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Abstract

The efficiency of modern automotive body shop as-
sembly lines is highly related to the reduction of
downtimes due to failures and quality deviations
within the manufacturing process. Consequently,
the need for implementing tools into the assembly
lines for on-line monitoring, and failure diagnosis,
also under the prism of improving the troubleshoot-
ing, is of great importance. While the identification
of root causes and elimination of failures is usu-
ally built upon individual on-site expert knowledge,
causal graphical models (CGMs) have opened the
possibility to make a purely data-driven assess-
ment. In this demo, we showcase how a CGM of
the production process is incorporated into a moni-
toring tool to function as a decision-support system
for an operator of a modern automotive body shop
assembly line and enables fast and effective han-
dling of failures and quality deviations.

1 Background

Modern automotive manufacturing enterprises have to cope
with growing demands for increased product quality, greater
product variability, shorter product life-cycles, reduced cost,
and global competition [Liang ef al., 2004]. In order to meet
these demands, modern car body shop assembly lines are
highly optimized and operative with a minimum of human
interface. Hence, the occurrence of failures and deviations
of quality measurements that require a human intervention
are a major cause of unscheduled stoppage of the car body
assembly line, and are costly not only in terms of time lost,
but also in terms of capital destroyed [Chryssolouris, 2013].
Therefore, as depicted in Figure 1, monitoring systems for the
operator of an industrial plant have the intention to cover the
current status of the assembly line including the involved car
bodies, and occurring failures to ensure a fast reaction in case
of interruptions [Zhang, 2010].

While the analysis of root causes of failures and qual-
ity deviations is usually built upon non-persistent, individual
on-site expert knowledge, and hence troubleshooting relies
on the individual knowledge of the staff on shift, advances
of data-driven machine learning techniques have opened
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Figure 1: Monitoring View depicting the vehicles (dots) within the
different production cells of the car body shop assembly line.

the possibilities to create monitoring applications that inte-
grate failure diagnosis [Abellan-Nebot and Subirén, 2010;
Liu er al., 2012]. Moreover, the emergence of methods for
causal structure learning (CSL), e.g., see [Spirtes er al., 2000;
Pearl, 20091, created the basis for attempts of a purely data-
driven assessment of the causal structures from observa-
tional data of a manufacturing process [Li and Shi, 2007;
Marazopoulou et al., 2016]. While this previous work ad-
dresses challenges in domain-specific data preprocessing and
examines the quality of the derived CGMs, it remains open to
demonstrate how the knowledge about causal structures can
be leveraged within the assembly line.

Consequently, a demonstration of the possibilities of incor-
poration of CGMs into the assembly lines for on-line moni-
toring, and failure diagnosis, also under the prism of making
the troubleshooting more efficient, is of great importance.

2 Causal Modeling of the Assembly Line

This section covers the steps for learning the CGM from his-
toric data and its parameterization for on-line prediction.

Production Process. An automotive body shop assembly
line consists of multiple sections, e.g., responsible for attach-
ments where the prefabricated individual parts are fitted to
the car’s body. Each section is separated into high-automated
production cells in which robots weld, rivet or bend summing
up to several hundreds of involved robots constantly stream-
ing data, e.g., failures or quality measurements.
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Figure 2: Detailed Failure View of a car body including failure history (top right), individual failure prediction (top left), and corresponding
causal graphical model (bottom) given the current failure in the center with possible root causes to the left and subsequent failures to the right.

Data Preprocessing. The raw data comprises historic
logged failure occurrences and quality measures, categorized
by their severity, of a two year production time for one car
body type. An iterative approach incorporating process meta-
data under consideration of domain knowledge yields to 70k
sound discrete observations of 6.5k variables, e.g., according
to [Li and Shi, 2007]. Each observation covers the failure and
quality deviation history of a specific car body.

Causal Structure Learning. Given the historic observa-
tional data, the CGM is estimated through constraint-based
CSL using the PC algorithm taking path constraints implied
by domain knowledge into account, e.g., see [Spirtes e al.,
2000; Borboudakis and Tsamardinos, 2012]. Hence, the
CGM'’s edges between vertices represent causal relationships
between failures or quality deviations whereof focused selec-
tions were evaluated by domain experts.

Failure Prediction. The parameterized CGM, e.g,
see [Neapolitan, 2004], enables to calculate the conditional
probability of failures and critical quality deviations given
the current state of the car body’s production process.

3 Demonstration

In this section, we showcase the application possibilities of
our monitoring tool that incorporates the causal knowledge
between failures and quality deviations, and demonstrate the
opportunities concerning a more efficient troubleshooting.
As the occurrence of failures and quality deviations inter-
rupting the highly automatized production process requires
an instant human intervention of the technical staff it is essen-
tial to have an accurate view on the current state of the body
shop assembly line. Hence, the Monitoring View, depicted in
Figure 1, provides an entry point to the main sections of the
assembly line where the currently produced car bodies are
depicted within the production cells. While the darker high-
lighted production cells indicate an increased probability of
critical interruptions, and hence should be called under the
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attention, the occurrence of warning signs at the car bodies
directly refers to the occurrence of failures or quality devia-
tions requesting an instant manual troubleshooting.

In this situation, where every minute of an unscheduled
stopping results in loss of money the Detailed Failure View,
see Figure 2, provides the CGM depicting all possible preced-
ing root causes to the current failure - highlighted in blue - as
well as the full failure history of the affected car body. The
CGM incorporates possible root causes for the whole assem-
bly line and additionally refers to actually occurred, yet of-
tentimes unnoticed, root causes - vertices highlighted in red.
Thus, the technical staff receives treatment recommendation
that outperforms the usually non-persistent, individual on-site
expert knowledge. Moreover, given the currently observed
failure the depiction of possible subsequent critical failures
in the CGM, with their probability estimation, enables and
guides the technical staff within a predictive troubleshooting.
In order to provide a comprehensive examination of possi-
ble future failures and quality deviations, a list covers critical
failure predictions based upon the knowledge about the causal
structures and the car body’s full history of occurred failures.
This combination of early warning in both the Monitoring
View and the Detailed Failure View, the direct identification
of root causes through the incorporation of a CGM and the
extension trough the prediction of subsequent failures builds
the basis of a data-driven decision-support for on-line moni-
toring of automotive body shop assembly lines.

4 Concluding Remarks

In this work, we demonstrated the possibilities of an integra-
tion of causal structural knowledge into a modern automotive
body shop assembly line. Thereby, we enriched a monitoring
tool with a CGM representing the causal structures between
failures and quality deviations of the production process to
provide the operator of an assembly line with data-driven
decision-support enabling fast and effective troubleshooting.
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