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Abstract
Discovering tractable mathematical expressions
that best explain a dataset is a long-standing chal-
lenge in artificial intelligence. This problem,
known as symbolic regression, is relevant when
one seeks to generate new physical knowledge and
insights. Since practitioners are primarily inter-
ested in knowledge generation, the ability to inter-
act with a symbolic regression algorithm would be
highly valuable. Thus, we present an interactive
symbolic regression framework that allows users
not only to configure runs, but also to control the
system during training. The interface provides real-
time visualization and diagnostics to help guide the
user as they control the algorithm on the fly.

1 Introduction
Gaining scientific insights from data is an overarching goal of
data science. While artificial neural networks provide power-
ful means of representing complex relationships within data,
they are notoriously difficult to interpret. However, having a
human-readable and interpretable model is crucial for gener-
ating physical insights.

Symbolic regression aims to generate such interpretable
models by directly searching the space of tractable mathe-
matical expressions to best fit a dataset [Billard and Diday,
2002]. This stands in contrast to conventional regression, in
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which the practitioner specifies a fixed model structure and
optimizes the model parameters to fit a given dataset. The
succinct expressions discovered via symbolic regression may
be readily interpretable and provide useful scientific insights
upon inspection and human analysis [Kronberger, 2011].

The space of mathematical expressions is discrete, growing
exponentially with the length of an expression. This combi-
natorial search space renders symbolic regression a challeng-
ing machine learning problem. The conventional approach
to symbolic regression is genetic programming, an evolution-
ary algorithm in which a population of mathematical expres-
sions is “evolved” using evolutionary operations like selec-
tion, crossover, and mutation [Koza, 1992; Uy et al., 2011;
Bäck et al., 2018]. Recently, deep symbolic regression (DSR)
[Petersen, 2019] was proposed as a deep learning method
for symbolic regression based on policy gradients [Kakade,
2002]. DSR outperforms genetic programming in its abil-
ity to recover symbolic expressions on a series of benchmark
symbolic regression tasks.

Because the ultimate goal of symbolic regression is to gain
scientific insights (rather than simply achieve the best model
fit), it would be beneficial if the user could directly interact
with their system.

An interactive platform would allow users to help guide the
training process and identify the expressions most useful for
their use case. While DSR can incorporate domain-specific
constraints in situ (e.g., ensuring that all sampled expressions
maintain the correct physical units), it may be difficult for
users to encode more nuanced expert knowledge and domain-
specific constraints into the algorithm. Thus, we developed a
demonstration system for symbolic regression that facilitates
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Figure 1: Overview of core algorithm: Deep Symbolic Regression. An RNN emits a distribution over mathematical expressions. Expressions
are sampled from the distribution and evaluated according to their fitness to a dataset. The RNN is trained using reinforcement learning such
that better fitting expressions become more likely under the distribution.
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Figure 2: User interface for the demonstration platform. Left panel: Control. Middle panel: Visualization. Right panel: Diagnostics.

human-in-the-loop interaction with the training process. Our
demonstration system consists of the core algorithm (DSR)
running in the background, a visualization platform to moni-
tor the training process, and a customizable user interface to
upload data, configure runs, and interact with training in real
time.

2 Core Algorithm: Deep Symbolic Regression
The core algorithm backing our system is DSR, a gradient-
based approach for symbolic regression based on deep rein-
forcement learning [Petersen, 2019].1 DSR constructs math-
ematical expressions in Polish notation as sequences of math-
ematical building blocks or “tokens” specifying operators
(e.g., sin, cos,+,−,×,÷), input variables, and constants.

A high-level overview of the algorithm is shown in Fig. 1.
DSR uses a recurrent neural network (RNN) [Mikolov et al.,
2010] to emit a distribution over mathematical expressions.
Thus, samples from the RNN are concrete expressions. At
each training step, a batch of expressions is sampled from the
RNN and each expression is scored based on a user-specified
fitness to the dataset. This fitness then is used as the reward
signal to train the RNN using a novel risk-seeking policy gra-
dient algorithm [Petersen, 2019].

1Source code for DSR is available at https://github.com/
brendenpetersen/deep-symbolic-regression.

3 Demonstration Platform
Our platform is web-based, meaning the user interacts with
the algorithm via a web browser while training is performed
on the server side. This client-server architecture allows
users to leverage large-scale computing resources for train-
ing, while the client side only handles visualization. How-
ever, we note that a single execution of DSR can complete
within just several minutes on a single processor; thus, the
user can easily perform both training and visualization on a
modern laptop.

A snapshot of the user interface is shown in Fig. 2. It con-
sists of three sub-components: (1) a control panel, (2) a visu-
alization panel, and (3) a diagnostics panel. We describe each
component in the following sections.

3.1 Control
The control panel (Fig. 2, left) is used to configure runs and
interact with the algorithm during training. Before training,
the user uploads a dataset and specifies which mathematical
operators or “tokens” to allow. Once training begins, the user
can interact with the system in real time in several ways. The
various hyperparameters, which are described in Table 1 and
further detailed in [Petersen, 2019], can be edited on the fly.
For example, the user may choose to increase exploration dur-
ing training if the top expressions are too similar, or if the al-
gorithm appears to begin converging prematurely to a subop-
timal expression. The user may also manually select particu-
lar expressions they wish to become more (or less) important.
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Parameter Description
Batch size Number of expressions to sample from

the RNN each iteration.
Learning rate Learning rate for Adam optimizer used

to train the RNN.
Entropy weight Coefficient used for entropy regulariza-

tion. This controls the degree of explo-
ration over exploitation.

Risk factor Fraction of top-performing expressions
to train on each batch.

Max length Maximum allowable number of tokens
in an expression.

Table 1: Key hyperparameters used in deep symbolic regression.

These selected expressions are added to (or removed from) a
priority queue that encourages (or discourages) the RNN to
generate similar expressions [Abolafia et al., 2018].

3.2 Visualization
The visualization panel (Fig. 2, middle) shows the underlying
dataset (blue dots) along with curves of the top-performing
expressions as training progresses. For datasets with multiple
input variables, the user can specify 1-D slices of the data.
We use an “onion skinning” effect to illustrate how the best
expressions evolve over time: the curves for less recently dis-
covered expressions are more translucent. The user can se-
lect particular curves to view additional characteristics of the
corresponding expression, such as its LATEX representation or
underlying algebraic expression tree. By monitoring the best-
fitting expression during training, users can visually evaluate
the performance of DSR and use their intuition and domain-
specific knowledge to interactively control the algorithm.

3.3 Diagnostics
The diagnostics panel (Fig. 2, right) provides additional infor-
mation to help diagnose the quality of training. For example,
we provide real-time traces of the mean fitness of each batch,
the ε-quantile fitness of each batch, and the best fitness found
so far (Fig. 2, top right). We also provide distributions of the
reward at various training iterations, again using onion skin-
ning to illustrate training progress (Fig. 2, bottom right). This
metric is particularly useful for determining whether the dis-
tribution is converging prematurely, typically manifested by
the reward distribution quickly sharpening at a poor reward.
Alternate plots including various loss functions, expressional
complexity measures, and fitness functions can be selected
for display by the user.

4 Conclusion
We present a demonstration system for DSR, a symbolic re-
gression algorithm based on reinforcement learning. The
framework includes visualization of the top-performing ex-
pressions and real-time diagnostics of the training process.
Most importantly, the system allows the user to interactively
guide the system during training by dynamically changing
hyperparameters and manually selecting expressions to be-
come more or less prominent.
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