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Abstract

Efficient omission of symmetric solution candi-
dates is essential for combinatorial problem solv-
ing. Most of the existing approaches are instance-
specific and focus on the automatic computation of
Symmetry Breaking Constraints (SBCs) for each
given problem instance. However, the application
of such approaches to large-scale instances or ad-
vanced problem encodings might be problematic.
Moreover, the computed SBCs are propositional
and, therefore, can neither be meaningfully inter-
preted nor transferred to other instances. To over-
come these limitations, we introduce a new model-
oriented approach for Answer Set Programming
that lifts the SBCs of small problem instances into
a set of interpretable first-order constraints using
the Inductive Logic Programming paradigm. Ex-
periments demonstrate the ability of our framework
to learn general constraints from instance-specific
SBCs for a collection of combinatorial problems.
The obtained results indicate that our approach sig-
nificantly outperforms a state-of-the-art instance-
specific method as well as the direct application of
a solver.

1 Introduction
Many combinatorial problems are relatively easy to model
with the current declarative programming paradigms. Never-
theless, when the size of input instances starts to grow, solv-
ing them might become infeasible because of a large number
of possible solution candidates [Dodaro et al., 2016]. In many
cases, these candidates are symmetric, i.e., one candidate can
simply be obtained from another by renaming constants. In
order to deal with large problem instances, the ability to en-
code Symmetry Breaking Constraints (SBCs) in a problem
representation becomes an essential skill for programmers.
However, the identification of symmetric solutions and the
formulation of constraints that remove them is a tedious and
time-consuming task. As a result, various tools emerged
that avoid the computation of symmetric solutions by, for in-
stance, automatically finding a set of SBCs using properties
of permutation groups, or applying specific search methods

that detect and ignore symmetric states; see [Sakallah, 2009;
Walsh, 2012; Margot, 2010] for an overview.

Respective approaches can be distinguished into instance-
specific and model-oriented ones. The former methods iden-
tify symmetries for a particular instance at hand by comput-
ing and adding ground SBCs to the problem representation
[Puget, 2005; Cohen et al., 2006; Drescher et al., 2011]. Un-
fortunately, computational advantages do not carry forward to
large-scale instances or advanced encodings, where instance-
specific symmetry breaking often requires as much time as it
takes to solve the original problem. Moreover, ground SBCs
generated by instance-specific approaches are (i) not transfer-
able, since the knowledge obtained is limited to a single in-
stance; (ii) usually hard to interpret and comprehend; (iii) de-
rived from permutation group generators, whose computation
is itself a combinatorial problem; and (iv) often redundant and
might result in a degradation of the solving performance.

Elevated model-oriented approaches aim to find general
SBCs that depend less on a particular instance. The method
of Devriendt et al. [2016] uses local domain symmetries of a
given first-order theory. SBCs are generated by identifying
argument positions in atoms of a formula that comprise ob-
ject variables defined over the same subset of a domain given
in the input. As a result, the computation of lexicographical
SBCs is very fast. However, the method considers each first-
order formula separately and cannot reliably remove symmet-
ric solutions, as it requires the analysis of several formulas at
once. Mears et al. [2008] compute SBCs by generating small
instances of parametrized constraints programs, and then
find candidate symmetries using SAUCY [Darga et al., 2004;
Codenotti et al., 2013] – a graph automorphism detection
tool. Next, the algorithm removes all candidate symmetries
that are valid only for some of the generated examples as well
as those that cannot be proven to be parametrized symmetries
using heuristic graph-based techniques. This approach can
be seen as a simplified learning procedure that utilizes only
negative examples represented by the generated SBCs.

In this work, we introduce a novel model-oriented method
for Answer Set Programming (ASP) [Lifschitz, 2019] that
aims to generalize the process of discarding redundant solu-
tion candidates for instances of a target domain using Induc-
tive Logic Programming (ILP) [Cropper et al., 2020]. The
goal is to lift the SBCs of small problem instances and to
obtain a set of interpretable first-order constraints. Such con-
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straints cut the search space while preserving the satisfiability
of a problem for the considered instance distribution, which
improves the solving performance, especially in the case of
unsatisfiability. The particular contributions of our work are:

• We suggest a method to generate a training set including
positive and negative examples, allowing an ILP method
to learn first-order SBCs for the problem at hand.

• We define the components of an ILP learning task en-
abling the generation of lexicographical SBCs for ASP.

• We show how to apply our method iteratively, to revise
constraints when new permutation group generators are
added or more training instances become available.

• We conduct experiments on variants of the pigeon-hole
problem as well as the house-configuration problem
[Friedrich et al., 2011]. The obtained results show the
benefits of our approach that significantly outperforms
a state-of-the-art instance-specific method as well as an
ASP solver without SBCs.

The structure of this paper is the following: a brief
overview of the preliminaries is given in Section 2. Section 3
describes our approach, while Section 4 illustrates its imple-
mentation and specifies the components of an ILP learning
task. In Section 5, we present and discuss experimental re-
sults for some combinatorial problems. Lastly, Section 6 con-
cludes the paper and outlines directions for future work.

2 Background
2.1 Answer Set Programming
Answer Set Programming (ASP) [Lifschitz, 2019] is a declar-
ative programming paradigm that applies non-monotonic rea-
soning and relies on the stable model semantics [Gelfond and
Lifschitz, 1991]. Over the past decades, ASP has attracted
considerable interest thanks to its elegant syntax, expressive-
ness, and efficient systems implementations, showing promis-
ing results in numerous domains that include, e.g., industrial,
robotics, and biomedical applications [Erdem et al., 2016;
Falkner et al., 2018]. We will briefly define the syntax and
semantics of ASP, and refer the reader to [Gebser et al., 2012;
Lifschitz, 2019] for more detailed explanations.

Syntax. An ASP program P is a set of rules r of the form:

a0 ← a1, . . . , am,not am+1, . . . , not an

where not stands for default negation and ai, for 0 ≤ i ≤ n,
are atoms. An atom is an expression of the form p(t), where
p is a predicate, t is a possibly empty vector of terms, and the
predicate ⊥ (with an empty vector of terms) represents the
constant false. Each term t in t is either a variable or a con-
stant, and a literal l is either an atom ai (positive) or its nega-
tion not ai (negative). The atom a0 is the head of a rule r, de-
noted by H(r) = a0, and the body of r includes the positive
or negative, respectively, body atomsB+(r) = {a1, . . . , am}
and B−(r) = {am+1, . . . , an}. A rule r is called a fact if
B+(r) ∪B−(r) = ∅, and a constraint if H(r) = ⊥.

Semantics. The semantics of an ASP program P is given
in terms of its ground instantiation Pgrd, replacing each rule
r ∈ P with instances obtained by substituting the variables
in r by constants occurring in P . Then, an interpretation I
is a set of (true) ground atoms occurring in Pgrd that does
not contain ⊥. An interpretation I satisfies a rule r ∈ Pgrd
if B+(r) ⊆ I and B−(r) ∩ I = ∅ imply H(r) ∈ I , and
I is a model of P if it satisfies all rules r ∈ Pgrd. A model
I of P is stable if it is a subset-minimal model of the reduct
{H(r) ← B+(r) | r ∈ Pgrd, B

−(r) ∩ I = ∅}, and we
denote the set of all stable models of P by AS (P ).

2.2 Symmetry Breaking
Modern approaches detect symmetries of a given object by
representing it, e.g., as an instance of the graph automor-
phism problem,1 which is solved using methods from the
group theory, see [Sakallah, 2009] for an overview.

Let X be a set of n elements x1, ..., xn, then we can de-
fine a permutation of X as a bijection φ that rearranges its
elements. The symmetric group G = 〈Xp, φ〉 is defined by
the set Xp of all possible permutations of X closed under
φ, and its subgroups G′ = 〈X ′p, φ〉 are called permutation
groups, where X ′p ⊆ Xp. In cycle notation, we represent a
permutation π as a product of disjoint cycles, where each cy-
cle (x1 x2 x3 . . . xk) means that the element x1 is mapped
to x2, x2 to x3 and so on, until xk is mapped back to x1;
the elements mapped to themselves are not contained in the
cycles. Let g ∈ Xp be an element of a group G, then g is
a generator for G if any other element of the set Xp can be
obtained by a finite number of applications of φ. A set of gen-
erators AX ⊂ Xp of a symmetric group G generates a sub-
group G′ of G if G′ is the smallest subgroup containing AX .
If G′ is all of G, then AX is a group generator. A generator
is redundant if it can be expressed in terms of other genera-
tors. The goal of graph automorphism algorithms is to find
a set AX of irredundant generators, i.e., a set that contains
no redundant generators. Given a total order of the elements
in X , an irredundant group generator can be used to intro-
duce a set of constraints that eliminates all permutations of
its elements: this approach is called lex-leader and produces
Symmetry Breaking Constraints (SBCs). Considering a set
of irredundant generators of G is an effective heuristic, since
they allow for representing G compactly.

Symmetry-Breaking Answer Set Solving (SBASS)
[Drescher et al., 2011] detects and eliminates syntactic sym-
metries in ASP by adding ground SBCs to an input ground
program Pgrd. A symmetry of Pgrd is given by a permutation
π of ground atoms that that keeps the programs syntactically
equivalent, i.e., Pπgrd has the same rules as Pgrd, where Pπgrd
is the set of rules obtained by applying π to the head and body
literals of rules in Pgrd. In the first step, SBASS transforms
Pgrd to a colored graph GP such that permutation groups of
GP and their generators correspond one-to-one to those of
Pgrd. In the second step, it uses SAUCY [Darga et al., 2004;
Codenotti et al., 2013] to find a set of group generators

1It consists of finding all the symmetries of a graph in terms of
its generators; it is an attractive problem for the reduction since it
can be solved efficiently for many graphs.
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for GP . Finally, for each found generator SBASS constructs
a set of SBCs and appends them to Pgrd. Given the mod-
ified ground program, an ASP solver can efficiently avoid
symmetric answer sets.

2.3 Inductive Logic Programming
Inductive Logic Programming [Cropper et al., 2020] is a form
of machine learning whose goal is learning a logic program
that explains a set of observations in the context of some
pre-existing knowledge. Since its foundation, the majority
of the research in the topic covers Prolog semantic [Muggle-
ton, 1995; Srinivasan, 2004; Cropper and Muggleton, 2016],
even though applications in other logic paradigms appeared
in the last years. The most important ILP system for ASP is
Inductive Learning of Answer Set Programs (ILASP) [Law et
al., 2014; Law et al., 2021], for whom several releases have
been developed, extending its learning expressiveness.

The learning task for ILP 〈P,E,HM 〉 is defined by three
elements: a background knowledge P , a set of (positive and
negative) examples E, and a hypothesis space HM , which
defines all the rules that can be learned. The learned hypoth-
esis is a subset of the hypothesis space that satisfies a speci-
fied learning setting: for ILASP, the setting is learning from
interpretation [Cropper and Dumančić, 2020]. Before defin-
ing it, we need the terminology that ILASP’s authors intro-
duced. A Partial Interpretation (PI) is a pair of sets of atoms,
epi = 〈T, F 〉, called inclusions (T ) and exclusions (F ), re-
spectively. Given a (total) interpretation I and a PI epi, we
say that I extends epi if T ⊆ I and F ∩ I = ∅. We can
augment epi with an ASP program C to obtain a Context De-
pendent Partial Interpretation (CDPI) e = 〈epi, C〉. Given
a program P , a CDPI 〈epi, C〉, and an interpretation I, we
say that I is an accepting answer set of e with respect to P if
I ∈ AS (P ∪ C) such that I extends epi.

A learning task for ILASP is given by an ASP program P
as background knowledge, two sets of CDPIs, E+ and E−,
as positive and negative examples, and the hypothesis space
HM defined by a language bias M , which limits the poten-
tially learnable rules. The learned hypothesis H ⊆ HM must
respect the following criteria: (i) for each positive example
e ∈ E+, there is some accepting answer set of e with respect
to P ∪H; and (ii) for any negative example e ∈ E−, there is
no accepting answer set of e with respect to P ∪H . If multi-
ple hypotheses satisfy the conditions, the system returns one
of the shortest. In the article [Law et al., 2018], the authors
extended the expressiveness of ILASP, by allowing noisy ex-
amples. With this setting, if an example e is not covered (i.e,
there is an accepting answer set for e if it is negative, and none
if it is positive) then, the corresponding weight is counted as
a penalty. Therefore, the learning task becomes an optimiza-
tion problem with two goals: minimize the length of H and
minimize the total penalties for the uncovered examples.

Now, we will define the syntax of ILASP necessary for our
work and refer the reader to the system’s manual [Law et al.,
2021] for further details. A CDPI is expressed as follow:

#type(ID@W,{Inc},{Exc},{C}).

where type is either pos or neg; ID is an unique identi-
fier for the example; W is a positive integer representing the

example’s weight (if not defined, the weight is infinite); Inc
and Exc are two sets of atoms; and C is an ASP program.
The language bias can be specified by mode declarations,
which define the predicates that may appear in a rule, their
argument types and their frequency. Since in our work we
aim to learn constraints, we restrict the search space just to
rules ri with H(ri) = ⊥. To do so, we need to specify
only the mode declaration for the body of a rule, expressed
by #modeb(R,P,(E)) where R and E are optional and P
is a ground atom whose arguments are placeholders of type
var(t) for some constant term t. In the learned rules, the
placeholders will be replaced by variables of type t. The
optional element R is a positive integer called recall which
specifies the maximum number of times that the mode decla-
ration can be used in each rule. Lastly, E is a construct, which
further restricts the hypothesis search. We limit our interest
to the anti reflexive option that works with predicates
of arity 2. Using it, the predicate P should be generated with
two distinguished variables.

Choosing an appropriate language bias is still one of the
major challenges for modern ILP systems; if the bias does not
provide enough limitations, the problem becomes intractable;
on the other hand, a strong bias may remove the solution from
the search space [Cropper and Dumančić, 2020].

3 Approach
We tackle combinatorial problems modeled in ASP such that
the instances of a logic program P are generated by a dis-
crete and often stationary stochastic process. Such situations
occur, e.g., in industrial settings where the encoding of a man-
ufacturing system is fixed and production orders vary. In this
case, every problem instance can be seen as an outcome of the
generation process. We assume that any instance (i) specifies
the (true) atoms of unary domain predicates p1, . . . , pk in P ,
where ci is the number of atoms that hold for each pi; and
(ii) the satisfiability of the instance depends on the number
of atoms for each domain predicate, but not on the values of
their terms. Thus, without loss of generality, we consider the
terms for each pi to be consecutive integers from 1 to ci.

Our method exploits instance-specific SBCs on a represen-
tative set of instances and utilizes them to generate examples
for an ILP task. Solving the task yields first-order constraints
that remove symmetries in the analyzed problem instances as
much as possible while preserving the instances’ satisfiabil-
ity. We consider two following learning modes: (i) the default
mode is cautious by preserving all answer sets that are not fil-
tered out by the ground SBCs; and (ii) the sat mode aims to
learn tighter constraints by only guaranteeing that the learned
constraints do not eliminate all answer sets for an instance.

To compute the examples, our approach relies on small sat-
isfiable instances (i.e., with a low value for each cj), subdi-
vided into two parts: S and Gen. Each instance g ∈ Gen
defines a positive example with empty inclusions and exclu-
sions, and g as context. These examples, denoted by ExGen,
guarantee that the learned constraints generalize for the tar-
get distribution since they force the constraints to preserve
some solution for each g ∈ Gen. The instances i ∈ S are
used to obtain positive and negative examples, representing
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Algorithm 1: Approach to lift SBCs with ILP
input : P , ABK , HM , Gen, S, m

1 ExGen ← ∅;
2 ExS ← ∅;
3 foreach g ∈ Gen do
4 ExGen ← ExGen ∪ {pos(∅, ∅, g)};
5 foreach i ∈ S do
6 IG ← Set of irredundant generators for i;
7 foreach I ∈ AS (P ∪ i ∪ABK ) do
8 T ← atoms(IG) ∩ I;
9 F ← atoms(IG) \ I;

10 if lexLead(〈T, F 〉, IG) then
11 ExS ← ExS ∪ {neg(T, F, i)};
12 else if m = default then
13 ExS ← ExS ∪ {pos(I, ∅, i)};
14 else
15 ExS ← ExS ∪ {pos(∅, ∅, i)};

16 C ← Solve 〈P ∪ABK , ExGen ∪ ExS , HM 〉;
17 ABK ← ABK ∪ C;

answer sets of P ∪ i to be preserved or filtered out, respec-
tively, by corresponding SBCs. We denote their union by
ExS , where positive examples represent whole answer sets in
default mode, or, like instances in Gen, consist of empty in-
clusions and exclusions along with the context i in sat mode.

An ILP task further requires background knowledge and a
hypothesis space HM . Both of them are defined by the user
(for a possible instantiation, see Section 4.1). The former
consists of P along with Active Background Knowledge, de-
noted by ABK in Algorithm 1, including auxiliary predicate
definitions and constraints learned so far. The latter contains
the mode declarations, and we assume it to be general enough
to entail ground SBCs by learned first-order constraints. The
remaining inputs of Algorithm 1 consist of the instances in
Gen and S as well as the learning mode m. For each an-
swer set I of an instance i ∈ S to be analyzed, the predicate
lexLead(〈T, F 〉, IG) at line 10 evaluates to true if I is dom-
inated, i.e., I can be mapped to a lexicographically smaller,
symmetric answer set by means of some irredundant gener-
ator in IG . In this case, the negative example neg(T, F, i)
is added to ExS in order to eliminate I, while pos(I, ∅, i)
or pos(∅, ∅, i) is taken as the positive example otherwise, de-
pending on whether default or sat mode is selected. Positive
examples of the form pos(∅, ∅, g) are also gathered in ExGen
for instances g ∈ Gen, and solving the ILP task at line 16
gives new constraints C to extend ABK .

4 Implementation
The implementation of our approach relies on CLINGO (con-
sisting of the grounding and solving components GRINGO and
CLASP), SBASS and ILASP, and is available at [Tarzariol et
al., 2021]. Figure 1 shows the pipeline to generate the ex-
amples for a given instance i ∈ S (the for-loop at line 5
of Algorithm 1). First, P , i, and ABK are grounded with
GRINGO to get the ground program Pgrd in SMODELS format.

ABK

P

i

GRINGO Pgrd SBASS

Pgrd + SBCs

Permutations

CLASP

AS (Pgrd)

CLINGO

Lex-lead

Example dataEx of i

Figure 1: Pipeline to compute examples from instance i.

Then, the solver CLASP enumerates all its answer sets, ob-
taining AS (Pgrd). Independently, SBASS is run on Pgrd with
the option --show to output the set of permutation group
generators. This set contains the vertex permutations of GP ,
expressed in cycle notation. We extract the cycles defined
by vertices representing atoms of Pgrd and transform them
from SMODELS format back into their original symbolic rep-
resentation (by a predicate and terms), using the integer val-
ues of terms as lexicographic ordering criterion. Next, for
efficiency reasons, we partition the permutations into a set
C of clusters according to the involved atoms. More pre-
cisely, two permutations belong to the same cluster if they
share a common atom; otherwise, they are considered sepa-
rately. For each cluster c ∈ C, we identify the symmetric
answer sets in AS (Pgrd) according to c, by using an ASP
encoding to evaluate SBCs based on the lex-leader predicate
given in [Sakallah, 2009]. The encoding returns the undomi-
nated atom assignments concerning the atoms in c. For each
I ∈ AS (Pgrd), we check whether an assignment according
to I leads to unsatisfiability. In this case, I is a symmet-
ric answer set and, therefore, produces a negative example.
We assign a unique identifier to each negative example and
a weight of 100. Due to the weights, ILASP returns a set of
constraints even if some negative examples are not covered;
moreover, we use uniform weights so that all negative exam-
ples have the same relevance and as many as possible are to
be eliminated. Since we consider several clusters of permuta-
tions, the same answer set I may be symmetric for more than
one cluster. If I is symmetric for n clusters, our system pro-
duces n negative examples for it, with a weight of d 100n e for
each. Lastly, answer sets that were not found to be dominated
for any of the clusters in C yield positive examples according
to the selected mode. Such positive examples are unweighted;
thus, the learned hypothesis must cover all of them.

4.1 ILP Learning Task
After considering the example generation, we specify com-
ponents of the ILP learning task that are suitable for the
learning of constraints. The idea is to encode the predicates
used by lex-leader symmetry breaking to order atoms and ex-
tract the maximal values for domain predicates. Since the
mode declarations of ILASP (v4.0.0) do not support arith-
metic built-ins such as <, we provide auxiliary predicates
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in ABK to simulate them. Presupposing the presence of
unary domain predicates p1, . . . , pk with integers from 1 to ci
for each pi, ABK defines the auxiliary predicates maxpi(ci)
for each pi and lessThan(t1,t2) for each pair of integers
1 ≤ t1 < t2 ≤ max{ci | i = 1, . . . , k}. These two predicates
are minimal for overcoming limitations of ILASP to learn lex-
leader SBCs. The selection of small yet representative in-
stances for S and Gen depends on the considered problem.
Regarding S, we pursued the strategy that empirically deter-
mines instances for which SBASS yields a manageable num-
ber of permutation group generators. The instances in Gen
are usually larger yet still solvable in a short running time to
check that the learned constraints generalize.

Our language bias includes #modeb(2,pi(var(ti))) and
#modeb(1,maxpi(var(ti))) as mode declarations for each
domain predicate pi, where ti is a placeholder indicat-
ing the domain for which each pi holds. Moreover,
for each (non-auxiliary) predicate P appearing in some
of the generators computed for instances in S, we use
#modeb(2,P), where the domains of variables in atoms
of P are indicated by a vector of the placeholders in {ti |
i = 1, . . . , k}, depending on the role of P in the given
program P . In addition, we include mode declarations
#modeb(2,lessThan(var(ti),var(tj))) for all i, j =
1, . . . , k, with the option anti reflexive in case i = j.
Iterative learning. Inspired by the lifelong learning ap-
proach [Cropper et al., 2020], we apply our framework in-
crementally to a split learning task. In every iteration, we
exploit the constraints learned so far to tackle the remaining
symmetries. To this end, we divide the hypothesis space for
programs with three or more types of variables in the lan-
guage bias: in the first ILP run, the mode declarations are
restricted to two types of variables, say t1 and t2, and then
they are progressively extended to further types from t3 to tk.
This iterative approach can speed up the learning procedure
and required less than a minute of running time for each itera-
tion on the combinatorial problems investigated in Section 5.
Example. To illustrate a feasible outcome of our ILP ap-
proach, let us inspect constraints learned for the pigeon-hole
problem, which is about checking whether p pigeons can be
placed into h holes such that each hole contains at most one
pigeon. We use the following ASP encoding for this problem:
pigeon(X-1) :- pigeon(X), X > 1.
hole(X-1) :- hole(X), X > 1.
{p2h(P,H) : hole(H)} = 1 :- pigeon(P).
:- p2h(P1,H), p2h(P2,H), P1 != P2.

Assume that S consists of the instance with three pigeons and
three holes only, which has six answer sets. Analyzing the in-
stance with SBASS gives four generators identifying five sym-
metric answer sets. These are encoded as negative examples:
#neg(id1@100, {p2h(2,3), p2h(1,2), p2h(3,1)},
{p2h(2,1), p2h(1,1), p2h(3,3), p2h(1,3),
p2h(3,2), p2h(2,2)}, {pigeon(3). hole(3).}).

#neg(id3@100, {p2h(2,1), p2h(3,2), p2h(1,3)},
{p2h(1,1), p2h(3,3), p2h(3,1), p2h(2,2),
p2h(2,3), p2h(1,2)}, {pigeon(3). hole(3).}).

#neg(id4@100, {p2h(2,3), p2h(1,1), p2h(3,2)},
{p2h(2,1), p2h(3,3), p2h(3,1), p2h(1,3),
p2h(2,2), p2h(1,2)}, {pigeon(3). hole(3).}).

#neg(id5@100, {p2h(2,1), p2h(3,3), p2h(1,2)},
{p2h(1,1), p2h(3,1), p2h(1,3), p2h(3,2),

p2h(2,3), p2h(2,2)}, {pigeon(3). hole(3).}).
#neg(id6@100, {p2h(1,1), p2h(3,3), p2h(2,2)},
{p2h(2,1), p2h(3,1), p2h(1,3), p2h(3,2),
p2h(2,3), p2h(1,2)}, {pigeon(3). hole(3).}).

The single positive example in default mode is the following:
#pos(id2, {p2h(3,1), p2h(2,2), p2h(1,3)},
{}, {pigeon(3). hole(3).}).

After running ILASP, the learned first-order constraints are:
:- p2h(X,Y), lessThan(Z,Y), maxpigeon(X).
% do not assign the pigeon with the max
% label to a hole other than the first one

:- p2h(X,Y), lessThan(X,Y), lessThan(Y,Z).
% for all but the last hole, do not assign
% a pigeon with a smaller label to the hole

5 Experiments
To evaluate our approach and the implementation design, we
applied our framework to a series of combinatorial search
problems. For each considered problem, we compared the
running time of the original encoding, the version extended
with our learned constraints, and the instance-specific ap-
proach of SBASS. The learned constraints depend on several
aspects, e.g., the selected inputs or whether and how we apply
the iterative learning approach. In the following, we report
results for the constraints learned applying the definitions of
Section 4.2 We ran our tests on an Intel® Xeon® E5520 ma-
chine under Linux (Ubuntu 18.04.3), where each run was lim-
ited to 900 seconds time and 20 GB memory. In Table 1 to Ta-
ble 4, the satisfiable instances are shown in grey rows, while
the white rows contain unsatisfiable instances. The column
BASE refers to CLINGO (v5.4.0) run on the original encoding,
while ABK-DEF and ABK-SAT report results for the orig-
inal encoding augmented with first-order constraints learned
in the default or sat mode, respectively. The time required by
SBASS to compute ground SBCs is given in the correspond-
ing column, and CLASPπ provides the solving time obtained
with these ground SBCs. Runs that did not finish within the
time limit of 900 seconds are indicated by TO entries.

We first tested the pigeon-hole problem, working without
any division and iterative analysis of the language bias, and
the two learning modes led to similar constraints. The run-
ning time comparison in Table 1 shows that the default and
the sat mode of our framework bring about a similar speedup
for solving satisfiable as well as unsatisfiable instances. In
fact, the vast problem symmetries are cut by the learned first-
order constraints, which is particularly important in case of
unsatisfiability, where runs on the original encoding with-
out additional constraints do not finish within the time limit.
While SBASS also manages to handle the two smallest in-
stances, the computation of permutation group generators be-
comes too expensive when the instance size grows, in which
case we cannot run CLASPπ with ground SBCs from SBASS.

Next, we tested two extensions of the pigeon-hole prob-
lem, adding color and owner assignments. The pigeon-hole
problem with colors associates a color with each pigeon
and requires pigeons placed into neighboring holes to be of
the same color. The version with colors and owners addi-
tionally assigns an owner to each pigeon and imposes the

2Detailed settings are provided at [Tarzariol et al., 2021].
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ABK-DEF ABK-SAT BASE SBASS CLASPπ

p50-h49 0.115 0.157 TO 54.581 2.978
p50-h50 0.117 0.116 0.272 54.521 2.334
p100-h99 1.139 1.188 TO TO –
p100-h100 1.200 1.301 1.845 TO –
p200-h199 8.648 8.443 TO TO –
p200-h200 8.713 9.495 16.523 TO –
p300-h299 30.643 30.237 TO TO –
p300-h300 30.510 30.333 55.606 TO –
p400-h399 72.561 72.571 TO TO –
p400-h400 73.701 73.554 135.031 TO –

Table 1: Runtime in seconds for pigeon-hole problem.

ABK-DEF ABK-SAT BASE SBASS CLASPπ

c1-p12-h11 2.643 0.005 TO 0.758 0.018
c1-p52-h52 0.339 0.223 0.342 63.749 1.622
c2-p12-h12 9.512 0.012 TO 0.085 TO
c2-p52-h53 0.783 0.437 TO 103.843 TO
c3-p12-h13 6.442 0.021 TO 0.239 TO
c3-p52-h54 6.892 0.972 2.814 653.216 TO
c4-p12-h14 6.229 0.023 TO 0.675 TO
c4-p52-h55 5.130 1.579 TO 633.469 TO
c5-p12-h15 7.928 0.043 TO 1.076 TO
c5-p52-h56 27.226 2.383 8.447 TO –

Table 2: Runtime in seconds for pigeon-hole problem with colors.

same constraint as with the colors for owners as well. For
the pigeon-hole problem with color assignments, we divided
the language bias into two parts: the first limiting to predi-
cates whose atoms exclusively include variables of the types
pigeon and hole, while the second part allows variables
to be of the type color too. Likewise, the problem version
with owners and colors required a third language bias exten-
sion to variables of the type owner. For both extensions of
the pigeon-hole problem, the first-order constraints learned in
default mode turned out to be weaker than those obtained in
sat mode, while either kind of constraints helped to improve
the search for solutions. Table 2 and Table 3 show similar
results: the constraints learned with the sat mode lead to the
fastest running times for both satisfiable and unsatisfiable in-
stances. For small unsatisfiable instances, the ground SBCs
from SBASS lead to better performance than the constraints
learned with the default mode. However, as soon as the color
(or owner) dimension grows, the runs of CLASPπ reach the
timeout. This behavior is due to the redundancy of the ground
SBCs, which slow down the search instead of facilitating it.
For some of the satisfiable instances, finding a solution with
the constraints learned in default mode takes longer than with
the original encoding alone, but the latter also has timeouts
that do not occur with our learned first-order constraints.

Lastly, we applied our framework to the house-
configuration problem [Friedrich et al., 2011], which consists
of assigning t things of p persons to c cabinets, where each
cabinet has a capacity limit of two things that must belong
to the same owner. The running times in Table 4 exhibit
the same trend as observed on the previous problems that
our first-order constraints help the search, especially those
learned with the sat mode. In some cases, the original en-
coding is quicker to solve satisfiable instances, but it takes
considerably longer for unsatisfiable ones. On the other hand,
SBASS brings a moderate speedup for unsatisfiable instances,

ABK-DEF ABK-SAT BASE SBASS CLASPπ

o1-c3-p12-h13 2.327 0.015 TO 0.200 TO
o1-c3-p52-h54 2.818 0.858 2.760 394.272 TO
o2-c3-p12-h13 1.865 0.017 TO 0.395 TO
o2-c3-p52-h54 1.463 1.294 TO 745.101 TO
o3-c1-p12-h13 2.335 0.014 TO 0.320 TO
o3-c1-p52-h54 2.619 1.151 2.732 392.267 TO
o4-c4-p12-h14 1.270 0.041 TO 1.238 TO
o4-c4-p52-h55 6.316 3.036 10.041 TO –
o5-c5-p12-h15 0.988 0.090 TO 2.418 TO
o5-c5-p52-h56 20.040 5.031 18.074 TO –

Table 3: Runtime in seconds for pigeon-hole problem with colors
and owners.

ABK-DEF ABK-SAT BASE SBASS CLASPπ

p2-c6-t13 0.723 0.042 292.056 0.092 18.672
p2-c80-t160 7.861 8.498 10.274 TO –
p3-c6-t13 0.555 0.059 344.526 0.217 102.544
p3-c80-t160 21.588 22.331 29.295 TO –
p4-c6-t13 0.609 0.063 303.573 0.728 145.049
p4-c80-t160 41.551 43.521 59.380 TO –
p5-c6-t13 0.705 0.072 329.670 1.174 582.101
p5-c80-t160 69.009 72.756 99.911 TO –
p4-c7-t15 18.770 0.464 TO 1.060 TO
p15-c15-t30 9.187 10.323 6.851 TO –

Table 4: Runtime in seconds for house-configuration problem.

but its performance suffers a lot when the problem size grows.

6 Conclusions
This paper introduces a new method to lift the SBCs of com-
binatorial problems for a target distribution of instances. Our
framework addresses the limitations of common instance-
specific approaches, like SBASS, since: (i) the knowledge
is transferable, as learned constraints preserve the satisfiabil-
ity for the considered instance distribution; (ii) the first-order
constraints are easier to interpret than ground SBCs; (iii) the
SBCs are computed offline, allowing for addressing large-
scale instances, as shown in our experiments; and (iv) the
learned constraints are non-redundant, avoiding performance
degradation due to an excessive ground representation size.

In the future, we aim to investigate whether the learning of
SBCs can be readily applied or further adapted to advanced
industrial problems, such as the Partner Unit Problem [Do-
daro et al., 2016], as well as complex combinatorial problems
with specific instance distributions, like the identification of
Graceful Graphs [Petrie and Smith, 2003]. For such applica-
tion scenarios, the language bias may be enriched, possibly
extending the background knowledge with additional predi-
cates. Moreover, we intend to provide automatic mechanisms
to select suitable instances for S and Gen from instance col-
lections, support lifelong learning, and further optimize the
grounding and solving efficiency of learned constraints.
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