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Abstract
Smart contracts hold digital coins worth billions of
dollars, their security issues have drawn extensive
attention in the past years. Towards smart con-
tract vulnerability detection, conventional methods
heavily rely on fixed expert rules, leading to low
accuracy and poor scalability. Recent deep learn-
ing approaches alleviate this issue but fail to en-
code useful expert knowledge. In this paper, we ex-
plore combining deep learning with expert patterns
in an explainable fashion. Specifically, we develop
automatic tools to extract expert patterns from the
source code. We then cast the code into a semantic
graph to extract deep graph features. Thereafter, the
global graph feature and local expert patterns are
fused to cooperate and approach the final predic-
tion, while yielding their interpretable weights. Ex-
periments are conducted on all available smart con-
tracts with source code in two platforms, Ethereum
and VNT Chain. Empirically, our system signif-
icantly outperforms state-of-the-art methods. Our
code is released.

1 Introduction
Blockchain has attracted extensive attention in the past few
years. The worldwide miners (bookkeeping nodes) obey a
consensus protocol to maintain a secure and shared transac-
tion ledger, which is termed a blockchain [Hewa et al., 2020].
In the blockchain network, the consensus protocol enforces
the transactions immutable once recorded in the distributedly
copied ledger, endowing the blockchain with tamper-resistant
and decentralization nature.

Smart contracts are programs running on top of a
blockchain system [Wang et al., 2019; Luu et al., 2016]. A
smart contract can be specially designed by developers to im-
plement arbitrary rules for managing digital assets. Attribut-
ing to the immutable nature of blockchain, a smart contract
cannot be updated once deployed. Thus, the defined rules of
a smart contract are formulated as program code and are au-
tomatically executed, which is impartial for all parties that in-
∗The first two authors have equal contribution.
†Corresponding author.

teract with the contract. Smart contracts make the automatic
execution of contract terms possible, facilitating complex de-
centralized applications (DApps) [Ding et al., 2019].

So far, millions of smart contracts have been deployed
on various blockchain platforms, controlling digital currency
worth more than 10 billion dollars. Holding so much wealth,
however, makes smart contracts attractive enough to mali-
cious attackers. In 2016, attackers exploited the reentrancy
vulnerability of The DAO contract‡ to steal Ether (i.e., Cryp-
tocurrency of Ethereum) worth 60 million dollars. This case
is not isolated and several security vulnerabilities of smart
contracts are disclosed every year [Lorenz et al., 2018].

The main issues that may easily lead to smart contract vul-
nerabilities are twofold. First, the programming languages
and tools are still new and crude, which leaves plenty of
rooms for misunderstandings in the built-in functions and
tools [Luu et al., 2016]. Second, due to the immutable na-
ture of smart contracts, developers are required to anticipate
all possible states (e.g., stack status) and environments that
the code may encounter in the future, which is obviously dif-
ficult.

Existing methods on smart contract vulnerability detection
can be roughly cast into two categories. The first line of work
[Luu et al., 2016; Tsankov et al., 2018; Jiang et al., 2018]
utilized classical static analysis and dynamic execution tech-
niques to identify vulnerabilities. Unfortunately, they funda-
mentally rely on several fixed expert rules, while the man-
ually defined patterns bear the inherent risk of being error-
prone and some complex patterns are non-trivial to be cov-
ered. Meanwhile, crafty attackers may easily bypass the fixed
patterns using small tricks. Another line of work [Tann et al.,
2018; Zhuang et al., 2020] explored using deep learning mod-
els to deal with complex contract data, having achieved much
improved accuracy. Due to the black-box nature, however,
they fail to encode useful expert knowledge and mostly have
poor interpretability. This motivates us to consider whether
we could combine neural networks with classical expert pat-
terns, where neural networks contribute their ability to handle
the complex code semantic graph while expert patterns con-
tribute precise and valuable local information. More impor-
tantly, we seek an explainable solution which could tell the

‡The DAO contract, 2016. http://etherscan.io/address/
0xbb9bc244d798123fde783fcc1c72d3bb8c189413
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Figure 1: The overall architecture of our proposed method. (a) The local expert pattern extraction tool for extracting vulnerability-specific
expert patterns. (b) The graph construction and normalization module for transforming the code into a global semantic graph. (c) The attentive
multi-encoder network, which combines expert patterns and the graph feature for vulnerability detection and outputting explainable weights.

weights of different features.

Our method. In this paper, we propose a new system be-
yond pure neural networks that can automatically detect vul-
nerabilities and incorporate expert patterns into networks in
an explainable fashion. In particular, (1) we develop auto-
matic tools to extract vulnerability-specific expert patterns.
(2) Then, we exploit a graph structure to frame the rich
control-flow and data-flow semantics of the function code.
Upon the graph, a graph neural network is employed to ex-
tract the deep graph feature. (3) Finally, we propose an atten-
tive multi-encoder network to interpretably fuse the global
graph feature and local expert patterns. Extensive experi-
ments are conducted on all the 40k contracts in two bench-
mark datasets, demonstrating significant improvements over
state-of-the-art: accuracy from 84% to 90%, 83% to 87%,
75% to 80% on three types of vulnerabilities respectively.
More importantly, our model is able to explain its label pre-
diction, give warnings of high weighted local patterns, and
provide a grand picture of the significance of different fea-
tures.

Contributions. The key contributions of this work are: 1)
We investigate combining vulnerability-specific expert pat-
terns with neural networks in an explainable way. To the best
of our knowledge, we are the first to prob the combination in-
terpretably. 2) In the method, we present a simple but effec-
tive multi-encoder network for feature fusion. 3) Our method
sets the new state-of-the-art and provides novel insights. To
facilitate future research, our implementations are released
at https://github.com/Messi-Q/AMEVulDetector. We would
like to point out that different from [Liu et al., 2021], this
work focuses mainly on the explainability of the expert pat-
tern and deep graph feature combination, and offers a grand
picture on the importance of different features.

2 Problem
Given the source code of a smart contract, we seek to de-
velop a fully automatic approach that can detect vulnerability
at fine-grained function level and is interpretable. In other
words, presented with a smart contract function f , we are to
predict its label l̂ and output the associated weights {wi}ni=1

simultaneously, where l̂ = 1 represents f has a vulnerability
of a certain type and l̂ = 0 denotes f is safe. Weight wi ex-
plains the importance of the ith feature in predicting the label.
In this work, we concentrate on three common vulnerabilities:

(1) Reentrancy is a well-known vulnerability that has
brought about the notorious DAO attack. When a smart
contract function f1 transfers money to a recipient contract
C, the fallback function f2 of C will be automatically trig-
gered. Function f2 may invoke f1 for conducting an in-
valid second-time money transfer. Since the current exe-
cution of f1 waits for the first-time transfer to finish, the
balance of C is not reduced yet, f1 thus may wrongly be-
lieve that C still has enough balance and transfers money
to C again. More specifically, the expected execution trace

is f1
transfer−−−−−−→ C

trigger−−−−→ f2 → end, whereas the actual
trace is f1

transfer−−−−−−→ C
trigger−−−−→ f2

invoke−−−−→ f1
transfer−−−−−−→

C
trigger−−−−→ f2 → end. Exploiting the reentrancy vulner-

ability, an attacker may succeed in obtaining 20 Ether al-
though his/her balance is 10 Ether. Note that attackers can
steal more money by invoking f1 more than one time, which

can be exemplified as f1
transfer−−−−−−→ C

trigger−−−−→ f2
invoke−−−−→

f1
transfer−−−−−−→ C

trigger−−−−→ f2
invoke−−−−→ f1

transfer−−−−−−→ C
trigger−−−−→

f2 → end.
(2) Block timestamp dependence happens when a function

uses block timestamp as a condition to perform critical op-
erations, e.g., using block.timestamp of a future block as the
source to generate random numbers so as to determine the
winner of a game. The miner who mines the block has the
freedom to set the timestamp of the block as long as it is
within a short time interval [Jiang et al., 2018]. Thus, miners
may manipulate block timestamp to gain illegal benefits.

(3) Infinite loop is conventionally considered as a loop bug
which unintentionally iterates forever, e.g., a for loop with no
exit condition. Distinct from conventional programs, users
have to pay a fee for executing each line of smart contract
code. The fee is approximately proportional to how much
code needs to run. For a function with infinite loop, its exe-
cution will run out of gas and be aborted. In such a case, the
execution consumes a lot of gas but all the gas is consumed
in vain since the execution is unable to change any state.

3 Method
The overview of the proposed system is illustrated in Fig. 1,
which consists of three components: 1) a local expert pattern
extraction tool, which extracts expert patterns of a specific
vulnerability from the function code; 2) a graph construc-
tion and normalization module, which transforms the func-
tion code into a code semantic graph; and 3) an attentive
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multi-encoder network that combines local expert patterns
and the global graph feature for vulnerability detection and
outputs explainable weights. In what follows, we introduce
the three components one by one.

3.1 Local Expert Pattern Extraction
Following [Liu et al., 2021], we design corresponding expert
patterns for three types of vulnerabilities respectively. Then,
we implement a fully automatic tool to extract expert patterns
from the function code. Specifically, the patterns for different
vulnerabilities are defined as:

Reentrancy. Technically, the reentrancy vulnerability oc-
curs when a call.value invocation (i.e., a built-in money trans-
fer function) can call back to itself through a chain of calls.
That is, call.value is successfully re-entered to perform unex-
pected repeat money transfers. For the reentrancy vulnerabil-
ity, we design three local patterns. (1) enoughBalance con-
cerns whether there is a check on the sufficiency of the user
balance before transferring to a user. (2) callValueInvoca-
tion models whether there exists an invocation to call.value
in the function. (3) balanceDeduction checks whether the
user balance is deducted after money transfer, which consid-
ers the fact that the money stealing can be avoided if the user
balance is deducted each time before money transfer.

Block timestamp dependence. Generally, the timestamp
dependency vulnerability exists when a smart contract is con-
ventionally considered as using block.timestamp as part of the
conditions to perform critical operations [Jiang et al., 2018].
We design three local patterns for the timestamp dependence
vulnerability. (1) timestampInvocation models whether
there exists an invocation to opcode block.timestamp in the
function. (2) timestampAssign checks whether the value of
block.timestamp is assigned to other variables or passed to
a function as a parameter, namely whether block.timestamp
is actually used. (3) timestampContaminate verifies if
block.timestamp may contaminate the triggering condition of
a critical operation (e.g., money transfer).

Infinite loop. Specifically, we define three local patterns for
the infinite loop vulnerability as follows. (1) loopStatement
checks whether the function exists a loop statement such as
for and while. (2) loopCondition validates whether the exit
condition can be reached. For example, for a while loop, its
exit condition i < 9 cannot be reached if i is never updated
in the loop. (3) selfInvocation concerns whether the function
invokes itself and the self-invocation is not in an if statement.
This considers the fact that if the self-invocation statement
is not in an if statement, the self-invocation loop will never
terminate.

Implementations. Our open-sourced tool to extract the de-
signed local expert patterns is released on Github. These
patterns are consistent with those in our previous work [Liu
et al., 2021]. As introduced in [Liu et al., 2021], the pat-
tern extraction tool scans the source code of a function sev-
eral times. Particularly, simple patterns such as callValueIn-
vocation and timestampInvocation can be directly extracted
by keyword matching. Patterns such as enoughBalance, bal-
anceDeduction, loopStatement, timestampAssign, loopCon-

Vulnerabilities Core Nodes

Reentrancy
call.value invocation

a function that contains call.value
the variable: correspond to user balance

Timestamp dependence
block.timestamp invocation

block.number invocation
a variable: affect critical operation

Infinite loop
for

while
self-call function

Table 1: Core nodes are modeled for the three types of vulnerabili-
ties. Differences with [Zhuang et al., 2020] are highlighted in bold.

Semantic Edge Type
assert{ X }

Control-flow edges

require{X}
if{X}

if{...} else {X}
if{...} revert
if{...} throw

if{...} then {X}
while{X} do{...}

for{X} do{...}
natural sequential relationships

assign{X}
Data-flow edges

access{X}
from call.value node to fallback function

Fallback edges
from fallback node to function under test

Table 2: Key semantic edges, which fall into three categories.

dition, and selfInvocation are obtained by syntactic and se-
mantic analysis. Complex pattern timestampContaminate is
extracted by taint analysis, where we follow the traces of the
data flow and flag all the variables that may be affected along
the traces.

3.2 Graph Construction and Normalization
One may directly use combinations of aforementioned pat-
terns to predict whether the function has a certain vulnera-
bility. However, these fixed patterns are shown to have diffi-
culties in handling relatively complex attacks and are trivial
to be bypassed by adversaries [Qian et al., 2020]. Therefore,
we further propose to model the control flow and data flow of
the entire source code into a semantic graph, and adopt graph
neural networks to handle it. Thereafter, the extracted global
graph feature and the local expert patterns could supplement
each other towards a more precise and explainable label pre-
diction.

Graph construction. Different program elements in a
function are not of equal importance in detecting vulnera-
bilities. Therefore, we extract two categories of nodes, i.e.,
core nodes and normal nodes. (1) Core nodes symbolize key
invocations and variables in the function code, which are crit-
ical for detecting a specific vulnerability. For instance, for
reentrancy vulnerability, (i) an invocation to call.value, (ii)
an invocation to a money transfer function that contains a
call.value invocation, and (iii) the variable that corresponds
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Figure 2: The attentive multi-encoder network, consisting of a self-attention mechanism and a cross-attention mechanism. It combines local
pattern features and the global graph feature for vulnerability detection, and outputs interpretable weights for all features.

to user balance, are treated as core nodes. We summarize
the core nodes for detecting the three vulnerabilities in Ta-
ble 1. (2) Invocations and variables that are not extracted
as core nodes are modeled as normal nodes, which play an
auxiliary role in detecting vulnerabilities. We also construct
an extra fallback node to stimulate the fallback function of a
virtual attack contract. The fallback node can interact with
the function under test and is considered as a normal node.
It is worth mentioning that distinct from prior works such as
[Zhuang et al., 2020], which merely model key invocations as
core nodes, we propose to further extract key variables as core
nodes, given that they are undoubtedly important in detecting
vulnerabilities. To characterize rich connections between dif-
ferent nodes, we construct three categories of semantic edges,
namely control flow, data flow, and fallback edges. Each edge
describes a path that might be traversed through by the func-
tion under test, and the temporal number of the edge is set
according to its sequential order in the function code. We
summarized key semantic edges in Table 2.

Graph normalization. It is worth mentioning that differ-
ent functions corresponding to distinct code semantic graphs,
bringing difficulties in training a graph neural network. More-
over, current graph neural networks are inherently flat when
propagating information, ignoring that different nodes are not
of equal importance. Therefore, we propose to normalize the
graph following that of [Zhuang et al., 2020] to remove all
normal nodes and merge their features to the nearest core
nodes. A simplified example for graph construction and nor-
malization is given in Fig. 1(b).

3.3 Attentive Multi-Encoder Network
For the extracted local expert patterns, we adopt the multiple
MLPs (multilayer perceptrons) to encode them into feature
vectors. For the normalized global code semantic graph, we
utilize a temporal-message-propagation (TMP) graph neural
network to transform it into a deep graph feature. Then, the
expert pattern features and the graph feature are fused using
an attentive multi-encoder network to give the overall label
prediction ŷ, which is illustrated in Fig. 2.

Local pattern feature extraction. Each expert pattern for-
mulates an elementary factor closely related to a specific vul-
nerability. We utilize a one-hot vector to represent each pat-
tern, and append a digit 0/1 to indicate whether the function

under test has this pattern. The vectors for all patterns related
to a specific vulnerability are fed into multiple MLPs, each
takes care of one pattern. The outputs of the MLPs are con-
catenated and passed into a feed-forward network to compute
the label prediction of the function. This network is trained
so that each MLP learns to extract the feature p ∈ Rd of a
pattern.

Global graph feature extraction. To extract the graph fea-
ture from the normalized code semantic graph, we use a
graph neural network that consists of a message propagation
phase and an aggregation phase [Zhuang et al., 2020]. In
the message propagation phase, the network passes informa-
tion along the edges successively by following their sequen-
tial orders in the code, while the aggregation phase outputs
the global graph feature g ∈ Rd by aggregating the final
states and original states of all nodes. Following [Zhuang
et al., 2020], at each time step j, message flows through the
jth edge ej and updates the hidden state of the end node of
ej by absorbing information from edge ej and the start node
of ej . After successively traversing all edges, we extract the
graph feature by aggregating the hidden states of all nodes.
The original hidden state h0i and the final hidden state hTi of
each node are informative in the vulnerability detection task.
Therefore, we can obtain the final global graph feature g by:

hi = h0i ⊕ hTi (1)
Gatei = σ(M1(relu(b1 +M2hi)) + b2) (2)

Outputi = σ(M3(relu(b3 +M4hi)) + b4) (3)

g = FC
(∑N

i=1
(Gatei �Outputi)

)
(4)

where⊕ and� denote concatenation and element-wise prod-
uct. Matrix Mj and bias vector bj are network parameters, N
is the number of nodes, σ is the softmax activation layer, and
FC is a fully connected layer. Motivated readers may also
refer to [Zhuang et al., 2020] for more details of the message
propagation and aggregation phases.

Fusion network. As shown in Fig. 2, the extracted lo-
cal pattern features {pi}ki=1 and the global graph feature g
go through a self-attention mechanism and a cross-attention
mechanism to output the label prediction ŷ and the associated
weights {wi}ni=1 for all features. Since the local expert pat-
tern features and the global graph feature are heterogeneous,
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the self-attention mechanism learns to preliminarily balance
different features by computing the coefficients for all fea-
tures. The cross-attention mechanism then fuses different fea-
tures to predict the label.
Self attention mechanism. Formally, the processes of the
self attention for pi and g are given by:

cg = FC(g), g
′
= cg � g (5)

cpi
= FC(pi), pi

′
= cpi

� pi (6)
where cg and cpi

are coefficient vectors, � denotes the
element-wise product, g

′
and pi

′
denote the updated features.

Cross attention mechanism. After the self attention, we
can obtain new features g

′
and {pi

′}ki=1. Next, we con-
sider combining them to detect vulnerabilities. As shown
in Fig. 2, each feature goes through an encoder, mapping g

′

and {pi
′}ki=1 into g̃ and {p̃i}ki=1, respectively. Then, all the

mapped features are concatenated and fed into an MLP, gen-
erating a final semantic vector v. The label ŷ is then conve-
niently computed by ŷ = round(sigmoid(v)). Technically,
we believe that the attention weights could highlight the fea-
ture importance. The inner product between each feature and
v, therefore, is employed to compute the interpretable weights
for the global graph feature g and each local expert pattern
feature pi.

wg =
exp(g̃ · v)

exp(g̃ · v) +
∑k

i=1 exp(p̃i · v)
(7)

wpi
=

exp(p̃i · v)
exp(g̃ · v) +

∑k
i=1 exp(p̃i · v)

(8)

where wg denotes the weight of g, wpi is the weight of pi,
and · represents inner product.

4 Experiments
In this section, we empirically evaluate our proposed method
on two benchmark datasets, namely Ethereum smart contract
dataset (ESC) and VNT Chain smart contract dataset (VSC).
We seek to answer the following research questions:
• RQ1: Can the proposed method effectively detect the three

types of vulnerabilities? How is its performance against
state-of-the-art tools and neural network-based methods?

• RQ2: Is the method able to provide interpretability in vul-
nerability detection? Can we obtain new insights from it?

• RQ3: How do the different components affect the perfor-
mance of the proposed approach?

Next, we first present the experimental settings, followed by
answering the above research questions one by one.

4.1 Experimental Settings
Datasets. (1) ESC dataset contains 307,396 functions from
40,932 Ethereum smart contracts. In the dataset, 5,013 func-
tions contain at least one invocation to call.value, making
them potentially affected by reentrancy vulnerability. 4,833
functions have the block.timestamp statement that may cause
timestamp dependence vulnerability. (2) VSC dataset con-
sists of 13,761 functions from 4,170 VNT Chain smart con-
tracts. Around 2,925 functions have loop statements.

Implementation details. All experiments are conducted on
a computer equipped with an Intel Core i7 CPU at 3.7GHz, a
GPU at 1080Ti, and 32GB Memory. The expert pattern ex-
traction tool and the graph construction tool are implemented
with Python, while the neural networks are implemented with
TensorFlow. Following prior works, we randomly select 80%
of the functions as the training set and the other 20% as the
test set for each dataset. The encoders in Fig. 2 are imple-
mented using three fully connected layers. The hidden state
sizes of the self attention and encoder layers are 200 and 100,
respectively.

4.2 Performance Comparison (RQ1)
In this section, we compare our proposed approach against
state-of-the-art tools and available neural network-based
methods. Following existing work [Zhuang et al., 2020],
we conduct experiments for the reentrancy and timestamp
dependence vulnerability on ESC, and evaluate the infinite
loop vulnerability on VSC. Metrics accuracy, recall, preci-
sion, and F1-score are all engaged in the comparisons.

Comparison with Conventional Detection Tools
We first compare our method AME with existing smart
contract vulnerability detection tools including Smartcheck
[Tikhomirov et al., 2018], Oyente [Luu et al., 2016], Mythril
[Mueller, 2017], Securify [Tsankov et al., 2018], and Slither
[Feist et al., 2019]. Quantitative results are summarized in
Table 3.

As shown in the left of Table 3, we observe that: 1) con-
ventional tools have not yet achieved a satisfactory accuracy
on the reentrancy vulnerability detection. In particular, state-
of-the-art tools Securify and Slither only achieve 71.89% and
77.12% accuracies. 2) Our method significantly outperforms
the existing tools in reentrancy vulnerability detection. More
specifically, AME achieves a 90.19% accuracy, gaining a
13.07% accuracy improvement over the state-of-the-art tool.
Empirical evidences clearly reveal the effectiveness of our
method.

Next, we evaluate all the methods on timestamp depen-
dence vulnerability. The comparison results are shown in
the middle of Table 3. State-of-the-art tool Slither obtains
a 74.20% accuracy, which is quite low. This may stem from
the fact that most conventional tools handle the timestamp de-
pendence vulnerability by blindly checking whether there is
a block.timestamp statement in the function, while ignoring
whether the timestamp can truly affect a critical operation.
Further, it is worth pointing out that AME keeps delivering
the best performance in terms of all the four metrics. Signifi-
cantly, AME gains a 12.32% accuracy improvement over the
state-of-the-art tool.

We further evaluate our method on the infinite loop vulner-
ability. Specifically, we compare our methods against exist-
ing infinite loop detection methods including Jolt [Carbin et
al., 2011], SMT [Kling et al., 2012], PDA [Ibing and Mai,
2015], and Looper [Burnim et al., 2009]. Quantitative results
are illustrated in the right of Table 3. We observe that AME
consistently outperforms other methods by a large margin.

By looking into the implementations of classical tools, we
found that: 1) they heavily rely on a few fixed expert rules to
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Methods Reentrancy Timestamp dependence
Methods Infinite Loop

Acc(%) Recall(%) Precision(%) F1(%) Acc(%) Recall(%) Precision(%) F1(%) Acc(%) Recall(%) Precision(%) F1(%)
Smartcheck 52.97 32.08 25.00 28.10 44.32 37.25 39.16 38.18 Jolt 42.88 23.11 38.23 28.81

Oyente 61.62 54.71 38.16 44.96 59.45 38.44 45.16 41.53 PDA 46.44 21.73 42.96 28.26
Mythril 60.54 71.69 39.58 51.02 61.08 41.72 50.00 45.49 SMT 54.04 39.23 55.69 45.98
Securify 71.89 56.60 50.85 53.57 – – – – Looper 59.56 47.21 62.72 53.87
Slither 77.12 74.28 68.42 71.23 74.20 72.38 67.25 69.72 – – – – –

Vanilla-RNN 49.64 58.78 49.82 50.71 49.77 44.59 51.91 45.62 Vanilla-RNN 49.57 47.86 42.10 44.79
LSTM 53.68 67.82 51.65 58.64 50.79 59.23 50.32 54.41 LSTM 51.28 57.26 44.07 49.80
GRU 54.54 71.30 53.10 60.87 52.06 59.91 49.41 54.15 GRU 51.70 50.42 45.00 47.55
GCN 77.85 78.79 70.02 74.15 74.21 75.97 68.35 71.96 GCN 64.01 63.04 59.96 61.46

DR-GCN 81.47 80.89 72.36 76.39 78.68 78.91 71.29 74.91 DR-GCN 68.34 67.82 64.89 66.32
TMP 84.48 82.63 74.06 78.11 83.45 83.82 75.05 79.19 TMP 74.61 74.32 73.89 74.10
AME 90.19 89.69 86.25 87.94 86.52 86.23 82.07 84.10 AME 80.32 79.08 78.69 78.88

Table 3: Performance comparison. A total of sixteen methods are investigated in the comparisons. ‘–’ denotes not applicable.
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Figure 3: Weight statistics of different features. Left: ratio of having
a weight higher than σ. Right: ratio of having the maximum weight.

detect vulnerabilities, e.g., Smartcheck checks whether there
exists an invocation to call.value to detect reentrancy, and 2)
the rich code semantic information and key variables in the
code are not well characterized in the methods. In this re-
spect, our work has an edge in explicitly modeling key vari-
ables and abling to handle complex semantics.

Comparison with Deep Learning Methods

We also compare our method with available deep learning-
based methods, namely Vanilla-RNN, LSTM, GRU, GCN,
DR-GCN, and TMP [Zhuang et al., 2020]. For a feasible
comparison, Vanilla-RNN, LSTM, and GRU are fed with the
function code sequence vectors, while GCN, DR-GCN and
TMP are presented with the graph feature vectors.

We illustrate the performance of different methods in Ta-
ble 3. Results show that sequential models Vanilla-RNN,
LSTM, and GRU have a relatively poor performance, while
graph neural network models GCN, DR-GCN, and TMP sig-
nificantly outperform them. This reconfirms that blindly treat
the source code as a sequence is not suitable for vulner-
ability detection, while characterizing the code as a graph
and employing graph neural networks is effective. Notably,
AME consistently outperforms GCN, DR-GCN, and TMP by
a large margin across three vulnerabilities. The empirical ev-
idences reveal that encoding expert patterns in networks in-
deed contributes to a significant performance gain.
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Figure 4: Mean and deviation of the weights of different features.

4.3 Interpretability Evaluation (RQ2)

We now study the interpretability of the proposed AME net-
work, and present novel insights on weight distributions of
different features in vulnerability detection. We also present
a case study to facilitate understanding.

As presented in subsection 3.1, we defined three lo-
cal patterns for each vulnerability. We denote the three
vulnerability-specific patterns as Loc-pattern1, Loc-pattern2,
and Loc-pattern3, respectively. For example, Loc-pattern1
is enoughBalance for reentrancy vulnerability and is times-
tampInvocation for timestamp dependence vulnerability. The
three patterns and the global graph feature are used to predict
whether the function has the specific vulnerability.

Interestingly, to figure out which features contribute the
most to the detection of a specific vulnerability, we record the
number that a feature possesses a weight (obtained by Eq. 7 or
Eq. 8) greater than a preset threshold σ = 0.25 over all tested
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Case study: reentrancy
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function withdraw(uint sum) public{
    if (Balance[msg.sender] < sum) {
      throw;
    }
    require(msg.sender.call.value(sum)());
    Balance[msg.sender] -= sum;
 }

enoughBalance

callvalueInvoc

balanceDeduction

Global graph Local patterns for
reentrancy
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Figure 5: Case study on the interpretability of our method.

functions. The statistics are visualized in the left of Fig. 3.
We observe that the global graph feature usually possesses
a high weight, revealing its leading role in the label predic-
tion. Moreover, in reentrancy vulnerability detection, Loc-
pattern2 (callValueInvocation) and Loc-pattern3 (balanceDe-
duction) rank second and third in the possibility of having a
high weight, while Loc-pattern2 (timestampAssign) and Loc-
pattern3 (timestampContaminate) often have high weights in
timestamp dependence detection. It is worth pointing out that
once a function is predicted to have a specific vulnerability by
our method, besides telling the user how significant (weight)
each feature contributes to the prediction, we can also warn
him/her of the expert patterns that get high weights to help
find bugs. The statistics over a large number of functions also
allow developers build a grand picture of the whole system.

We also compute the number that a feature has the max-
imum weight among all features over all tested functions.
The visualized results are demonstrated in the right of Fig. 3.
From the histogram, we notice that the global graph feature
obtains the maximum weight most times for the three vul-
nerabilities. For each feature, we also illustrate the mean and
standard deviation of its weight in Fig. 4. We see that each lo-
cal expert pattern possesses a considerable weight, but the av-
erage attention weight of the global graph feature is the high-
est. This may come from the fact that the global graph con-
veys the control- and data- dependencies of a specific vulner-
ability and contains richer global semantic information than
local expert patterns.

Case study. We further present a case study in Fig. 5, where
the withdraw function is a real-world smart contract func-
tion that has a reentrancy vulnerability. We analyzed the
code to detect whether it has the three vulnerabilities. The
left of Fig. 5 illustrates the global graph and the three local
patterns of reentrancy. The right of Fig. 5 shows the inter-
pretable weights of the graph feature and each local pattern
feature. For example, the method detects the function has
the reentrancy vulnerability. To make the detection decision,
the weight of the global graph feature is 0.27, the weights of
Loc-pattern1 (enoughBalance), Loc-pattern2 (callValueInvo-
cation), and Loc-pattern3 (balanceDeduction) are 0.23, 0.26,
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Figure 6: Effect of removing modules on three vulnerabilities.

and 0.24, respectively. Thus, our system is able to clearly
explain the reasons behind the predictions.

4.4 Effects of Removing Expert Patterns and
Graph Feature (RQ3)

By default, we combine the graph feature with expert pat-
terns for vulnerability detection. We are interested in explor-
ing the effect of removing them respectively. To this aim, we
first remove the code semantic graph construction module,
and only use the expert pattern features as the inputs. We de-
note this variant as AME-RG (RG represents removing graph
feature). We also try removing the expert pattern extraction
module and using the graph feature only, which is denoted as
AME-RP (RP represents removing patterns, which is almost
identical to the TMP). Fig. 6 demonstrates the comparison re-
sults on three vulnerabilities, where the solid curves demon-
strate the accuracy of AME over different epochs, and the
dashed curves show its variants. Different colors represent
different vulnerabilities. Clearly, the performance of AME is
consistently better compared to its variants across all epochs,
revealing that combining local expert patterns with global
graph features is necessary and important to improve the de-
tection performance. Moreover, removing the neural network
extracted graph feature exhibits a higher performance drop
than removing the expert patterns.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2757



5 Related Work
Early work on smart contract vulnerability detection veri-
fies smart contracts by employing formal methods [Bhar-
gavan et al., 2016; Hirai, 2017; Grishchenko et al., 2018].
For example, [Bhargavan et al., 2016] introduces a frame-
work, translating Solidity code and the EVM (Ethereum Vir-
tual Machine) bytecode into the input of an existing verifi-
cation system. [Hirai, 2017] proposes a formal model for
EVM (Ethereum Virtual Machine) and reasons smart con-
tracts using the Isabelle/HOL tool. Another stream of work
relies on symbolic analysis and dynamic execution. Oyente
performs symbolic execution on contract functions and flags
bugs based on simple patterns. Zeus [Kalra et al., 2018] lever-
ages abstract interpretation and symbolic model checking.
[Tsankov et al., 2018] introduces compliance (negative) and
violation (positive) patterns to filter false warnings. [Jiang
et al., 2018] presents ContractFuzzer to identify vulnerabili-
ties by fuzzing and runtime behavior monitoring during ex-
ecution. Sereum [Rodler et al., 2019] uses taint analysis to
monitor runtime data flows during smart contract execution
for vulnerability detection. Recently, a few attempts have
been made to study using deep neural networks. [Qian et
al., 2020] constructs the sequential contract snippet and feeds
them into the BLSTM-ATT model. [Zhuang et al., 2020] pro-
poses to convert the source code of contract into the contract
graph and constructs graph neural networks as the detection
model. [Wang et al., 2020] proposes extracting bigram fea-
tures from operation codes of smart contracts. [Liu et al.,
2021] proposes to combine expert rules with neural networks
for improving the detection accuracy. However, [Liu et al.,
2021] suffers from poor explainability and fail to investigate
the significance of different features.

6 Conclusion
In this paper, we explore combining deep learning with clas-
sical expert patterns in an explainable way for smart contract
vulnerability detection. This system consists of both neural
networks and automatic expert pattern extraction tools. Inter-
estingly, the model is able to obtain explainable fine-grained
details and a grand picture of the weight distributions. Ex-
tensive experiments show that our method significantly out-
performs state-of-the-art approaches. We believe our work is
an important step towards explainable and accurate contract
vulnerability detection.
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