
A Runtime Analysis of Typical Decomposition Approaches in MOEA/D
Framework for Many-objective Optimization Problems

Zhengxin Huang1,2 , Yuren Zhou1∗ , Chuan Luo3 and Qingwei Lin3

1School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
2Department of Computer Science, Youjiang Medical University for Nationalities, Baise, China

3Microsoft Research, China
huangzhx26@mail2.sysu.edu.cn, yurenzhou@mail.sysu.edu.cn, {chuan.luo, qlin}@microsoft.com

Abstract
Decomposition approach is an important com-
ponent in multi-objective evolutionary algorithm
based on decomposition (MOEA/D), which is a
popular method for handing many-objective opti-
mization problems (MaOPs). This paper presents
a theoretical analysis on the convergence ability
of using the typical weighted sum (WS), Tcheby-
cheff (TCH) or penalty-based boundary intersec-
tion (PBI) approach in a basic MOEA/D for solv-
ing two benchmark MaOPs. The results show that
using WS, the algorithm can always find an opti-
mal solution for any subproblem in polynomial ex-
pected runtime. In contrast, the algorithm needs at
least exponential expected runtime for some sub-
problems if using TCH or PBI. Moreover, our anal-
yses discover an obvious shortcoming of using WS,
that is, the optimal solutions of different subprob-
lems are easily corresponding to the same solution.
In addition, this analysis indicates that if using PBI,
a small value of the penalty parameter is a good
choice for faster converging to the Pareto front,
but it may lose the diversity. This study reveals
some optimization behaviors of using three typi-
cal decomposition approaches in the well-known
MOEA/D framework for solving MaOPs.

1 Introduction
Multi-objective optimization problems (MOPs) involve op-
timizing multiple conflicting objective functions simulta-
neously. MOPs with at least four objectives widely ex-
ist in real-word applications and are referred to as many-
objective optimization problems (MaOPs) [Li et al., 2015a].
Multi-objective evolutionary algorithms (MOEAs) are popu-
lar methods for handling MOPs, and can be roughly classified
into three categories, i.e., domination-based, indicator-based
and decomposition-based [Trivedi et al., 2017].

Domination-based MOEAs, such as NSGA-II [Deb et al.,
2002], are quite effective in solving low-dimensional MOPs.
But they often suffer from dramatic performance degenera-
tion when handling MaOPs, because of insufficient selection

∗Corresponding author

pressure toward the Pareto front [Li et al., 2015b]. Due to
the computation time of indicators rapidly increasing with
the number of objectives, indicator-based MOEAs are largely
restricted to solve MaOPs [Deng and Zhang, 2019]. Al-
though these defects have been alleviated in some researches,
(e.g., [Yuan et al., 2016] and [Rostami and Neri, 2017]),
decomposition-based MOEAs have attracted the most atten-
tion and are very popular for solving MaOPs in the past
decade [Trivedi et al., 2017].

Decomposition-based MOEAs have been implemented in
[Ishibuchi and Murata, 1998]. They became popular after
[Zhang and Li, 2007] proposed the classic MOEA/D frame-
work. In the MOEA/D framework, an MaOP is first decom-
posed into a number of scalar subproblems according to the
used decomposition approach and a set of weight vectors,
then all subproblems are solved in parallel and collaboratively
by using an evolutionary algorithm (EA). Decomposition ap-
proach is an important component in MOEA/D framework,
since it determines the analytical expression formula of the
subproblems and guides the evolutionary search [Wang et
al., 2020]. The typical decomposition approaches used in
MOEA/D framework are weighted sum (WS), Tchebycheff
(TCH) [Das and Dennis, 1998], and penalty-based boundary
intersection (PBI) [Zhang and Li, 2007]. Many researches
have developed novel decomposition approaches based on
them, e.g., [Gómez and Coello, 2017; Luque et al., 2020].

Running time or runtime analysis is an essential and pow-
erful theory aspect to understand the work principles of EAs
[Qian et al., 2019]. Li et al. [2016] presented a runtime
analysis of a simple algorithm based on MOEA/D frame-
work, which only applies mutation operator to create off-
spring. Later, Huang et al. [2020] extended the analysis to
the universal case that selects mutation or crossover to create
offspring with a control parameter. Recently, a runtime analy-
sis of a simple MOEA/D using somatic contiguous hypermu-
tation operators [Jansen and Zarges, 2011] to create offspring
was presented in [Huang and Zhou, 2020]. These theoretical
studies have revealed some important optimization behaviors
of decomposition-based MOEAs. However, they only con-
sider the case of using TCH approach and the number of ob-
jectives in their analyzed problems is at most four.

This paper presents a runtime analysis for the convergence
ability of using three typical decomposition approaches in a
basic MOEA/D on optimizing benchmark MaOPs. Specifi-

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1682

cally, we analyze and compare the expected runtime of a ba-
sic decomposition-based MOEA with WS, TCH or PBI find-
ing an optimal solution for any subproblem of two bench-
mark MaOPs, namely mLOTZ and mCOCZ [Laumanns et
al., 2004]. Note that in the two problems, m represents the
number of the objectives and it is a variable. They have
been served as benchmark problems for theoretical analyses
of MOEAs, e.g., [Laumanns et al., 2004; Bian et al., 2018].

The theoretical results show that using WS, the algo-
rithm can always find an optimal solution for any subprob-
lem of mLOTZ and mCOCZ in polynomial expected run-
time O(n

2 logn
m) and Θ(n log n), respectively. When using

TCH, the expected lower bounds of the algorithm are Ω(n
2

m)
and Ω(n log n), respectively. But the expected upper bounds
are O(n2mm/2) and O(n

m/2+1

m), respectively. When using
PBI, the expected runtime is dependent on the setting of the
penalty parameter θ. In the best case (i.e., θ = 0), they are
equal to that of using WS. In the worst case, the algorithm
cannot find an optimal solution for some subproblems if θ
is set too large. Moreover, our analyses discover an obvi-
ous shortcoming of using WS, i.e., the optimal solutions of
different subproblems are easily corresponding to the same
solution. In addition, our analyses indicate that increasing
parameter θ is harmful for faster converging to the PF when
using PBI, but it can alleviate the shortcoming of WS. This
theoretical study reveals some important optimization behav-
iors of using the three typical decomposition approaches in
MOEA/D for solving MaOPs, and may be helpful for design-
ing more efficient MOEAs in future research.

2 Preliminaries

2.1 Analyzed Problems

Formally, a maximization MOP can be defined as follows:

max F (x) =
(
f1(x), . . . , fm(x)

)
s.t. x ∈ X,

(1)

where x is the decision variable, X is the decision space, F :
X → Rm consists of m objective functions and Rm is the
objective space. For x1, x2 ∈ X , we say that x1 weakly
dominates x2, denoted as x1 � x2, if fi(x1) ≥ fi(x2) for
all i = 1, . . . ,m. If x1 � x2 and F (x1) 6= F (x2), we
say that x1 dominates x2, denoted as x1 � x2. A solution
x∗ ∈ X is Pareto optimal if there is no solution x ∈ X such
that x � x∗. The set of all Pareto optimal solutions is called
Pareto-optimal set or Pareto set (PS) and the set of objective
vectors corresponding to the PS is called Pareto front (PF).

Let x be a bit string of length n, i.e., x ∈ {0, 1}n, and x[i]
denote the value of the i-th bit of x for i = 1, 2, . . . , n. The
benchmark MaOPs (i.e.,mLOTZ andmCOCZ [Laumanns et
al., 2004]) analyzed in this paper can be defined as follows.

Definition 1 (mLOTZ). The pseudo-Boolean function
mLOTZ : {0, 1}n → Nm is defined as follows:

mLOTZ(x) =
(
f1(x), f2(x), . . . , fm(x)

)
,

Figure 1: The schematic view of mLOTZ.

Figure 2: The schematic view of mCOCZ.

where

fk(x) =


n′∑
i=1

∏i
j=1 x[j + n′ (k−1)

2] if k is odd,

n′∑
i=1

∏n′

j=i(1− x[j + n′ (k−2)
2]) otherwise,

m is an even number, n′ is a natural number and n′ = 2n
m .

Definition 2 (mCOCZ). The pseudo-Boolean function
mCOCZ : {0, 1}n → Nm is defined as follows:

mCOCZ(x) =
(
f1(x), f2(x), . . . , fm(x)

)
,

where

fk(x) =

n/2∑
i=1

x[i]+


n′∑
j=1

x[j + n+n′(k−1)
2] if k is odd,

n′∑
j=1

(1− x[j + n+n′(k−2)
2]) otherwise,

m is an even number, n′ is a natural number and n′ = n
m .

Note that all objective functions in mLOTZ and mCOCZ
require to be maximized simultaneously. For mLOTZ, it is a
concatenation of m2 LOTZ (leading ones trailing zeros) [Lau-
manns et al., 2004]. There are m

2 conflicting parts in the
search space, as shown in Figure 1 [Laumanns et al., 2004].
For mCOCZ, it is a combination of m

2 COCZ [Laumanns et
al., 2004]. There are cooperative and conflicting parts in the
solution space, as shown in Figure 2 [Laumanns et al., 2004].

2.2 Decomposition Approaches
In MOEA/D, an MOP is first decomposed into a number of
scalar optimization subproblems according to the decompo-
sition approach and a set of weight vectors. WS, TCH and
PBI are classic decomposition approaches used in MOEA/D
framework. Given a maximization MOP and a weight vector
λ = (λ1, . . . , λm) satisfying λi ≥ 0 for i = 1, . . . ,m and∑m
i=1 λi = 1, the subproblems generated by WS, TCH and

PBI are shown in Eq. (2), Eq. (3) and Eq. (4), respectively.

max gws(x|λ) =
m∑
k=1

λkfk(x) (2)

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1683

Algorithm 1 A simple decomposition-based MOEA
Input: An MOP with m objectives, stop criterion, weight
vectors {λ1, . . . , λN} and neighbor size T .
Output: A candidate Pareto optimal solution set P .

1: Initialization: A candidate Pareto optimal solution set
P = ∅. Decompose the original MOP into N scalar sub-
problems according to the used decomposition approach
and weight vectors {λ1, . . . , λN}. For each subproblem
g(x|λk), k = 1, 2, . . . , N , select the T closest subprob-
lems to form its neighbor set Bk according to the Eu-
clidean distance between their weight vectors. Gener-
ate solution xk ∈ {0, 1}n uniformly at random for each
g(x|λk). Let Sk denote the set of solutions correspond-
ing to the subproblems in Bk.

2: while stop criterion is not satisfied do
3: for each subproblem g(x|λk), k = 1, 2, . . . , N do
4: Reproduction: create offspring yk by randomly flip-

ping one bit in xk.
5: Update Sk: for each solution xj in Sk, if g(yk|λj)

is not worse then g(xj |λj), replace xj with yk.
6: Update P : remove all solutions weakly dominated

by yk from P . If yk is not dominated by any solution
in P , add yk into P .

7: end for
8: end while

min gtch(x|λ, z∗) = max
1≤i≤m

{λk|fk(x)− z∗i |} (3)

where z∗ = (z∗1 , . . . , z
∗
m) denotes the reference point, i.e.,

z∗i = max{fi(x)|x ∈ X}.

min gpbi(x|λ, z∗) = d1 + θd2 (4)

where z∗ has the same meaning with Eq. (3), θ > 0 is the
penalty parameter and

d1 = ‖(F (x)−z∗)Tλ‖
‖λ‖ ,

d2 = ‖F (x)− (z∗ − d1λ)‖.

As shown above, for a given weight vector, different de-
composition approaches transform an MOP into different
scalar subproblems and they largely affect the optimization.

2.3 Analyzed Algorithm
After decomposition, MOEA/D framework controls a popu-
lation of sizeN to cooperatively solve all subproblems in par-
allel via the neighborhood-based coevolution. The analyzed
algorithm in this paper is summarized in Algorithm 1. Note
that Algorithm 1 can be instantiated by using different de-
composition approaches in the initialization (line 1). This pa-
per mainly concerns on the expected runtime of Algorithm 1
with WS, TCH or PBI approach converging to an optimal so-
lution of any subproblem for mLOTZ and mCOCZ. To sim-
plify the observation, the one-bit mutation operator [Zhou et
al., 2019], which flips a randomly chosen bit of the parent in
a mutation, is used to create offspring in Algorithm 1.

3 Runtime Analysis
Since we mainly focus on the convergence speed of using the
three decomposition approaches, we afterward assume that
λi=1,2,...,m > 0 holds for weight vector λ = (λ1, . . . , λm)
and set the neighbor size T = 1 for the sake of simplicity.

3.1 Analysis on WS
Recall that mLOTZ is a concatenation of m2 LOTZ problems
(see Figure 1). For ease of expression, we call the j-th LOTZ
as component/part j in the following analysis. Let 1i0h−i

denote the bit-string of length hwith i leading 1-bits and h−i
trailing 0-bits.

Lemma 1. For mLOTZ, if Algorithm 1 uses WS decomposi-
tion approach, all components in the optimal solution for any
subproblem are in the form of 1i0

2n
m −i.

Proof. Given weight vector λ = (λ1, . . . , λm), according to
Eq. (2) the subproblem generated by WS for mLOTZ is

max gws(x|λ) =

m∑
k=1

λkfk(x), (5)

where fk(x) equals the number of leading 1-bits in compo-
nent dk2 e if k is odd, otherwise it equals the number of trailing
0-bits in this component (see Definition 1).

We first show that all components in any optimal solution
are in the form of 1i0

2n
m −i. Otherwise there is at least a com-

ponent j in it in the form of 1l10#10l2 , where # denotes
the wildcard string. If the mutation operator flips the left-
most 0-bit or the rightmost 1-bit, it becomes 1l1+10#10l2 or
1l10#10l2+1. The function value of the offspring on objec-
tive f2j−1 or f2j is larger than its parent, and its function
values on other objectives are unchanged. Thus, Algorithm 1
finds a better function value for Eq. (5). This contradicts with
the assumption that the current solution is an optimum.

Furthermore, we consider the two values in weight vector
λ = (λ1, . . . , λm) related to component j, i.e., λ2j−1 and
λ2j . We have λ2j−1 > λ2j , λ2j−1 < λ2j or λ2j−1 = λ2j .
Let xj = 1i0

2n
m −i, i = 0 . . . , 2n

m − 1 denote component j in
the current solution.

If λ2j−1 > λ2j and the mutation operator flips the left-
most 0-bit in xj , it becomes yj = 1i+10

2n
m −i−1. The

offspring is an improved solution for Eq. (5), because of
λ2j−1 · f2j−1(yj) +λ2j · f2j(y

j)−λ2j−1 · f2j−1(xj)−λ2j ·
f2j−1(xj) = λ2j−1 − λ2j > 0. By analogy, Algorithm 1 can
repeatedly create an improved solution for Eq. (5) by flipping
the leftmost 0-bit in xj into 1-bit until it becomes the optimal
form 1

2n
m . Similarly, we know that if λ2j−1 < λ2j , Algo-

rithm 1 can repeatedly create an improved solution for Eq. (5)
by flipping the rightmost 1-bit into 0-bit until it becomes 0

2n
m .

If λ2j−1 = λ2j , for any two bit-strings s1 = 1i10
2n
m −i1 and

s2 = 1i20
2n
m −i2 , we have λ2j−1 · f2j−1(s1) +λ2j · f2j(s1)−

λ2j−1 · f2j−1(s2) − λ2j · f2j(s2) = 0. Thus, in this case all
bit-strings in the form of 1i0

2n
m −i have the same contribution

to the function value of Eq. (5) and are optimal form.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1684

Theorem 1. FormLOTZ, using WS decomposition approach,
the lower bound and upper bound of expected runtime of Al-
gorithm 1 finding an optimal solution for any subproblem are
Ω(max{n

2

m , n log n}) and O(n
2 logm
m), respectively.

Proof. First of all, the expected Hamming distance of any ini-
tial solution from an optimal solution is E(d) = n · 1

2 = n
2 .

Recall that all initial solutions are generated from {0, 1}n uni-
formly at random, and all components in an optimal solution
are in the form of 1i0

2n
m −i. By Chernoff bound, we have

Pr(E(d) ≤ n
4) ≤ e−Θ(n). Thus, the expected number of

bits in any initial solution needed to be corrected before it be-
comes an optimal one is at least n4 with probability 1−e−Ω(n).

Moreover, given any component, if it is not in the form
of 1i0

2n
m −i, Algorithm 1 can create an improved offspring by

flipping the leftmost 0-bit or the rightmost 1-bit in them (refer
to the proof of Lemma 1). If it is in the form of 1i0

2n
m −i but

not an optimal form, Algorithm 1 can obtain an improvement
by flipping either the leftmost 0-bit or the rightmost 1-bit in
them. Thus, in a generation the probability of Algorithm 1
creating an improved solution for Eq. (5) is at least hn and at
most 2h

n , where h denotes the number of components that are
not in its optimal form in the current solution.

By using the optimistic assumption that the n
4 bits needed

to be corrected are done with the highest possible proba-
bility, i.e., 2h

n = m
n , the expected runtime of Algorithm 1

finding an optimal solution for Eq. (5) is lower bounded by
n
4 ·

n
m = Ω(n

2

m). In addition, according to the proof of The-
orem 5.11 in [Jansen, 2013], we know that the n

4 bits needed
to be corrected have not been done with constant probabil-
ity within (n − 1) log n fitness evaluations. Thus, the lower
bound of expected runtime is Ω(max{n

2

m , n log n}).
To derive the upper bound, we need to consider the worst

case that all bits in the initial solution are needed to be cor-
rected and they are done by using the maximum possible
probability with minimum quantity. Observe that in this case
Algorithm 1 can create improved offspring with the highest
possible probability, namely m

n , until the number of compo-
nents that are not in form of 1i0

2n
m −i is less than m

2 . This
implies that at least all bits in a component are done with
this probability and the number of Algorithm 1 creating im-
proved solution with the highest probability is at least 2n

m .
Similarly, we know that in the worst case the number of Al-
gorithm 1 creating improved solution with probability m−1

n is
also 2n

m , and so on until 1
n . Therefore, the expected runtime of

Algorithm 1 finding an optimal solution for Eq. (5) is upper
bounded by

∑m/2
j=1

2n
m ·

n
j ≤

∑m
j=1

2n
m ·

n
j = O(n

2 logm
m).

Lemma 2. For mCOCZ, using WS approach, the lower
bound of expected runtime of Algorithm 1 finding an optimal
solution for every subproblem is Ω(n log n).

For mCOCZ, the subproblem generated by WS for weight
vector λ = (λ1, . . . , λm) is

max gws(x|λ) =
m∑
k=1

λkfk(x), (6)

where fk(x) is shown in Definition 2.
Observe that for Eq. (6), all fk(x) increase when increas-

ing the number of 1-bits in the first half of x (the cooperative
part). This implies that a necessary condition of an initial so-
lution becoming an optimum is that the first n2 bits are trans-
formed into 1-bits. Thus, we can conclude this result accord-
ing to the proof of Theorem 5.11 in [Jansen, 2013]. We omit
the detailed proof for the sake of space limitation.
Lemma 3. For mCOCZ, using WS approach, the upper
bound of expected runtime of Algorithm 1 finding an optimal
solution for any subproblem is O(n log n).

Proof. Let i < n
2 denote the number of 1-bits in the first half

of the initial solution. In a generation, if one of the i 0-bits is
flipped, Algorithm 1 obtains an improvement for Eq. (6). This
event happens with probability i

n . Thus, the expected runtime
of Algorithm 1 transforming all bits in the cooperative part
into 1-bits is upper bounded by

∑n/2−1
i=1

n
i = O(n log n).

We next consider the conflicting part. Given any compo-
nent j, similar to analysis in the proof of Lemma 1, we know
that its optimal form is 1

n
m if λ2j−1 > λ2j and is 0

n
m if

λ2j−1 < λ2j . Otherwise, it can be any bit-string with length
n
m . Let dj denote the Hamming distance of the current com-
ponent j from its optimal form. Observe that in a generation
Algorithm 1 can create an improved offspring for Eq. (6) by
flipping one of the dj wrong bits in this part. Thus, in a gen-
eration Algorithm 1 finds an improved solution for Eq. (6)
with probability is d1+···+dm/2

n . Note that 1 ≤
∑m

2
i=1 dj ≤ n

2
holds if the current solution is not an optimum. Therefore,
Algorithm 1 transforms the conflicting part into an optimal
form in expected runtime

∑n
2
i=1

n
i = O(n log n).

Combining Lemma 2 and Lemma 3, we have Theorem 2.
Theorem 2. For mCOCZ, using WS decomposition ap-
proach, the expected runtime of Algorithm 1 finding an op-
timal solution for any subproblem is Θ(n log n).

3.2 Analysis on TCH
Lemma 4. For mLOTZ, using TCH approach, the expected
lower bound of Algorithm 1 finding an optimal solution for
any subproblem is Ω(n

2

m) with probability 1− e−Ω(n
m).

Proof. For mLOTZ, the reference point is z∗ =
(2n
m , . . . ,

2n
m). Given weight vector λ = (λ1, . . . , λm),

according to Eq. (3) the subproblem produced by TCH is

min gtch(x|λ, z∗) = max
1≤k≤m

{λk
(2n

m
− fk(x)

)
}, (7)

where fk(x) is the same as that in Eq (5).
Observe that Eq. (7) requires to find a x∗ such that x∗ =

arg minx∈X{maxk=1...,m{λk
(

2n
m −fk(x)

)
}}. For any x, let

Vmax(x) := maxk=1,...,m{λk
(

2n
m − fk(x)

)
} and Imax(x) =

{k|λk
(

2n
m − fk(x)

)
≥ Vmax(x)}. Note that for mLOTZ

there is no solution that can increase multiple function objec-
tive values simultaneously. Thus, in a generation Algorithm 1
creates an improved offspring x′ from parent x if and only if:
(1) |Imax(x)| = 1 (denote by k′ the element in Imax(x)); (2)
the one-bit mutation flipping one bit in the component dk

′

2 e of

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1685

x such that fk′(x′) > fk′(x), i.e., either the leftmost 0-bit or
the rightmost 1-bit in the part dk

′

2 e is flipped (denoted as event
E1). Thus, in a generation event E1 happens with probability
at most 2

n and the expected runtime of Algorithm 1 obtaining
such an improvement is Ω(n).

We next show that the expected number of improvements
for finding an optimal solution is Ω(nm). First, for any opti-
mal solution of Eq. (7), the part dk

′

2 e must be in the form of
1i0

2n
m −i. Otherwise, it is 1l10#10l2 . If the rightmost 1-bit is

flipped, the function value on objective fk′ is increased. This
means that a better solution is found, which contradicts with
the assumption. Second, according to analysis in the proof
of Theorem 1, we have that to transform any component into
the form of 1i0

2n
m −i, the number of bits that needed to be

corrected is at least n
2m with probability 1− eΩ(n

m).
Therefore, with probability 1−e−Ω(n

m) the expect runtime
of Algorithm 1 using TCH approach finding an optimal solu-
tion for any subproblem is Ω(n) · Ω(nm) = Ω(n

2

m).

Lemma 5. For mLOTZ, using TCH approach, the expected
upper bound of Algorithm 1 finding an optimal solution for
any subproblem is O(n2mm/2−2).

Proof. We consider the random process that Algorithm 1 ob-
tains an improved offspring starting from solution x with
|Imax(x)| = i, i ∈ {1, . . . ,m}. Let pi,i−1 be the proba-
bility of Algorithm 1 creating an offspring x′ from x such
that |Imax(x′)| = i − 1. Observe that to delete an element
from Imax(x), Algorithm 1 needs to flip either the leftmost 0-
bit or the rightmost 1-bit in the related component. So there
are exactly i bits which flipping one of them can decrease
|Imax(x)| by one. Thus, we have pi,i−1 = i

n . However, in
this situation Algorithm 1 can also create an offspring y from
x such that |Imax(y)| = i + 1, if it flips one of m − i bits
in x leading to the value of an objective not in Imax(x) in-
crease to Vmax(x) (denoted as event E2). The probability
of event E2 is m−i

n . Note that y is also accepted to replace
x in such a mutation, because it has the same fitness value
with the parent. In other words, to obtain an improved solu-
tion for Eq. (7), Algorithm 1 needs to pass through a plateau
including at most m points, which is equivalent to reaching
the absorbing state of Markov chain shown in Figure 3. The
transition probability matrix P of the Markov chain is

P =


1− m

n
m
n 0 · · · 0 0

1
n 1− m

n
m−1
n 0 · · · 0

· · · · · · · · · · · · · · · · · ·
0 · · · 0 m−1

n 1− m
n

1
n

0 0 · · · 0 0 1

 .

Let Ti denote the expected runtime of Algorithm 1 reach-
ing the absorbing sate from state i = 0, 1, . . . ,m, and use p−i
and p+

i as shorthand for pi,i−1 and pi,i+1 in P, respectively.
According to Corollary 2 in [Zhou et al., 2009], we have

Ti =


0, i = 0

Ti−1 + 1
p−i

+
m−1−i∑
j=0

1
p−i+j+1

j∏
h=0

p+i+h

p−i+h

, 0 < i < m

Tm−1 + 1
p−m
, i = m

(8)

Figure 3: The Markov chain of finding an improved solution for
Eq. (7) from the current one.

Let l = m − 1 − i. We have i = m − 1 − l and
m−1−i∑
j=0

1
p−i+j+1

j∏
h=0

p+i+h

p−i+h

=
l∑

j=0

1
p−m−l+j

j∏
h=0

p+m−1−l+h

p−m−1−l+h

. Let

gl :=
l∑

j=0

1
p−m−l+j

j∏
h=0

p+m−1−l+h

p−m−1−l+h

. We have g0 = n
m(m−1)

and gl+1 =
p+
m−1−(l+1)

p−
m−1−(l+1)

(
1

p−
m−(l+1)

+ gl
)
. By Eq. (8), the ex-

pected runtime of Algorithm 1 obtaining an improved solu-
tion for Eq. (7) from the current one is upper bounded by
Tm = T0 +

∑m
i=1

1
p−i

+
∑m−2
j=0 gj ≤ O(nmm/2−1).

Note that for any weight vector, the function value of any
objective contains at most 2n

m members, since there are 2n
m

bits in any component. Thus, using TCH approach, the expect
runtime of Algorithm 1 finding an optimal solution for any
subproblem is O(nmm/2−1) ·O(nm) = O(n2mm/2−2).

Combining Lemma 4 and Lemma 5, we have Theorem 3.

Theorem 3. For mLOTZ, using TCH decomposition ap-
proach, the lower bound and upper bound of expected run-
time of Algorithm 1 finding an optimal solution for any sub-
problem are Ω(n

2

m) and O(n2mm/2−2), respectively.

Lemma 6. For mCOCZ, using TCH approach, the lower
bound of expected runtime of Algorithm 1 finding an optimal
solution for any subproblem is Ω(n log n).

FormCOCZ, the reference point is z∗ = (n2 + n
m , . . . ,

n
2 +

n
m). According to Eq. (3), the scalar subproblem produced by
TCH for weight vector λ = (λ1, . . . , λm) is

min gtch(x|λ, z∗) = max
1≤i≤m

{λi
(n

2
+
n

m
− fi(x)

)
}, (9)

where fk(x) is shown in Definition 2. The main idea of prov-
ing this lemma is the same as that of Lemma 2, since Eq. (6)
and Eq. (9) have the same property in the cooperative part.

Lemma 7. For mCOCZ, using TCH approach, the upper
bound of expected runtime of Algorithm 1 finding an optimal
solution for any subproblem is O(n

m/2+1

m).

Proof. First, similar to the proof of Lemma 3, we know that
Algorithm 1 transforms the first n2 bits into 1-bits in expected
runtime O(n log n). We next consider the expected runtime
to handle the conflicting part after this phase. We claim that
for Eq. (9), |Imax(x)| ≤ m

2 holds for any non-optimal solu-
tion x. Recall that there are m

2 components in the conflicting

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1686

part. If |Imax(x)| > m
2 , there are at least two elements in the

same component, i.e., existing a j ∈ {1, 2, . . . , m2 } such that
λ2j−1

(
n
2 + n

m − f2j−1(x)
)

= λj
(
n
2 + n

m − fj(x)
)
. Observe

that f2j−1(x) and f2j(x) are conflicting. Thus, f2j−1(x) will
be decreased when f2j(x) increasing and vice verse. Hence,
the maximum of them cannot be decreased by flipping any
bits in x. Therefore, the function value of Eq. (9) is at least
λ2j−1

(
n
2 + n

m − f2j−1(x)
)

and x is an optimal solution.
Suppose that |Imax(x)| = h holds for the current solution

x. Let vector vd denote the differences between 1-bits in all
conflicting component of x and the optimal solution, and let
i be the minimum value in vd. Note that all values in vd are
integers. This means that for each component (or element)
in Imax(x), there are at least i 1-bits or 0-bits which flipping
one of them can decrease the number of elements in Imax(x)
by one. And for any component not in Imax(x), there are at
most (nm − i) 1-bits or 0-bits which flipping one of them can
increase the number of elements in Imax(x) by one. Thus,
in a generation, the probabilities of Algorithm 1 creating and
accepting an offspring x′ from x such that |Imax(x′)| is h−1

or h+ 1 are h·i
n ≥

h
n and (m/2−h)·(n/m−i)

n ≤ m−2h
2m , respec-

tively. Thus, the transition probability matrix pm
2 +1,m2 +1 of

finding an improved solution for the subproblem is
1 0 · · · 0 0 0
1
n p1,1

m−2
2m 0 · · · 0

· · · · · · · · · · · · · · · · · ·
0 · · · 0 m/2−1

n pm/2−1,m/2−1
1
m

0 0 0 · · · m
2n 1− m

2n

 ,

where pi,i = 1− p+
i − p

−
i for i = 1, 2, . . . , m2 − 1.

By using the same argument in the proof of Lemma 5,

we have g0 =
0∑
j=0

1
p−
m/2+j

j∏
h=0

p+
m/2−1+h

p−
m/2−1+h

= 2n2

m2(m/2−1) ,

and gl+1 =
p+
m/2−1−(l+1)

p−
m/2−1−(l+1)

(
1

p−
m/2−(l+1)

+ gl
)
. Thus, we have

Tm/2 =
∑m/2
i=1

1
p−i

+
∑m/2−2
j=0 gj ≤ O(nm/2).

Note that for mCOCZ the number of 0-bits or 1-bits in
any conflicting part is at most n

m . Thus, the expected run-
time of Algorithm 1 finding an optimal solution for Eq. (9) is
bounded by O(nm/2) ·O(nm) = O(n

m/2+1

m).

Combining Lemma 6 with Lemma 7, we have Theorem 4.
Theorem 4. For mCOCZ, using TCH decomposition ap-
proach, the lower bound and upper bound of expected run-
time of Algorithm 1 finding an optimal solution for any sub-
problem are Ω(n log n) and O(n

m/2+1

m), respectively.
From the proofs of Lemmas 5 and 7, we know that the ex-

ponential expected upper bounds of using TCH are caused by
the fact that it introduces many plateaus of size Θ(m) into the
function landscape of some subproblems, and such a situation
is likely to be encountered in handling other MaOPs.

3.3 Analysis on PBI
Theorem 5. For mLOTZ and mCOCZ, Algorithm 1 using
PBI finds an optimal solution for any subproblem in expected
runtime Ω(max{n

2

m , n log n}) and Ω(n log n), respectively.

Proof. First, if the penalty parameter θ is set to 0, Eq. (4)
(subproblem generated by PBI for weight vector λ) becomes

min gpbi(x|λ, z∗) =

∑m
k=1 λkz

∗
k −

∑m
k=1 λkfk(x)

‖λ‖
. (10)

Note that for any MOP and weight vector λ,
∑m
k=1 λkz

∗
k

and ‖λ‖ are fixed. Thus, the optimization of Eq. (10) is
equivalent to finding x∗ = arg max

∑m
k=1 λkfk(x), which

equals Eq. (2) (subproblem generated by WS). Second, with
increasing parameter θ, the penalty of individual deviating
from weight vector λ, namely the emphasis on diversity, is in-
creased. As a result, some improved offspring for the case of
using WS, which deviate from λ by too large an amount, will
not be accepted if using PBI since their fitness values become
worse (see Eq. (4)) in this situation. Thus, in any generation
the probability of Algorithm 1 finding an improved offspring
is at most that of using WS and the theorem is proven.

Chen et al. [2019] proved that for any MOP and weight
vector, the optimization of subproblem generated by WS is
equivalent to that of by PBI with a specific setting of θ. Un-
fortunately, this does not hold in reverse. In fact, if θ is set
too large, Algorithm 1 will never find an optimal solution for
some subproblems, because it only accepts offspring that in-
crease the function values of multiple objectives (i.e., flipping
multiple bits in the parent). This is impossible for the one-bit
mutation. If Algorithm 1 applies the standard bit mutation
(SBM) [Doerr and Neumann, 2019] (also called bit-wise mu-
tation [Zhou et al., 2019]), which often flips each bit in the
parent with independent probability 1

n , it can flip multiple bits
in a mutation. But the convergence speed is rather slow since
SBM flips j bits in a mutation with probability O(1

nj).
In summary, Algorithm 1 using WS can find an optimal

solution for any subproblem of analyzed problems in poly-
nomial expected runtime. But such a result may be not true
for the case of using TCH or PBI. Moreover, the proofs of
Lemmas 1 and 3 imply that the optimal solutions of different
subproblems are easily corresponding to the same solution if
using WS. And the proof of Theorem 5 indicates that increas-
ing the parameter θ in PBI approach is harmful for faster con-
verging to the PF, but it can increase the diversity.

4 Conclusions
This paper theoretically investigates the convergence speed
of using the typical WS, TCH and PBI decomposition ap-
proaches in the MOEA/D framework for solving MaOPs. The
results show that using WS, the algorithm can find an optimal
solution for any subproblem of analyzed problems in polyno-
mial expected runtime. When using TCH or PBI, the algo-
rithm needs at least exponential expected runtime for some
subproblems. Moreover, our analyses discover an obvious
shortcoming of using WS, that is, the optimal solutions of dif-
ferent subproblems are easily corresponding to the same so-
lution. And decreasing the penalty parameter in PBI is good
for faster converging to the PF, but it may lose the diversity.

Acknowledgements
This work is supported by the National Natural Science Foun-
dation of China (61773410) and Microsoft Research Asia.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1687

References
[Bian et al., 2018] Chao Bian, Chao Qian, and Ke Tang.

A general approach to running time analysis of multi-
objective evolutionary algorithms. In Proceedings of the
27th International Joint Conference on Artificial Intelli-
gence, pages 1405–1411, Stockholm, Sweden, 2018.

[Chen et al., 2019] Lei Chen, Hai-Lin Liu, Kay Chen Tan,
Yiu-Ming Cheung, and Yuping Wang. Evolutionary many-
objective algorithm using decomposition-based domi-
nance relationship. IEEE Transactions on Cybernetics,
49(12):4129–4139, 2019.

[Das and Dennis, 1998] I. Das and J. Dennis. Normal-boun-
dary intersection: A new method for generating the pareto
surface in nonlinear multicriteria optimization problems.
SIAM Journal on Optimization, 8(3):631–657, 1998.

[Deb et al., 2002] Kalyanmoy Deb, Amrit Pratap, Sameer
Agarwal, and TAMT Meyarivan. A fast and elitist multi-
objective genetic algorithm: NSGA-II. IEEE Transactions
on Evolutionary Computation, 6(2):182–197, 2002.

[Deng and Zhang, 2019] Jingda Deng and Qingfu Zhang.
Approximating hypervolume and hypervolume contribu-
tions using polar coordinate. IEEE Transactions on Evo-
lutionary Computation, 23(5):913–918, 2019.

[Yuan et al., 2016] Yuan Yuan, Hua Xu, Bo Wang, and Xin
Yao. A new dominance relation-based evolutionary algo-
rithm for many-objective optimization. IEEE Transactions
on Evolutionary Computation, 20(1):16–37, 2016.

[Rostami and Neri, 2017] Shahin Rostami and Ferrante
Neri. A fast hypervolume driven selection mechanism
for many-objective optimisation problems. Swarm and
Evolutionary Computation, 34:50–67, 2017.

[Doerr and Neumann, 2019] Benjamin Doerr and Frank
Neumann. Theory of Evolutionary Computation: Recent
Developments in Discrete Optimization. Springer, 2019.

[Gómez and Coello, 2017] Raquel Hernández Gómez and
Carlos A. Coello Coello. A hyper-heuristic of scalarizing
functions. In Proceedings of the Genetic and Evolution-
ary Computation Conference, GECCO ’17, page 577–584,
New York, NY, USA, 2017.

[Huang and Zhou, 2020] Zhengxin Huang and Yuren Zhou.
Runtime analysis of somatic contiguous hypermutation
operators in MOEA/D framework. In Proceedings of the
Thirty-Fourth AAAI Conference on Artificial Intelligence,
New York, NY, USA, pages 2359–2366, 2020.

[Huang et al., 2020] Zhengxin Huang, Yuren Zhou, Zefeng
Chen, Xiaoyu He, Xinsheng Lai, and Xiaoyun Xia. Run-
ning time analysis of MOEA/D on pseudo-boolean func-
tions. IEEE Transactions on Cybernetics, in press, 2020.

[Ishibuchi and Murata, 1998] Hisao Ishibuchi and Tadahiko
Murata. A multi-objective genetic local search algorithm
and its application to flowshop scheduling. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part C (Applica-
tions and Reviews), 28(3):392–403, 1998.

[Jansen and Zarges, 2011] Thomas Jansen and Christine
Zarges. Analyzing different variants of immune inspired
somatic contiguous hypermutations. Theoretical Com-
puter Science, 412(6):517–533, 2011.

[Jansen, 2013] Thomas Jansen. Analyzing evolutionary al-
gorithms: The computer science perspective. Springer,
2013.

[Laumanns et al., 2004] Marco Laumanns, Lothar Thiele,
and Eckart Zitzler. Running time analysis of multiob-
jective evolutionary algorithms on pseudo-boolean func-
tions. IEEE Transactions on Evolutionary Computation,
8(2):170–182, 2004.

[Li et al., 2015a] Bingdong Li, Jinlong Li, Ke Tang, and Xin
Yao. Many-objective evolutionary algorithms: A survey.
ACM Computing Surveys, 48(1):13:1–13:35, 2015.

[Li et al., 2015b] Miqing Li, Shengxiang Yang, and Xiaohui
Liu. Bi-goal evolution for many-objective optimization
problems. Artificial Intelligence, 228:45–65, 2015.

[Li et al., 2016] Yuan-Long Li, Yu-Ren Zhou, Zhi-Hui Zhan,
and Jun Zhang. A primary theoretical study on
decomposition-based multiobjective evolutionary algo-
rithms. IEEE Transactions on Evolutionary Computation,
20(4):563–576, 2016.

[Luque et al., 2020] Mariano Luque, Sandra Gonzalez-
Gallardo, Rubén Saborido, and Ana B Ruiz. Adap-
tive global WASF-GA to handle many-objective optimiza-
tion problems. Swarm and Evolutionary Computation,
54:100644, 2020.

[Qian et al., 2019] Chao Qian, Yang Yu, Ke Tang, Xin Yao,
and Zhi-Hua Zhou. Maximizing submodular or monotone
approximately submodular functions by multi-objective
evolutionary algorithms. Artificial Intelligence, 275:279
– 294, 2019.

[Trivedi et al., 2017] Anupam Trivedi, Dipti Srinivasan, Kr-
ishnendu Sanyal, and Abhiroop Ghosh. A survey of mul-
tiobjective evolutionary algorithms based on decomposi-
tion. IEEE Transactions on Evolutionary Computation,
21(3):440–462, 2017.

[Wang et al., 2020] Jia Wang, Yuchao Su, Qiuzhen Lin, Lijia
Ma, Dunwei Gong, Jianqiang Li, and Zhong Ming. A sur-
vey of decomposition approaches in multiobjective evolu-
tionary algorithms. Neurocomputing, 408:308–330, 2020.

[Zhang and Li, 2007] Qingfu Zhang and Hui Li. MOEA/D:
A multiobjective evolutionary algorithm based on decom-
position. IEEE Transactions on Evolutionary Computa-
tion, 11(6):712–731, 2007.

[Zhou et al., 2009] Yuren Zhou, Jun He, and Qing Nie. A
comparative runtime analysis of heuristic algorithms for
satisfiability problems. Artificial intelligence, 173(2):240–
257, 2009.

[Zhou et al., 2019] Zhihua Zhou, Yang Yu, and Chao Qian.
Evolutionary Learning: Advances in Theories and Algo-
rithms. Springer, 2019.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1688

	Introduction
	Preliminaries
	Analyzed Problems
	Decomposition Approaches
	Analyzed Algorithm

	Runtime Analysis
	Analysis on WS
	Analysis on TCH
	Analysis on PBI

	Conclusions

