A Uniform Abstraction Framework for Generalized Planning

Zhenhe Cui1, Yongmei Liu1*, Kailun Luo2
1Dept. of Computer Science, Sun Yat-sen University, Guangzhou 510006, China
2Dongguan University of Technology, Dongguan 523808, China
cuizhh3@mail2.sysu.edu.cn, ymliu@mail.sysu.edu.cn, luokl@dgut.edu.cn

Abstract

Generalized planning aims at finding a general solution for a set of similar planning problems. Abstractions are widely used to solve such problems. However, the connections among these abstraction works remain vague. Thus, to facilitate a deep understanding and further exploration of abstraction approaches for generalized planning, it is important to develop a uniform abstraction framework for generalized planning. Recently, Banihashemi et al. proposed an agent abstraction framework based on the situation calculus. However, expressiveness of such an abstraction framework is limited. In this paper, by extending their abstraction framework, we propose a uniform abstraction framework for generalized planning. We formalize a generalized planning problem as a triple of a basic action theory, a trajectory constraint, and a goal. Then we define the concepts of sound abstractions of a generalized planning problem. We show that solutions to a generalized planning problem are nicely related to those of its sound abstractions. We also define and analyze the dual notion of complete abstractions. Finally, we review some important abstraction works for generalized planning and show that they can be formalized in our framework.

1 Introduction

Generalized planning, where a single plan works for possibly infinitely many similar planning problems, has received continual attention in the AI community [Srivastava et al., 2008; Hu and De Giacomo, 2011; Srivastava et al., 2011; Segovia-Aguas et al., 2016; Bonet and Geffner, 2018; Illanes and McIlraith, 2019]. For example, the generalized plan “while the block A is not clear, pick the top block above A and place it on the table” meets the goal clear(A) no matter how many blocks the tower has.

Abstractions are widely used to solve generalized planning problems. The idea is to develop an abstract model of the problem that suppresses less important details, find a solution in the abstract model, and use this solution to guide the search for a solution in the concrete model. For example, Srivastava et al. [2011] introduced qualitative numerical planning (QNP) problems, which represents a set of quantitative numerical planning problems. They showed that a QNP problem P can be easily abstracted into a FOND (fully observable non-deterministic planning) problem whose strong cyclic solutions that terminate in P are solutions to P. To explain why the termination condition is needed and how it can be removed, Bonet et al. [2017] showed that a planning problem can be extended with a trajectory constraint and the solutions to the problem are programs whose executions satisfying the constraint terminate. Bonet and Geffner [2018] considered solving generalized classical planning problems. They showed that if such a problem P can be abstracted into a QNP problem P’ and if the abstraction is sound, then the solution of P’ is a solution of P. Illanes and McIlraith [2019] considered solving a class of generalized classical planning problems by automatically deriving a sound QNP abstraction from an instance of the problem, by introducing a counter for each set of indistinguishable objects.

The existing abstraction works for generalized planning are closely related to each other. However, the similarities and differences of them remain vague. Thus, to facilitate a deep understanding and further exploration of abstraction approaches for generalized planning, it is important to develop a uniform theoretical framework for them.

Recently, Banihashemi et al. [2017] proposed an agent abstraction framework based on the situation calculus [Reiter, 2001] and the Golog [Levesque et al., 1997] agent programming language. They relate a high-level action theory to a low-level action theory by the notion of a refinement mapping, which specifies how each high-level action is implemented by a low-level Golog program and how each high-level fluent can be translated into a low-level formula. They define the concepts of sound/complete abstractions of a low-level action theory and prove properties that relate the behavior of a low-level action theory to the behavior of its sound/complete abstractions. However, expressiveness of such an abstraction framework is limited, and cannot serve as a uniform abstraction framework for generalized planning.

In this paper, by extending the abstraction framework of Banihashemi et al., we propose a uniform abstraction framework for generalized planning. We first extend the situation calculus with counting and use non-deterministic Golog
programs to represent actions with non-deterministic effects, and formalize a generalized planning problem as a triple of a basic action theory, a trajectory constraint, and a goal. Then we define the concepts of sound/complete abstractions of a generalized planning problem. We show that solutions to a generalized planning problem are nicely related to those of its sound/complete abstractions. Finally, we review some important abstraction works for generalized planning and show that they can be formalized in our framework.

2 Preliminaries

In this section, we introduce the situation calculus extended with infinite histories and Golog.

The situation calculus [Reiter, 2001] is a many-sorted first-order language with some second-order ingredients suitable for describing dynamic worlds. There are three disjoint sorts: action for actions, situation for situations, and object for everything else. The language also has the following components: a situation constant S_0 denoting the initial situation; a binary function $do(a, s)$ denoting the successor situation to s resulting from performing action a; a binary relation $Poss(a, s)$ indicating that action a is possible in situation s; a binary relation $s \subseteq s'$, meaning situation s is a sub-history of s'; a set of relational (functional) fluents, i.e., predicates (functions) taking a situation term as their last argument. A formula is uniform in s if it does not mention any situation term other than s. We call a formula with all situation arguments eliminated a situation-suppressed formula. For a situation-suppressed formula ϕ, we use $\phi[s]$ to denote the formula obtained from ϕ by restoring s as the situation arguments to all fluents.

In the situation calculus, a particular domain of application can be specified by a basic action theory (BAT) of the form

$$D = \Sigma \cup D_{ap} \cup D_{ss} \cup D_{una} \cup D_{S_0},$$

where

1. Σ is the set of the foundational axioms for situations;
2. D_{ap} is a set of action precondition axioms, one for each action function A of the form $Poss(A(x), s) \equiv \Pi A(x, s)$, where $\Pi A(x, s)$ is uniform in s;
3. D_{ss} is a set of successor state axioms, one for each relation fluent symbol P of the form $P(x, do(a, s)) \equiv \Phi P(x, a, s)$, and one for each functional fluent symbol f of the form $f(x, do(a, s)) = y \equiv \phi f(x, y, a, s)$, where $\Phi P(x, a, s)$ and $\phi f(x, y, a, s)$ are uniform in s;
4. D_{una} is the set of unique name axioms for actions;
5. D_{S_0} is the initial knowledge base stating facts about S_0.

The situation calculus cannot be used to express and reason about infinite sequences of actions. Schulte and Delgrande [2004] extended the situation calculus with infinite histories. They introduce: a sort $infhist$ for infinite sequences of actions, with variables h, h'; the extended binary relation \sqsubseteq, where $s \sqsubseteq h$ means s is a subhistory of h; predicates $possible(s)$ and $possible(h)$ stating that no impossible action occurs in s and h respectively. The set Σ^{∞} of axioms that characterize infinite histories are as follows:

- $s \sqsubseteq h \rightarrow \exists s'. s \sqsubseteq s' \land s' \sqsubseteq h$;
- $(s' \sqsubseteq s \land s \sqsubseteq h) \rightarrow s' \sqsubseteq h$;
- $possible(h) \equiv \forall s. s \sqsubseteq h. possible(s)$;
- $possible(do(a, s)) \equiv possible(s) \land Poss(a, s)$.

Levesque et al. [1997] introduced a high-level programming language Golog with the following syntax:

$$\delta := \alpha \mid \varphi? \mid \delta_1; \delta_2 \mid \delta_1[\delta_2] \mid \pi x. \delta \mid \delta^*,$$

where α is an action term; φ is a situation-suppressed formula and $\varphi?$ tests whether φ holds; program $\delta_1; \delta_2$ represents the sequential execution of δ_1 and δ_2; program $\delta_1[\delta_2]$ denotes the non-deterministic choice between δ_1 and δ_2; program $\pi x. \delta$ denotes the non-deterministic choice of a value for parameter x in δ; program δ^* means executing program δ for a non-deterministic number of times.

Golog has two kinds of semantics: transition semantics and evaluation semantics. In transition semantics, a configuration of a Golog program is a pair (δ, s) of a situation s and a program δ remaining to be executed. The predicate $Trans(\delta, s, s', s')$ means that there is a transition from configuration (δ, s) to (δ, s') in one elementary step. The predicate $Final(\delta, s)$ means that the configuration (δ, s) is a final one, which holds if program δ may legally terminate in situation s. Please refer to [De Giacomo et al., 2000] for details of the definitions of $Trans$ and $Final$. We use C to denote the axioms for defining $Trans$ and $Final$. In evaluation semantics, the predicate $Do(\delta, s, s')$ means that executing the program δ in situation s will terminate in a situation s'. Do can be defined with $Trans$ and $Final$ as follows:

$$Do(\delta, s, s') \triangleq \exists s'. Trans^*(\delta, s, s', s') \land Final(\delta', s'),$$

where $Trans^*$ denotes the reflexive transitive closure of $Trans$.

3 Extension of the Situation Calculus

To represent the property of termination, we use the situation calculus with infinite histories. To represent planning with non-deterministic actions, following [Bacchus et al., 1995], we treat a non-deterministic action as a non-deterministic program. To represent numerical planning based on counting, we extend the situation calculus with counting.

The counting ability of first-order logic is very limited. Kuske and Schweikardt [2017] extended FOL by counting, getting a new logic FOCN. The key construct of FOCN are counting terms of the form $\#y. \varphi$, meaning the number of tuples y satisfying formula φ. Formulas of FOCN are interpreted over finite structures.

To extend the situation calculus with counting, as in [Li and Liu, 2020], we make the assumption that there are finitely many non-number objects. We introduce a sort nat for natural numbers with the + and - operations, and a function symbol μ of sort object $\rightarrow nat$. The intended interpretation of μ is a coding of objects into natural numbers. We use n, m for variables of nat, and x, y for variables of non-number objects. If $\varphi(y)$ is a formula, then $\#y. \varphi$ is a nat term, with the same meaning as in FOCN.

Transitive closure is often used to define counting terms. Following transitive closure logic [Immerman and Vardi,
handempty
4 relational fluents:
assume that the battery level is an integer between 0 and
She needs to charge her battery when its level is
Example 1.
their preconditions and successor state axioms.
The effect of
effect of a deterministic action unstack(x, y, η), where η is the amount of electricity consumption. Below are some axioms from the BAT for this domain.
Precondition Axioms:
Poss(unstack(x, y, η), s) ≜ on(x, y, s) ∧ 1 ≤ η ≤ 2 ∧
clear(x, s) ∧ handempty(s) ∧ battery-level(s) ≥ 10
Successor State Axioms:
clear(x, do(a, s)) ≜ (∃y, η)a = unstack(y, x, η) ∨
clear(x, s) ∧ ∃z, η.a ≠ unstack(x, z, η)
battery-level(do(a, s)) = r ≜ r = 100 ∧ a = charge ∨
r = battery-level(s) − 1 ∧ (∃x)a = drop(x) ∨
∃x, y, η.a = unstack(x, y, η) ∧ r = battery-level(s) − η.
Non-deterministic Action Definitions:
unstack(x, y) ≜ πη.unstack(x, y, η)
Initial Situation Axiom:
handempty(S₀) ∧ battery-level(S₀) ≥ 10
4 Our Abstraction Framework
In this section, based on the agent abstraction framework in
[Banihashemi et al., 2017], we propose a uniform abstraction framework for generalized planning.
4.1 Generalized Planning Problems and Solutions
A generalized planning (g-planning) problem can be defined as a pair of an action theory and a goal. However, in the presence of non-deterministic actions, solutions to planning problems are programs whose execution under certain trajectory constraints are guaranteed to terminate and achieve the goal. For example, strong cyclic solutions to FOND problems are policies that terminate and achieve the goal under the fairness assumption, which states that if an action occurs infinitely often, then any of its possible effects occurs infinitely often. Thus when defining g-planning problems, we include an extra component of a trajectory constraint, which is a situation calculus formula with a free variable h of infinite histories.
Definition 1. A generalized planning problem is a tuple
G = (D, C, G), where D is a BAT, C is a trajectory constraint, i.e., a situation calculus formula with a free variable of infinite histories, and G, a situation-suppressed formula, is a goal condition.
For example, the fairness assumption can be expressed as follows. We use N/D to denote the set of non-deterministic actions. For each A ∈ N/D, we assume that its definition is
A(x) = πη.A(x, y, η). Then the fairness assumption is expressed as
A ∈ N/D ∀xA(x, y, η).ψ1 ⊃ ψ2, where
ψ1 = ∀s ⊃ h≥s′ ⊃ h≥y′s ⊃ s′ ∧ do(A(x, y, η), s′) ⊃ h,
ψ2 = ∀y′s ⊃ h≥s′ ⊃ h.s ⊃ s′ ∧ do(A(x, y, η), s′) ⊃ h.
Example 1 cont’d. Let D₁ denote the BAT specified earlier. The low-level g-planning problem is G₁ = (D₁, C₁, G₁), where C₁ is T, and G₁ is clear(A).
Solutions to g-planning problems take the form of Golog programs. To define solutions, we introduce three abbreviations. Achieve(δ, G) means starting in S₀, there is an execution of δ that makes δ hold:
Achieve(\(\delta, G\)) \(\equiv\) \(\exists s. \text{Do}(\delta, S_0, s) \land G[s].\)

Ensure(\(\delta, G\)) means starting in \(S_0\), whenever program \(\delta\) terminates, \(G\) is satisfied:

Ensure(\(\delta, G\)) \(\equiv\) \(\forall s. \text{Do}(\delta, S_0, s) \supset G[s].\)

Term(\(\delta, s, C\)) means starting in situation \(s\), program \(\delta\) terminates under constraint \(C\), i.e., there is no infinite execution of \(\delta\) starting in \(s\) and satisfying \(C\):

Term(\(\delta, s, C\)) \(\equiv\) \(\neg\exists h. C(h) \land \forall s' \in h\exists' \text{Trans}^*(\delta, s, \delta', s').\)

Note that when \(\exists s. \text{Do}(\delta, S_0, s)\) is false, Ensure(\(\delta, G\)) holds trivially. The execution of a Golog program may abort when a test falsifies the pre-condition of a primitive action does not hold. For example, the execution of \(\phi^*\); \(\alpha\) may abort when \(\phi\) falsifies or the precondition of \(\alpha\) does not hold.

Definition 2. Let \(G = \langle D, C, G \rangle\) be a g-planning problem, and \(\delta\) a Golog program.

1. We say \(\delta\) is a weak solution to \(G\) if \(D \models\) Achieve(\(\delta, G\)).
2. We say \(\delta\) is a strong solution to \(G\) if \(D \models\) Term(\(\delta, S_0, C\)) \(\land\) Ensure(\(\delta, G\)) \(\land\) \(\exists s. \text{Do}(\delta, S_0, s)\).

So a weak solution is a program that may achieve the goal, but is not guaranteed to do so. A strong solution is a weak solution that, under the trajectory constraint, is guaranteed to achieve the goal unless the program execution aborts.

Example 2. There is a block on the table and the goal is to have the block at hand. We have an action pickup, which may succeed or fail. A weak solution is to pickup the block. Under the fairness assumption, a strong solution is to pickup the block until it is at hand. The only infinite executions of the program are unfair ones.

4.2 Simulations and Back-simulations

The concept of refinement mappings is the same as that in [Banihashemi et al., 2017] except that a refinement mapping can also map a high-level function to a low-level function.

Definition 3. A function \(m\) is a refinement mapping from \(G = \langle D_1, C_1, G_1 \rangle\) to \(G' = \langle D_2, C_2, G_2 \rangle\) if for each high-level deterministic or non-deterministic action type \(A\), \(m(A(\vec{x})) = \delta_A(\vec{x})\), where \(\delta_A(\vec{x})\) is a low-level program; for each high-level relational fluent \(P\), \(m(P(\vec{x})) = \phi_P(\vec{x})\), where \(\phi_P(\vec{x})\) is a low-level situation-suppressed formula; for each high-level functional fluent \(f\), \(m(f(\vec{x})) = \tau_f(\vec{x})\), where \(\tau_f(\vec{x})\) is a low-level term, possibly a counting term.

In the following, we will relate models of \(D_h\) and \(D_l\). When we relate a model \(M_h\) of \(D_h\) and a model \(M_l\) of \(D_l\), we do not require that the two models have the same object domain, which is the case in [Banihashemi et al., 2017]. By \(m(A(\vec{x})) = \delta_A(\vec{x})\), we mean that the arguments of \(\delta_A\) are included in \(\vec{x}\), but some \(x_i\)’s may not appear as arguments of \(\delta_A\). If some \(x_i\) is an argument of \(\delta_A\), it represents an object belonging to both the high-level and low-level models.

Let \(\delta\) be a high-level program, and \(\phi\) a high-level formula. We use \(m(\delta)\) to denote the program resulting from replacing each high-level symbol in \(\delta\) with its low-level definitions. \(m(\phi)\) is similarly defined.

Example 1 cont’d. We have two high-level actions: clearblock(\(x\)) and charge, where clearblock(\(x\)) means removing the top block of the tower of \(x\). We have two high-level functional fluents: \(n(x, s)\) and battery-level(\(s\)), where \(n(x, S)\) counts the number of blocks above \(x\). The initial KB is battery-level(\(S_0\)) \(\geq 10\). We omit axioms from the high-level action theory \(D_h\). The high-level g-planning problem is \(G_h = \langle D_h, C_h, G_h \rangle\), where \(C_h\) is also \(\top\), and \(G_h\) is \(n(A) = 0\). Below is the refinement mapping from \(D_h\) to \(D_l\):

\[
m(\text{clearblock}(x)) = \pi y, z. (\text{on}(y, z) \land \text{on}^*(z, x)); \text{unstack}(y, z); \text{drop}(y),
m(n(x)) = \#y. \text{on}^+(y, x),
\]

where \(\text{on}^*(z, x)\) and \(\text{on}^+(y, x)\) are atomic closure formulas which we introduce in Section 3.

To relate high-level and low-level models, we first define the \(m\)-isomorphism relations between high-level and low-level situations. The main difference from the definition in [Banihashemi et al., 2017] is that we do not require that \(M_h\) and \(M_l\) have the same object domain, as stated earlier.

We use the following notation. For a variable assignment \(v, v[s/s_h]\) denotes the assignment which maps variable \(s\) to situation \(s_h\) and is the same as \(v\) elsewhere. For a model \(M\) of the situation calculus, let \(\Delta^M_{S_0}\) stand for the domain of situations in \(M\), and \(S^M_0\) for the denotation of \(S_0\) in \(M\).

Definition 4. Given a refinement mapping \(m\), a situation \(s_h\) of a high-level model \(M_h\) is \(m\)-isomorphic to a situation \(s_l\) in a low-level model \(M_l\), written \(s_h \sim_m M_l s_l\), if: for any high-level relational fluent \(P\), variable assignment \(v\) have \(M_h, v[s/s_h] \models P(x, s)\) if \(M_l, v[s/s_l] \models m(P)(\vec{x}, s)\); for any high-level functional fluent \(f\), variable assignment \(v\), we have \(M_h, v[s/s_h] \models f(\vec{x}, s) = y\) if \(M_l, v[s/s_l] \models m(f)(\vec{x}, s) = y\).

Note that as before, by writing \(m(P)(\vec{x}, s)\), we mean that the object arguments of \(m(P)\) are included in \(\vec{x}\), but some \(x_i\)’s may not appear as arguments of \(m(P)\). If some \(x_i\) is an argument of \(m(P)\), it represents an object belonging to both \(M_h\) and \(M_l\).

Example 1 cont’d. Let \(M_l\) be a model of \(D_l\) where there are 3 blocks \(A, B, C\), and let \(M_h\) be a model of \(D_h\) with only one block \(A\). Then a low-level situation where \(C\) is on \(B\), \(A\) is on \(B\), and \(\text{battery-level} = 10\) is \(m\)-isomorphic to a high-level situation where \(n(A) = 2\) and \(\text{battery-level} = 10\).

Proposition 1. Suppose \(s_h \sim_m M_h, s_l\). Let \(\phi\) be a high-level situation-suppressed formula. Then \(M_h, v[s/s_h] \models \phi[s]\) iff \(M_l, v[s/s_l] \models m(\phi)[s]\).

In [Banihashemi et al., 2017], high-level and low-level models are related by an \(m\)-bisimulation relation. To define sound/complete abstractions, we do not require the strong condition of bisimulation, so we break the bisimulation relation into the simulation and back-simulation relations.

Intuitively, simulation means: whenever a refinement of a high-level action can occur, so can the high-level action, and back-simulation means the other direction. Two extra conditions distinguish our definitions from that of [Banihashemi et al., 2017]: for each high-level action \(A(\vec{o})\), program \(m(A(\vec{o}))\)
terminates; we relate the infinite histories of the high-level and low-level models satisfying the trajectory constraints.

Definition 5. (m-simulation) A relation \(B \subseteq \Delta_{S}^{M_{h}} \times \Delta_{S}^{M_{l}} \) is an \(m \)-simulation relation between \(M_{h} \) and \(M_{l} \), if \(\langle S_{0}^{M_{h}}, S_{0}^{M_{l}} \rangle \in B \) and the following hold:

1. \(\langle s_{h}, s_{l} \rangle \in B \) implies that: \(s_{h} \sim_{m,M_{h},M_{l}} s_{l} \); for any high-

Definition 6. (m-back-simulation) A relation \(B \subseteq \Delta_{S}^{M_{h}} \times \Delta_{S}^{M_{l}} \) is an \(m \)-back-simulation relation between \(M_{h} \) and \(M_{l} \), if \(\langle S_{0}^{M_{h}}, S_{0}^{M_{l}} \rangle \in B \) and the following hold:

1. \(\langle s_{h}, s_{l} \rangle \in B \) implies that: \(s_{h} \sim_{m,M_{h},M_{l}} s_{l} \); for any high-

Proposition 2. Suppose that \(M_{h} \) is a sound \(m \)-abstraction of \(M_{l} \) via the \(m \)-simulation relation \(B \). Let \(\delta \) be a high-

Proposition 3. Suppose that \(M_{h} \) is a complete \(m \)-abstraction of \(M_{l} \) via the \(m \)-simulation relation \(B \). Let \(\delta \) be a high-

Definition 8. We say that \(M_{h} \) is a complete \(m \)-abstraction of \(M_{l} \), written \(M_{h} \sim_{m} M_{l} \), if there is a \(m \)-simulation relation \(B \) between \(M_{h} \) and \(M_{l} \).

Proposition 9. \(G_{h} \) is a weak sound \(m \)-abstraction of \(G_{l} \), and for any model \(M_{l} \) of \(D_{l} \), there is a model \(M_{h} \) of \(D_{h} \) s.t.

Theorem 1. Let \(G_{h} \) be a weak sound \(m \)-abstraction of \(G_{l} \). If \(\delta \) is a weak solution to \(G_{h} \), so is \(m(\delta) \) to \(G_{l} \).

Theorem 2. Let \(G_{h} \) be a sound \(m \)-abstraction of \(G_{l} \). If \(\delta \) is a strong solution to \(G_{h} \), so is \(m(\delta) \) to \(G_{l} \).

Proof. Let \(M_{l} \) be a model of \(D_{l} \). Then there is a model \(M_{h} \) of \(D_{h} \) s.t. \(M_{h} \) is a sound abstraction of \(M_{l} \) via \(B \). We show that \(M_{l} \models \text{Achieve}(m(\delta), G_{l}) \). Since \(M_{h} \models \text{Achieve}(\delta, G_{h}) \), there is a situation \(s_{h} \in M_{h} \) s.t. \(M_{h}, v[s/s_{h}, s'/s'_{h}] \models \text{Done}(\delta, S_{0}, s) \). By Prop. 2, there is a situation \(s_{h} \) in \(M_{h} \) s.t. \(M_{l}, v[s/s_{l}, s'/s'_{l}] \models \text{Done}(m(\delta), S_{0}, s) \). By Proposition 2 of Definition 9, \(M_{l}, v[s/s_{l}] \models G_{l}[s] \).

Proof. By Theorem 1, \(m(\delta) \) is weak solution to \(G_{l} \). We now prove it is also a strong solution. Let \(M_{l} \) be a model of \(D_{l} \). Then there is a model \(M_{h} \) of \(D_{h} \) s.t. \(M_{h} \) is a complete abstraction of \(M_{l} \) via \(B \). We first show that \(M_{l} \models \text{Ensure}(m(\delta), G_{l}) \). Let \(s_{l} \) be a situation in \(M_{l} \) s.t. \(M_{l}, v[s/s_{l}, s'/s'_{l}] \models \text{Done}(\delta, S_{0}, s) \). By Prop. 3, there is a situation \(s_{h} \) in \(M_{h} \) s.t. \(M_{h}, v[s/s_{h}, s'/s'_{h}] \models \text{Done}(\delta, S_{0}, s) \) and \((s_{h}, s'_{h}) \in B \). Since \(M_{h} \models \text{Ensure}(\delta, G_{h}) \), \(M_{h}, v[s/s_{h}] \models G_{h}[s] \). By Condition 2 of Definition 10, \(M_{l}, v[s/s_{l}] \models G_{l}[s] \). We now show that \(M_{l} \models \text{Term}(m(\delta), S_{0}, C_{l}) \). Assume that \(h_{l} \) is an infinite history in \(M_{l} \) generated by \(m(\delta) \) and satisfying \(C_{l} \). By Prop. 2.
3, there is an infinite history in M_h generated by δ and satisfying C_h, contradicting with $M_h \models \text{Term}(\delta, S_0, C_h)$. □

Example 1 cont’d. It is easy to prove that G_h is a sound abstraction of G_i. The following is a strong solution to G_h:

$$[(n(a) > 0 \land \text{battery-level} \geq 10)\land \text{clearable}(A)\land \text{battery-level} < 10)\land \text{charge}^*].$$

Then, by Theorem 2, we get a strong solution of G_i as follows:

$$[(\exists x.\text{on}(x, A) \land \text{battery-level} \geq 10)\land \pi(y, z)\land \text{unstack}(y, z)\land \text{drop}(y)\land \text{battery-level} < 10)\land \text{charge}^*].$$

Definition 11. G_h is a weak complete m-abstraction of G_i, if for any model M_h of D_h, there is a model M_l of D_l s.t.

1. M_h is a complete m-abstraction of M_l via B;
2. for any situations s_h in M_h, s_l in M_l, if $\langle s_h, s_l \rangle \in B$ and $M_l, v(s_l/s) \models G_l[s]$, then $M_h, v(s_h/s) \models G_h[s]$.

Complete abstractions of theories require that every high-level model is both a sound abstraction of a low-level model and a complete abstraction of a low-level model.

Definition 12. G_h is a complete m-abstraction of G_i, if it is a weak complete m-abstraction of G_i, and for any model M_h of D_h, there is a model M_l of D_l s.t.

1. M_h is a sound m-abstraction of M_l via B;
2. for any situations s_h in M_h, s_l in M_l, if $\langle s_h, s_l \rangle \in B$ and $M_l, v(s_l/s) \models G_l[s]$, then $M_h, v(s_h/s) \models G_h[s]$.

Theorem 3. Let G_h be a weak complete m-abstraction of G_i. If $m(\delta)$ is a weak solution to G_i, so is δ to G_h.

Theorem 4. Let G_h be a complete m-abstraction of G_i. If $m(\delta)$ is a strong solution to G_i, so is δ to G_h.

Corollary 1. Let G_h be a sound and complete m-abstraction of G_i. Then δ is a strong solution to G_h iff $m(\delta)$ is a strong solution to G_i.

5 Formalizing Existing Abstraction Works

In this section, we show that three main abstraction works in generalized planning can be formalized in our framework.

5.1 Srivastava et al.’s Work

QNP problems are classical planning problems extended with a set of non-negative numerical variables whose values are real numbers and can be decreased or increased randomly.

Definition 13. Let X be a set of non-negative numeric variables. \mathcal{L}_X denotes the class of all consistent sets of literals of the form $x = 0$ and $x \neq 0$, for $x \in X$. A QNP problem $Q = \langle X, I, G, O \rangle$ consists of $X; I \in \mathcal{L}_X$, a set of initially true literals; $G \in \mathcal{L}_X$, a set of goal literals; and O, a set of action operators. Every $\rho \in O$ has a set of preconditions $\text{pre}(\rho) \in \mathcal{L}_X$, and a set $\text{eff}(\rho)$ of effects of the form $\text{inc}(x)$ or $\text{dec}(x)$ for $x \in X$. An instance of Q is a quantitative planning problem whose initial state, which specifies a non-negative real number for each $x \in X$, satisfies I.

Definition 14. Let $Q = \langle X, I, G, O \rangle$ be a QNP problem. A policy for Q is a mapping from qualitative states to actions. For $\epsilon > 0$, a trajectory of states is ϵ-bounded, if for any action o performed, if o decreases a variable x, then either the old value is $< \epsilon$ and the new value equals 0 or the amount of decrease is $\geq \epsilon$. A policy π solves an instance of Q if for any $\epsilon > 0$, every ϵ-bounded trajectory induced by π is goal reaching. A policy π solves Q if it solves every instance of it.

FOND problems are like classical planning problems except that an action o may have non-deterministic effects expressed as $\text{eff}_1(o) \ldots \text{eff}_m(o)$.

Definition 15. A QNP problem $Q = \langle X, I, G, O \rangle$ is abstracted into a FOND problem Q' as follows: the literal $x \neq 0$ is replaced by an atom p_x; effect $\text{inc}(x)$ is replaced by deterministic effect p_x, and effect $\text{dec}(x)$ is replaced by non-deterministic effect $p_x \sim p_x$.

Theorem 3 in [Srivastava et al., 2011]. π is a policy that solves Q if and only if it is a strong cyclic policy for Q' that terminates.

Srivastava et al. proposed the Sieve algorithm to determine if a policy terminates. They made the key observation: In any ϵ-bounded trajectory, no variable can be decreased infinitely often without an intermediate increase. Based on this observation, Bonet and Geffner [2018] formalized the concept of conditional fairness. A strong cyclic policy for Q' that terminates can be equivalently defined as: a policy π s.t. every conditional fair trajectory induced by π is goal reaching.

Definition 16. A trajectory of states of Q' is conditionally fair if: from any time point on, for any $x \in X$, if no action with effect p_x ever occurs and actions with effect $p_x \sim p_x$ occur infinitely often, then eventually p_x falsifies.

We now formalize the above work in our framework:

The low-level language is as follows: for each $x \in X$, we have a functional fluent $f_x(s)$; for each $o \in O$, we have an action A_o and a primitive action $a_o(\eta_o)$, where η_o contains a parameter η_x for each $x \in X$. The fluent $f_x(s)$ is in $\text{eff}(o)$. The following is the specification of the g-planning problem G_q. We omit the initial KB and the goal condition.

Precondition axioms: for each action $o \in O$.

$$\text{Poss}(a_o(\eta_o), s) \equiv \bigwedge_{x \neq 0 \in \text{pre}(o)} f_x(s) = 0 \land \bigwedge_{x \neq 0 \in \text{pre}(o)} f_x(s) \neq 0 \land \eta_x > 0$$

Successor state axioms: for each $x \in X$.

$$f_x(\text{do}(a, s)) = r \equiv \bigvee_{o \in O \text{ s.t. } \text{inc}(x) \in \text{eff}(o)} \exists \eta_o. a = a_o(\eta_o) \land r = f_x(s) + \eta_x \lor \bigvee_{o \in O \text{ s.t. } \text{dec}(x) \in \text{eff}(o)} \exists \eta_o. a = a_o(\eta_o) \land r = f_x(s) - \eta_x$$

Non-deterministic action definitions: for each $o \in O$.

$$A_o \equiv \pi(\eta_o), a_o(\eta_o)$$
Trajectory constraint (ϵ-boundedness):

$$\exists \epsilon > 0 \forall s \in \mathcal{H} \forall s' \bigwedge_{(x, o) \in S} \forall \eta_o, s = do(a_o(\eta_o), s') \cap f_x(s') < \epsilon \land f_x(s) = 0 \lor \eta_x \geq \epsilon,$$

where $S = \{ (x, o) \mid x \in X, o \in O, dec(x) \in f.f(o) \}$.

The high-level language is as follows: for each $x \in X$, we have a relational fluent $p_x(s)$, meaning $x > 0$; for each $o \in O$, we have an action B_o and a primitive action $b_o(\eta_o)$, where each η_x takes values from $\{0, 1\}$, where 0 means p_x becomes false and 1 means true.

We omit the specification of the high-level g-planning problem G_f except the trajectory constraint for conditional fairness. We let $dec(x, s)$ abbreviate for the following formula, which means s results from an action which decreases $(inc(x, s)$ can be similarly defined):

$$\exists a \exists s' \cdot s = do(a, s') \land \bigvee_{o \in O \text{ s.t. } dec(x) \in f.f(o)} \exists \eta_o, a = b_o(\eta_o).$$

Then conditional fairness is formalized as follows:

$$\forall s \in \mathcal{H} \exists s' \cdot h.s \subseteq s' \land \neg p_x(s'),$$

where ψ is

$$\forall s' \cdot h.s \subseteq s' \land \neg inc(x, s') \land \exists s'' \subseteq s'' \land dec(x, s'').$$

Below is the refinement mapping: for each $x \in X$, $m(p_x) = f_x > 0$; for each $o \in O$, $m(B_o) = A_o$.

Theorem 5. G_f is a sound & complete m-abstraction of G_q.

Proof. Note that we have $G_q = m(G_f)$. To prove that a conditional fair high-level infinite history corresponds to an ϵ-bounded low-level infinite history, we use the technique in the proof of Theorem 5 (Completeness of the Sieve algorithm) in [Srivastava et al., 2011]. □

5.2 Bonet and Geffner’s Work

Bonet and Geffner [2018] proposed solving generalized classical planning problems by abstracting them into QNP problems. For example, for the problem of achieving $clear(A)$, it can be abstracted into a QNP problem with one numeric feature $depth(A)$, meaning the number of blocks above A, an action that decrements $depth(A)$, and the goal $depth(A) = 0$. They showed that if the abstraction is sound, then a solution to the QNP problem is also a solution to the original problem. However, their abstract actions are restricted in the sense that the execution of an abstract action results in the execution of a single concrete action.

Using our framework, we can give a more general formalization of their work where the execution of an abstract action may correspond to that of a sequence of concrete actions. The language of a generalized classical planning problem G_c consists of a set of relational fluents and a set of deterministic actions. The trajectory constraint of G_c is simply T. Such a problem is abstracted into a generalized numerical planning problem G_{aq} extended with a set of relational fluents $p(s)$. The refinement mapping maps a relational fluent to a low-level formula, a functional fluent to a low-level nat term, possibly a counting term, and maps an action A to a low-level program δ executable when the precondition of A holds and achieving the effect of A. G_{aq} is a sound abstraction of G_c, if for every instance M_c of G_c, which is a classical planning problem, there is an instance of G_{aq}, which is a quantitative numerical planning problem, s.t. M_{aq} is a sound abstraction of M_c. Then we have the following result:

Corollary 2. If G_{aq} is a sound abstraction of G_c and δ is a strong solution to G_{aq}, then $m(\delta)$ is a strong solution to G_c.

5.3 Illanes and McIlraith’s Work

Illanes and McIlraith [2019] considered solving a class of generalized classical planning problems by automatically deriving a sound QNP abstraction from an instance of the problem. The automatic abstraction process is based on introducing a counter for each set of indistinguishable objects using the idea from [Fuentes-Tajada and de la Rosa, 2016]. For example, suppose we have an instance where a number of packages must be delivered from a source location to either of two other locations A or B. Then we can automatically extract two counters, one for packages to be relocated to A, and one for packages to be relocated to B. Then the QNP problem is solved by converting it into a FOND problem, which they call a quantified planning problem. What distinguishes this work from that of [Bonet and Geffner, 2018] is that the latter didn’t address the issue of automatic derivation of sound QNP abstractions.

Similarly to [Bonet and Geffner, 2018], Illanes and McIlraith’s abstraction from generalized classical planning to QNP can be formalized in our framework as G_c' and G_{aq}', and the refinement mapping maps each functional fluent to a counting term. Then we have the following result:

Corollary 3. G_{aq}' is a sound abstraction of G_c'. Thus if δ is a strong solution to G_{aq}', then $m(\delta)$ is a strong solution to G_c'.

6 Conclusions

In this paper, we proposed a uniform abstraction framework for generalized planning based on the situation calculus and Golog. We formalized the concept of generalized planning problems and solutions, covering generalized classical planning, QNP, and FOND. We defined the concepts of sound/complete abstractions of generalized planning problems and show that solutions to a generalized planning problem are nicely related to those of its sound/complete abstractions. In this paper, we only give model-theoretic definitions of sound/complete abstractions. In the future, we are interested in their proof-theoretic characterizations. Further, we would like to explore automatic discovery of sound/complete abstractions.

Acknowledgments

We thank Yves Lespérance for helpful discussions on the paper. We acknowledge support from the Natural Science Foundation of China under Grant No. 62076261.

References