
surement of rib-cage movement due to breathing.
DeepVentilation has been trained on input signals
of expansion and contraction of the rib-cage ob-
tained using a non-invasive respiratory inductance
plethysmography sensor to predict minute ventila-
tion as observed from a face/head mounted exer-
cise spirometer. The system is used to track phys-
ical effort closely matching our perception of ac-
tual exercise intensity. The source code for the
demo is available here: https://github.com/simula-
vias/DeepVentilation

1 Introduction
Global physical activity levels have declined substantially
over the last five decades [Ozemek et al., 2019]. Therefore,
a market for consumer wearable devices to track number of
steps [Bassett et al., 2017], and heart rate [Thomson et al.,
2019] has grown enormously in our so-called health society
[Adams, 2019]. Step counting is tremendously popular with
devices such as the FitBit [Diaz et al., 2015] and the Ap-
ple Watch [Veerabhadrappa et al., 2018] where people aim
to reach the quintessential 10,000 steps per day [Schneider et
al., 2006]. Heart rate monitors have been popular with ath-
letes for several years since their invention in 1977 by Po-
lar Elektro. The integration of near infrared spectroscopy
(NIRS) on smartwatches has made heart rate measurement
ubiquitous. Heart rate measures intensity of work and goes
beyond step counting to provide a more fine-grained feedback
on physical effort. However, the heart rate exhibits cardiovas-
cular drift [Coyle and Gonzalez-Alonso, 2001] which refers
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to the increase in heart rate that occurs during prolonged en-
durance exercise with little or no change in workload. In ad-
dition, heart rate is slow to react to the real physical effort
which sometimes varies quickly such as in high-intensity in-
terval training (HIIT). Therefore, we ask, can our breathing
help us predict physical effort in a more reactive and repre-
sentative manner?

DeepVentilation is a deep learning system that has been
trained to predict minute ventilation in litres per minute di-
rectly from the expansion and contraction of the breathing
muscles around the ribcage. The output minute ventilation
is the amount of air a person moves in one minute which
is typically measured using a face/head mounted exercise
spirometer. While, the input is the measurement of breath-
ing forces (in millivolts across a strain gauge) due to ribcage
expansion and contraction. It is measured from a respira-
tory inductance plethysmography (RIP) sensor called Flow 1

[Laugstøl, 2018]. The raw ribcage movement signals contain
information about change in lung volume which DeepVenti-
lation leverages to predict minute ventilation. Minute venti-
lation as predicted by DeepVentilation instantly follows exer-
cise intensity (in comparison to standard heart rate) matching
the user’s perception of physical effort. The measurement of
ground truth minute ventilation using a face/head mask and
spirometer does not limit breathing to the best of our knowl-
edge of scientific literature. However, the face/head mask is
not always portable and convenient in many sports activities
including swimming and contact sports.

The rest of the article is organized as follows. In Section
2, we describe the data set used to train DeepVentilation. In
Section 3, we present the complete architecture of DeepVen-
tilation and it evaluate with respect to ground truth data from
a spirometer. We conclude in Section 4.

2 Training Data
Predicting minute ventilation required us to collect ground
truth data from an exercise spirometer at the same time as
obtaining data from a RIP sensor. The data collection has
been performed by exercise physiologists at the Norwegian
School of Sports Science2 as part of a joint project.

1http://www.sweetzpot.com/flow
2http://www.nih.no
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Figure 1: Training Data from a Spirometer and a RIP sensor
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Figure 2: DeepVentilation’s Architecture

We carried out measurements from five subjects (all male,
aged 26±1 years), on a cycle ergometer (17980 Lode Ex-
calibur Sport, Lode BV, Groningen, Netherlands) during a
sub-maximal exercise test (at three different power levels)
as well as an incremental exercise/ramp test. These mea-
surements were repeated for each subject on two separate
days. We obtained input rib-cage movement data using the
Flow RIP sensor containing a semi-conductor strain gauge
measuring forces through the click on button attached to a
chest strap as shown in Figure 1. The output tidal volume
and minute ventilation was measured simultaneously with a
Douglas Bag (components from Harvard Apparatus, Kent,
UK) also shown in Figure 1. The data was synchronized by
means of three deep breaths. The measurements were carried
out over a period of seven weeks. The data is made avail-
able in four columns: timestamp (s), minute ventilation (l/m),
ribcage movement (mV), heart rate (bpm) to a deep learning
model.

3 Architecture
DeepVentilation’s architecture is illustrated in Figure 2.
Ribcage breathing data (strain in the range 0 to 4096mV)
is transmitted via Bluetooth Low Energy protocol [Nikodem
and Bawiec, 2020] to a Web Application running on Google

Chrome. DeepVentilation transforms a sliding window of re-
ceived values to one value in litres/min (l/m) using several
layers of long short term memory networks (LSTMs)[Greff
et al., 2016] as shown in Figure 2. The LSTM network model
is implemented in PyTorch[Ketkar, 2017] and is available as
a running web service through a RESTful web API [Richard-
son et al., 2013]. We use an LSTM model because its recur-
rent neural network architecture is capable of learning long-
term dependencies in a sequence of raw breathing data. The
dropout layers in the architecture are used to regularize each
LSTM layer by dropping neurons with a probability of 0.2.
It is an effective method to remove large weights that may
cause over-fitting of the data. The last layer in the network is
a dense fully connected layer that transforms 10 values from
the last LSTM node to a single value in l/m. A sequence of
100 points of raw breathing data sampled at 10Hz is sent in
a request to the neural network model. The web application
receives a response from the API and renders the predicted
minute ventilation in real-time. The real-time feedback is de-
veloped using pure Javascript and sensor connectivity is han-
dled via Web Bluetooth 3.

It is important to note that the neural network model is only
50 Kb in size and will eventually be embedded directly into
a web page on the client side using the TensorFlow.js4 li-
brary. This will be achieved by converting PyTorch to the
ONNX standard5, and subsequently to TensorFlow and Ten-
sorFlow.js. If the client side device is GPU accelerated then
the speed of prediction will be comparable to running on the
model on a server. This makes it possible to embed the model
directly into the browser that can also be accessed on a smart-
phone as Web Bluetooth is available on most Android phones.

3.1 Evaluation
We compared the output of DeepVentilation’s LSTM model
to the ground truth data obtained from the exercise spirome-
ter as shown in Figure 3. The evaluation shown in the figure
corresponds to a ramp test where a user starts at low power
output and gradually increases power output until he in this
case could no longer increase power output. In 90 % of the
breathing data we observed a maximum deviation of 20 %
from the ground truth. The LSTM model exhibits lower fluc-
tuation which gives a perception of stability to a user. We
believe that the model will improve in accuracy if a second
sensor is used to also measure abdominal breathing. Never-
theless, for an easier user experience our aim is to achieve
reasonable accuracy primarily from ribcage breathing.

The model can be fine tuned for one person if the person
is willing to provide data for ventilation and ribcage move-
ment. This is would be an interesting N-of-1 trial [McDonald
et al., 2017]. However, the goal of the presented model is be
as generic as possible such that it is robust to the breathing
patterns of a large number of people. At the time of writing,
the model is trained on 5 users already and does not need to
be trained for each user before use. The test user was not
part of the training data as the data was collected in 2017

3https://webbluetoothcg.github.io/
4https://www.tensorflow.org/js
5https://onnx.ai/
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Figure 3: Evaluation of LSTM Model in DeepVentilation

independently for 5 users. The idea is a proof of concept
with promising results. However, we need more data which
we will be collecting from people with different attributes
: ethnicity, age, weight, height, trained/untrained, temper-
ate/tropical/cold climate and with the sensor positioned with
certain variability in tension and position.

4 Conclusion
DeepVentilation is a system that predict physical effort based
on minute ventilation. It can continually improve with addi-
tional data from different endurance sports. DeepVentilation
can handle uncertainty due to muscular artifacts from move-
ments other than breathing, sensor position on the body and
strap tightness. It can also be trained to distinguish between
genders, age, weight, height, and fitness level for diverse user
groups. Novel neural network models such as attention-based
transformer models[Vaswani et al., 2017] can improve pre-
diction accuracy as it is independent of the sequence of input
data.
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