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Abstract
Modeling object representations derived from per-
ceptual observations, in a way that is also semanti-
cally meaningful for humans as well as autonomous
agents, is a prerequisite for joint human-agent un-
derstanding of the world. A practical approach that
aims to model such representations is perceptual
anchoring, which handles the problem of mapping
sub-symbolic sensor data to symbols and main-
tains these mappings over time. In this paper, we
present PROBANCH, a modular data-driven anchor-
ing framework, whose implementation requires a
variety of well-orchestrated components, including
a probabilistic reasoning system.

1 Probabilistic Perceptual Anchoring
Perceptual anchoring has been defined as the "[. . . ] pro-
cess of creating and maintaining the correspondence between
symbols and sensor data that refer to the same physical ob-
jects" [Coradeschi and Saffiotti, 2000]. Traditionally, the an-
choring process depends on perceptual observations to cre-
ate and maintain anchors (i.e., representations of objects).
In the absence of perceptual inputs, e.g., in case of object
occlusions, this approach is not viable. To remedy this,
we extended perceptual anchoring with probabilistic reason-
ing [Persson et al., 2020; Zuidberg Dos Martires et al., 2020]
– resulting in the PROBANCH framework1.

Example 1: Consider the situation in the top most panel
on the right of Figure 1. PROBANCH observes three
objects and associates each of them with an anchor:
block-1, mug-1, and ball-1. In the following two pan-
els, the ball is occluded by the mug, which in turn be-
comes occluded by the block. Note that the block is
later re-classified as a box. We illustrate the occlusion
by plotting samples from the probability distributions
of the possible positions of the mug and ball in black
and yellow, respectively. Occluded objects are tracked
via their relationship with observed objects using logi-
cal rules, i.e., the position of an occluded object is log-
ically inferred through the position of the occluding ob-
∗Contact Author
1https://github.com/probabilistic-anchoring/probanch

Figure 1: Relational tracking in the presence of transitive occlusions
using PROBANCH. Link to video: https://vimeo.com/388874421

ject. For instance, the mug is tracked via its relationship
with the box, which is observed and tracked by the per-
ceptual component of PROBANCH. As the logic rules,
which describe the occlusion relationships between ob-
jects, can be recursive, observing the box does also al-
low PROBANCH to track the ball. Note that the oc-
clusion relation between the mug and the occluded ball
continues to persist after the mug has been re-observed,
and the corresponding sensor data has correctly been
matched with the mug-1 anchor. In the last panel, also
the ball is revealed and re-identified as the same initial
ball-1 anchor.

A key contribution of PROBANCH is that it allows to reason
about occluded objects using a combination of logical, prob-
abilistic and neural-symbolic methods. Other key features of
PROBANCH, are modularity and adaptability – meaning that
any system of PROBANCH can be interchanged or modified
with minimum requirements for re-training the framework.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Demonstrations Track

5285

https://github.com/probabilistic-anchoring/probanch
https://vimeo.com/388874421


PROBANCH

3

1

2

4

Figure 2: A conceptual overview of PROBANCH.

2 PROBANCH: Framework Description
The PROBANCH framework architecture is a modular archi-
tecture implemented with the libraries and communication
protocols available in the Robot Operating System (ROS)2.
PROBANCH is, at its core, a sensor-driven perceptual bottom-
up anchoring system [Loutfi et al., 2005]. However, the over-
all framework consists of several systems, which are concep-
tually represented in Figure 2.

As mentioned in Section 1, the process of perceptual an-
choring is to create and maintain the link between sensor
data and symbols that refer to the same physical object. In
PROBANCH, this process happens in multiple stages; each
stage is constituting a system (or module). Triggered by
RGB-D sensory data, a perceptual system segments the sen-
sory data into percepts (i.e., the sensor data from an individ-
ual object), and measures for each percept attributes, e.g., the
R3 position of an object, or the HSV-color histogram over an
object (as exemplified in Figure 2. 1©). A symbolic system
establishes, subsequently, the percept-symbol linkage, e.g.,
a certain peek in a color histogram is mapped to the corre-
sponding symbol yellow. In addition, a convolutional neural
network, such as GoogLeNet [Szegedy et al., 2015], is used
to semantically categorize objects (as shown in Figure 2. 2©).

Given the percept-symbol linkage of an unknown object,
the challenge of any anchoring system is to apply a match-
ing function to determine whether this object matches any
existing anchor (or not). In PROBANCH, a Support Vec-
tor Machine (SVM) classifier is used to determine whether
an unknown object matches an existing anchor (or not),
and whether the object should be maintained as an existing
matching anchor, or a new anchor should be created for the
object. An example of anchored objects, identified by their
unique symbols (e.g., mug-1), is depicted in Figure 2. 3©.

2https://www.ros.org/

Figure 3: Relational tracking in the presence of mulit-modal proba-
bility distributions. Link to video: https://vimeo.com/388872843

PROBANCH is also equipped with a probabilistic reason-
ing system based on Dynamic Distributional Clauses [Nitti
et al., 2016], which allows PROBANCH to probabilistically
reason about anchors and their relationships over time. For
instance: occluded_by(ball-1,box-1):t (in Figure 2. 4©),
means that ball-1 is occluded by box-1 at time t. These
temporally labeled predicates are defined in distributional
clauses, which allows PROBANCH to track objects even when
some objects are occluded. The distributional clauses define
the conditions under which certain relationships hold. These
clauses extend the clauses used in programming languages,
such as Prolog, with discrete and continuous distributions.

Example 2: As an additional example of probabilistic
perceptual anchoring, consider Figure 3. In this exam-
ple, we initially prepare the state in a probabilistic multi-
modal state by covering the RGB-D sensor while hiding
the yellow ball underneath one of the larger objects.
The objects are then shuffled around, and the occluded
object is tracked. Once the occluded object (the ball) is
re-observed, the probability distribution collapses.

3 The Modularity of PROBANCH

The modular architecture of PROBANCH allows one to ex-
tend or replace single systems easily. For instance, in [Pers-
son et al., 2020], we used connected component segmenta-
tion on organized point cloud data for segmenting arbitrary
object instances in tabletop scenarios [Trevor et al., 2013]. In
[Zuidberg Dos Martires et al., 2020], we replaced this initial
approach in favor of the combined depth seeding and region
refinement networks [Xie et al., 2019]. Virtually any system
within PROBANCH can, likewise, be interchanged, modified,
or extended. A possible extension of PROBANCH could, for
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Figure 4: Average classification accuracy of learning the anchor-
ing of objects through supervised classification (left), and semi-
supervised classification (right).

example, be to take into account spatial attributes, such as
the distance between two objects – similarly to the spatial ob-
ject features explored in context-based 3D anchoring [Ruiz-
Sarmiento et al., 2017; Günther et al., 2018].

To demonstrate the adaptability, we completely replaced
the matching function used in [Persson et al., 2020; Zuidberg
Dos Martires et al., 2020] (as part of the anchoring system
of PROBANCH for determining whether to create or maintain
an anchor, seen in Figure 2. 3©), which was learned using a
supervised SVM, by a new matching function learned using
a semi-supervised SVM in combination with sparse quasi-
Newton optimization (QN-S3VM) [Gieseke et al., 2012]. In
such a semi-supervised training regime, the classifier can be
learned with a reduced number of labeled known samples
combined with a greater number of unlabeled samples. As
an illustration, we include a brief experimental comparison,
seen in Figure 4. By the result, we observe that an accuracy
of about 90% (with ±2% deviation), was attained for the an-
chor matching function when using the QN-S3VM classifier
with as few as 40 known labeled samples in combination with
562 unlabeled samples. By increasing the number of labeled
known samples to 400 (combined with 202 unlabeled sam-
ples), we can further report an overall best average classifica-
tion accuracy of 96.1% achieved by the QN-S3VM classifier
(which is comparable to the accuracy of the previously used
classifier trained with a considerably larger dataset).

4 Conclusion
Perceptual anchoring allows for the modeling of object rep-
resentations that are semantically meaningful to humans and
autonomous agents alike. Such representations are useful for
tasks that require a mutual human-agent understanding, e.g.,
human-robot interaction tasks, or collaborative object manip-
ulation tasks. In this paper, we introduced the probabilistic
perceptual anchoring framework PROBANCH, which com-
bines ideas from perceptual anchoring, machine learning, and
probabilistic programming. As such, it can be regarded as an
implementation of a neural-symbolic vision system.
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