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Abstract

Many real-world domains are subject to a struc-
tured non-stationarity which affects the agent’s
goals and the environmental dynamics. Meta-
reinforcement learning (RL) has been shown suc-
cessful for training agents that quickly adapt to re-
lated tasks. However, most of the existing meta-RL
algorithms for non-stationary domains either make
strong assumptions on the task generation process
or require sampling from it at training time. In
this paper, we propose a novel algorithm (TRIO)
that optimizes for the future by explicitly track-
ing the task evolution through time. At training
time, TRIO learns a variational module to quickly
identify latent parameters from experience sam-
ples. This module is learned jointly with an opti-
mal exploration policy that takes task uncertainty
into account. At test time, TRIO tracks the evolu-
tion of the latent parameters online, hence reduc-
ing the uncertainty over future tasks and obtain-
ing fast adaptation through the meta-learned policy.
Unlike most existing methods, TRIO does not as-
sume Markovian task-evolution processes, it does
not require information about the non-stationarity
at training time, and it captures complex changes
undergoing in the environment. We evaluate our al-
gorithm on different simulated problems and show
it outperforms competitive baselines.

1 Introduction
The ability to generalize and quickly adapt to non-stationary
environments, where the dynamics and rewards might change
through time, is a key component towards building lifelong
reinforcement learning (RL) [Sutton and Barto, 2018] agents.
In real domains, the evolution of these environments is of-
ten governed by underlying structural and temporal patterns.
Consider, for instance, a mobile robot navigating an outdoor
environment where the terrain conditions are subject to sea-
sonal evolution due to climate change; or where the robot’s
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actuators become less effective over time, e.g., due to the nat-
ural degradation of its joints or to the system running out of
power; or where the designer changes its desiderata, e.g., how
the robot should trade off high-speed movement and safe nav-
igation. The commonality is some unobserved latent vari-
able (e.g., the terrain condition, the joints’ friction, etc.) that
evolves over time with some unknown temporal pattern (e.g.,
a cyclic or smooth change). In this setting, we would expect
a good RL agent to (1) quickly adapt to different realizable
tasks and (2) to extrapolate and exploit the temporal structure
so as to reduce the uncertainty over, and thus further acceler-
ate adaptation to, future tasks.

Meta-RL has proven a powerful methodology for training
agents that quickly adapt to related tasks [Duan et al., 2016;
Wang et al., 2016; Finn et al., 2017; Hospedales et al., 2020].
The common assumption is that tasks are i.i.d. from some
unknown distribution from which the agent can sample at
training time. This assumption is clearly violated in the
lifelong/non-stationary setting, where tasks are temporally
correlated. Some attempts have been made to extend meta-
RL algorithms to deal with temporally-correlated tasks [Al-
Shedivat et al., 2018; Nagabandi et al., 2018; Clavera et al.,
2019; Kaushik et al., 2020; Kamienny et al., 2020; Xie et
al., 2020]. However, current methods to tackle this problem
have limitations. Some of them [Al-Shedivat et al., 2018;
Xie et al., 2020] model the task evolution as a Markov chain
(i.e., the distribution of the next task depends only on the
current one). While this allows capturing some cyclic pat-
terns (like seasonal climate change), it is unable to capture
more complex behaviors that are frequent in the real world
[Padakandla, 2020]. Other works [Kamienny et al., 2020]
consider history-dependent task-evolution processes but as-
sume the possibility of sampling them during the training.
While this assumption seems more reasonable for cyclic pro-
cesses, where the agent experiences a “cycle” infinite many
times, it is difficult to imagine that the agent could sam-
ple from the same non-stationary process it will face once
deployed. Finally, some works [Nagabandi et al., 2018;
Clavera et al., 2019; Kaushik et al., 2020] do not explic-
itly model the task evolution and only meta-learn a policy
for fast adaptation to changes. This makes it difficult to han-
dle task-evolution processes other than what they are trained
for. These limitations raise our main question: how can we
build agents that are able to extrapolate and exploit complex

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2899



history-dependent task-evolution processes at test time with-
out prior knowledge about them at training time?

In this paper, we consider the common piecewise stationary
setting [Chandak et al., 2020; Xie et al., 2020], where the task
remains fixed for a certain number of steps after which it may
change. Each task is characterized by an unobserved latent
vector of parameters which evolves according to an unknown
history-dependent stochastic process. We propose a novel al-
gorithm named TRIO (TRacking, Inference, and policy Opti-
mization) that is meta-trained on tasks from the given family
drawn from different prior distributions, while inferring the
“right” prior distribution on future tasks by tracking the non-
stationarity entirely at test time. More precisely, TRIO meta-
trains (1) a variational module to quickly infer a distribution
over latent parameters from experience samples of tasks in the
given family, and (2) a policy that trades off exploration and
exploitation given the task uncertainty produced by the infer-
ence module. At test time, TRIO uses curve fitting to track
the evolution of the latent parameters. This allows comput-
ing a prior distribution over future tasks, thus improving the
inference from the variational module and the fast adaptation
of the meta-learned policy. We report experiments on differ-
ent domains which confirm that TRIO successfully adapts to
different unknown non-stationarities at test time, achieving
better performance than competitive baselines. 1

2 Preliminaries
We model each task as a Markov decision process (MDP)
[Puterman, 1994]Mω = (S,A,Rω,Pω, p0, γ), where S is
the state space, A is the action space, Rω : S × A× S → R
is the reward function, Pω : S × A → ∆(S) is the state-
transition probability function, p0 is the initial state distribu-
tion, and γ ∈ [0, 1] is the discount factor. We assume each
task to be described by a latent vector of parameters ω ∈ Ω ⊂
Rd that governs the rewards and the dynamics of the environ-
ment, and we denote by M := {Mω : ω ∈ Ω} the family
of MDPs with this parameterization (i.e., the set of possible
tasks that the agent can face). We consider episodic inter-
actions with a sequence of MDPs Mω0

,Mω1
, . . . from the

given family M, which, as in the common piece-wise station-
ary setting [Xie et al., 2020], remain fixed within an episode.
The evolution of these tasks (equivalently, of their parame-
ters) is governed by a history-dependent stochastic process
ρ, such that ωt ∼ ρ(ω0, . . . , ωt−1). The agent interacts with
each MDPMωt for one episode, after which the task changes
according to ρ. At the beginning of the t-th episode, an ini-
tial state st,0 is drawn from p0; then, the agent chooses an
action at,0, it transitions to a new state st,1 ∼ Pωt(st,0, at,0),
it receives a reward rt,1 = Rωt(st,0, at,0, st,1), and the
whole process is repeated for Ht steps.2 The agent chooses
its actions by means of a possibly history-dependent policy,
at,h ∼ π(τt,h), with τt,h := (st,0, at,0, st,1, rt,1, . . . , st,h)
denoting a h-step trajectory, and the goal is to find a policy

1An extended version of the paper with appendix is available on
arXiv.

2The length Ht of the t-th episode can be a task-dependent ran-
dom variable (e.g., the time a terminal state is reached).

that maximizes the expected cumulative reward across the se-
quence of tasks,

argmax
π

Eωt∼ρ

[
T−1∑
t=0

E

[
Ht−1∑
h=0

γhrt,h
∣∣Mωt , π

]]
. (1)

This setting is conceptually similar to hidden-parameter
MDPs [Doshi-Velez and Konidaris, 2013], which have been
used to model non-stationarity [Xie et al., 2020], with the
difference that we allow complex history-dependent task-
generation processes instead of i.i.d. or Markov distributions.
Meta-learning setup. As usual, two phases take place. In
the first phase, called meta-training, the agent is trained to
solve tasks from the given family M. In the second phase,
namely meta-testing, the agent is deployed and its perfor-
mance is evaluated on a sequence of tasks drawn from ρ. As
in [Humplik et al., 2019; Kamienny et al., 2020], we assume
that the agent has access to the descriptor ω of the tasks it
faces during training, while this information is not available
at test time. More precisely, we suppose that the agent can
train on any taskMω (for a chosen parameter ω) in the fam-
ily M. These assumptions are motivated by the fact that, in
practical applications, the task distribution for meta-training
is often under the designer’s control [Humplik et al., 2019].
Furthermore, unlike existing works, we assume that the agent
has no knowledge about the sequence of tasks it will face at
test time, i.e., about the generation process ρ. This introduces
the main challenge, and novelty, of this work: how to extrapo-
late useful information from the family of tasks M at training
time so as to build agents that successfully adapt to unknown
sequences of tasks at test time.

3 Method
Imagine to have an oracle that, only at test time, provides
the distribution of the parameters of each task before actu-
ally interacting with it (i.e., that provides ρ(ω1, . . . , ωt) be-
fore episode t+ 1 begins). How could we exploit this knowl-
edge? Clearly, it would be of little use without an agent that
knows how the latent parameters affect the underlying envi-
ronment and/or how to translate this uncertainty into optimal
behavior. Furthermore, this oracle works only at test time,
so we cannot meta-train an agent with these capabilities us-
ing such information. The basic idea behind TRIO is that,
although we cannot train on the actual non-stationarity ρ, it
is possible to prepare the agent to face different levels of task
uncertainty (namely different prior distributions generating
ω) by interacting with the given family M, so as to adapt to
the actual process provided by the oracle at test time. More
precisely, TRIO simulates possible priors from a family of
distributions pz(ω) = p(ω|z) parameterized by z and prac-
tices on tasks drawn from them. Then, TRIO meta learns
two components. The first is a module that infers latent vari-
ables from observed trajectories, namely that approximates
the posterior distribution p(ω|τ, z) of the parameters ω under
the prior pz given a trajectory τ . Second, it meta-learns a
policy to perform optimally under tasks with different uncer-
tainty. A particular choice for this policy is a model whose
input is augmented with the posterior distribution over pa-
rameters computed by the inference module. This resembles

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2900



Algorithm 1 TRIO (meta-training)

Require: Task family M, hyperprior p(z), batch size n
1: Randomly initialize θ and φ
2: while not done do
3: Sample prior parameters {zi}ni=1 from p(z)
4: Sample task parameters {ωi}ni=1 from {pzi(ω)}ni=1
5: Collect {τi}ni=1 using policy πθ in MDPs {Mωi}ni=1
6: Update θ by optimizing (4) using {τi}ni=1
7: Update φ by optimizing (3) using {zi, ωi, τi}ni=1
8: end while

Ensure: Meta-policy πθ and inference network qφ

Algorithm 2 TRIO (meta-testing)

Require: Meta-policy πθ, inference network qφ, stream of
tasks ωt ∼ ρ, initial prior parameters ẑ0

1: Initialize Dω = ∅
2: for t = 0, 1, . . . do
3: Interact withMωt using πθ, qφ, ẑt and collect τt
4: Predict ω̂t using qφ(τt, ẑt) and set Dω = Dω ∪ {ω̂t}
5: Fit Gaussian processes using Dω and predict ẑt+1

6: end for

a Bayes-optimal policy and allows trading off between gath-
ering information to reduce task uncertainty and exploiting
past knowledge to maximize rewards.

At test time, the two models computed in the training phase
can be readily used in combination with ρ (which replaces the
simulated priors) to quickly adapt to each task. Obviously, in
practice we do not have access to the oracle that we imag-
ined earlier. The second simple intuition behind TRIO is that
the process ρ can be tracked entirely at test time by resort-
ing to curve fitting. In fact, after completing the t-th test
episode, the inference model outputs an approximate poste-
rior distribution of the latent parameter ωt. This, in combi-
nation with past predictions, can be used to fit a model that
approximates the distribution of the latent variables ωt+1 at
the next episode, which in turn can be used as the new prior
for the inference model when learning the future task.

Formally, TRIO meta-trains two modules represented by
deep neural networks: (1) an inference model qφ(τ, z), pa-
rameterized by φ, that approximates the posterior distribution
p(ω|τ, z), and (2) a policy πθ(s, qφ), parameterized by θ, that
chooses actions given states and distributions over latent pa-
rameters. At test time, TRIO learns a model f(t) that approx-
imates ρ(ω0, . . . , ωt−1), namely the distribution over the t-th
latent parameter given the previous ones. We now describe
each of these components in detail, while the pseudo-code of
TRIO can be found in Algorithm 1 and 2.

3.1 Task Inference
As mentioned before, the inference module aims at ap-
proximating the posterior distribution p(ω|τ, z) of the la-
tent variable ω given a trajectory τ and the prior’s param-
eter z. Clearly, computing the exact posterior distribution
p(ω|τ, z) ∝ p(τ |ω)pz(ω) is not possible since the likeli-
hood p(τ |ω) depends on the true models of the environ-

ment Pω and Rω , which are unknown. Even if these mod-
els were known, computing p(ω|τ, z) requires marginalizing
over the latent space, which would be intractable in most
cases of practical interest. A common principled solution is
variational inference [Blei et al., 2017], which approximates
p(ω|τ, z) with a family of tractable distributions. A conve-
nient choice is the family of multivariate Gaussian distribu-
tions over the latent space Rd with independent components
(i.e., with diagonal covariance matrix). Suppose that, at train-
ing time, we consider priors pz(ω) in this family, i.e., we con-
sider pz(ω) = N (µ,Σ) with parameters z = (µ, σ) given by
the mean µ ∈ Rd and variance σ ∈ Rd vectors, which yield
covariance Σ = diag(σ). Then, we approximate the posterior
as qφ(τ, z) = N (µφ(τ, z),Σφ(τ, z)), where µφ(τ, z) ∈ Rd
and Σφ(τ, z) = diag(σφ(τ, z)) are the outputs of a recurrent
neural network with parameters φ.

To train the inference network qφ, we consider a hyperprior
p(z) over the prior’s parameters z and directly minimize the
expected Kullback-Leibler (KL) divergence between qφ(τ, z)
and the true posterior p(ω|τ, z). Using standard tools from
variational inference, this can be shown equivalent to mini-
mizing the evidence lower bound (ELBO) [Blei et al., 2017],

argmin
φ

E
[
Eω̂∼qφ [log p(τ |ω̂, z)] + KL

(
qφ(τ, z)

∥∥pz)], (2)

where the outer expectation is under the joint process
p(τ, ω, z). In practice, this objective can be approximated
by Monte Carlo sampling. More precisely, TRIO samples
the prior’s parameters z from p(z), the latent variable ω from
pz(ω), and a trajectory τ by interacting withMω under the
current policy. Under a suitable likelihood model, this yields
the following objective:

argmin
φ

n∑
i=1

(
‖µφ(τi, zi)− ωi‖2 + Tr(Σφ(τi, zi))

+
λ

Hi
KL(qφ(τi, zi)‖pzi)

)
. (3)

Here we recognize the contribution of three terms; (1) the first
one is the standard mean-square error and requires the mean-
function µφ(τ, z) to predict well the observed tasks (whose
parameter is known at training time); (2) the second term en-
codes the intuition that this prediction should be the least un-
certain possible (i.e., that the variances of each component
should be small); (3) the last term forces the approximate pos-
terior to stay close to the prior pz(ω), where the closeness is
controlled as usual by a tunable parameter λ ≥ 0 and by the
length Hi of the i-th trajectory.

3.2 Policy Optimization
The agent’s policy aims at properly trading off exploration
and exploitation under uncertainty on the task’s latent param-
eters ω. In principle, any technique that leverages a given
distribution over the latent variables can be used for this pur-
pose. Here we describe two convenient choices.

Bayes-optimal policy. Similarly to [Zintgraf et al., 2019],
we model the policy as a deep neural network πθ(s, z),
parametrized by θ, which, given an environment state s and a
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Gaussian distribution over the task’s parameters, produces a
distributions over actions. The former distribution is encoded
by the vector z = (µ, σ) which is obtained from the prior and
refined by the inference network as the data is collected. This
policy is meta-trained to directly maximize rewards on the
observed trajectories by proximal policy optimization (PPO)
[Schulman et al., 2017],

argmax
θ

n∑
i=1

Hi−1∑
h=0

γhrh,i, (4)

where the sum is over samples obtained through the same pro-
cess as for the inference module. Similarly to the inference
network, the policy is meta-tested without further adaption.
Intuitively, being provided with the belief about the task un-
der consideration, this “Bayes-optimal” policy automatically
trades off between taking actions that allow it to quickly in-
fer the latent parameters (i.e., those that are favorable to the
inference network) and taking actions that yield high rewards.
Thompson sampling. Instead of using an uncertainty-
aware model, we simply optimize a task-conditioned policy
πθ(s, ω) to maximize rewards (recall that we have access to
ω at training time). That is, we seek a multi-task policy, per-
haps one of the most common models adopted in the related
literature [Lan et al., 2019; Humplik et al., 2019]. Then, at
test time, we can use this policy in combination with Thomp-
son sampling [Thompson, 1933] (a.k.a. posterior sampling)
to trade-off exploration and exploitation in a principled way.
That is, we sample some parameter ω ∼ qφ(τ, z) from the
posterior computed by the inference network, choose an ac-
tion according to πθ(s, ω), feed the outcome back into the in-
ference network to refine its prediction and repeat this process
for the whole episode. As we shall see in our experiments, al-
though simpler than training the Bayes-optimal policy, this
approach provides competitive performance in practice.

3.3 Tracking the Latent Variables
As we discussed in the previous sections, before interacting
with a given task, both the inference network qφ(τ, z) and
the policy πθ(s, z) (assuming that we use the Bayes-optimal
model) require as input the parameter z of the prior under
which the task’s latent variables are generated. While at
meta-training we explicitly generate these parameters from
the hyperprior p(z), at meta-testing we do not have access
to this information. A simple workaround would be to use
non-informative priors (e.g., a zero-mean Gaussian with large
variance). Unfortunately, this would completely ignore that,
at test-time, tasks are sequentially correlated through the un-
known process ρ. Therefore, we decide to track this process
online, so that at each episode twe can predict the distribution
of the next task in terms of its parameter ẑt+1. While many
techniques (e.g., for time-series analysis) could be adopted
to this purpose, we decide to model ρ as a Gaussian pro-
cess (GP) [Rasmussen, 2003] due to its flexibility and abil-
ity to compute prediction uncertainty. Formally, at the end
of the t-th episode, we have access to estimates ω̂0, . . . , ω̂t
of the past latent parameters obtained through the inference
network after facing the corresponding tasks. We use these
data to fit a separate GP for each of the d dimensions of

the latent variables, while using its prediction one-step ahead
ẑt+1 = (µ̂t+1, σ̂t+1) as the prior for the next episode. In-
tuitively, when ρ is properly tracked, this reduces the uncer-
tainty over future tasks, hence improving both inference and
exploration in future episodes.

4 Related Works

Meta-reinforcement learning. The earliest approaches to
meta-RL make use of recurrent networks to aggregate past
experience so as to build an internal representation that helps
the agent adapt to multiple tasks [Hochreiter et al., 2001;
Wang et al., 2016; Duan et al., 2016]. Gradient-based meth-
ods, on the other hand, learn a model initialization that can
be adapted to new tasks with only a few gradient steps at
test time [Finn et al., 2017; Rothfuss et al., 2019]. Some
approaches of this kind have been used to tackle dynamic
scenarios [Nagabandi et al., 2018; Clavera et al., 2019;
Kaushik et al., 2020]. [Al-Shedivat et al., 2018] use few-
shot gradient-based methods to adapt to sequences of tasks.
Unlike our work, they handle only Markovian task evolution
processes and use the knowledge of non-stationarity at train-
ing time. Another line of work, which has recently gained
considerable attention, considers context-based methods that
directly take the task uncertainty into account by building and
inferring latent representations of the environment. [Rakelly
et al., 2019] propose an off-policy algorithm that meta-trains
two modules: a variational autoencoder that builds a latent
representation of the task the agent is facing, and a task-
conditioned optimal policy that, in combination with poste-
rior sampling, enables structured exploration of new tasks.
[Zintgraf et al., 2019] design a similar model, with the main
difference that the policy is conditioned on the entire pos-
terior distribution over tasks, thus approximating a Bayes-
optimal policy. All of these methods are mainly designed
for stationary multi-task settings, while our focus is on non-
stationary environments. For the latter setup, [Kamienny et
al., 2020] meta-learn a reward-driven representation of the
latent space that is used to condition an optimal policy. Com-
pared to our work, they deal with continuously-changing en-
vironments and assume the possibility of “simulating” this
non-stationarity at training time, an assumption that might be
violated in many real settings.

Non-stationary reinforcement learning. Since most real-
world applications involve environments that change over
time, non-stationary reinforcement learning is constantly
gaining attention in the literature (see [Padakandla, 2020] for
a detailed survey). [Xie et al., 2020] aim at learning dynamics
associated with the latent task parameters and perform online
inference of these factors. However, their model is limited
by the assumption of Markovian inter-task dynamics. Simi-
lar ideas can be found in [Chandak et al., 2020], where the
authors perform curve fitting to predict the agent’s return on
future tasks so as to prepare their policy for changes in the
environment. Here, instead, we use curve fitting to track the
evolution of the latent task parameters and we learn a policy
conditioned on them.
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5 Experiments
Our experiments aim at addressing the following questions:

• Does TRIO successfully track and anticipate changes in
the latent variables governing the problem? How does it
perform under different non-stationarities?

• What is the advantage w.r.t. methods that neglect the
non-stationarity? How better an oracle that knows the
task evolution process can be?

To this end, we evaluate the performances of TRIO in com-
parison with the following baselines:

• Oracles. At the beginning of each episode, they have
access to the correct prior from which the current task
is sampled. They represent the best that the proposed
method can achieve.

• VariBAD [Zintgraf et al., 2019] and RL2 [Wang et al.,
2016], which allow us to evaluate the gain of tracking
non-stationary evolutions w.r.t. inferring the current task
from scratch at the beginning of each episode.

• MAML (Oracle) [Finn et al., 2017]. To evalu-
ate gradient-based methods for non-stationary settings,
we report the “oracle” performance of MAML post-
adaptation (i.e., after observing multiple rollouts from
the current task).

Furthermore, we test two versions of our approach: Bayes-
TRIO, where the algorithm uses the Bayes-optimal policy
model, and TS-TRIO, where we use a multi-task policy in
combination with Thompson sampling. Additional details
and further results, can be found in the supplementary ma-
terial.

5.1 Minigolf
In our first experimental domain, we consider an agent who
is playing a minigolf game day after day. In the minigolf do-
main [Tirinzoni et al., 2019], the agent has to shoot a ball,
which moves along a level surface, inside a hole with the
minimum number of strokes. In particular, given the posi-
tion of the ball on the track, the agent directly controls the
angular velocity of the putter. The reward is 0 when the ball
enters the hole,−100 if it goes beyond the hole, and−1 other-
wise. The problem is non-stationary due to different weather
conditions affecting the dynamic friction coefficient of the
ground. This, in turn, greatly affects the optimal behavior.
Information on how this coefficient changes are unknown a-
priori, thus they cannot be used at training time. However, the
temporal structure of these changes make them suitable for
tracking online. At test time, we consider two realistic mod-
els of the ground’s friction non-stationarity: A) a sinusoidal
function, which models the possible seasonal behavior due to
changing weather conditions; and B) a sawtooth-shaped func-
tion, which models a golf course whose conditions deteriorate
over time and that is periodically restored by human operators
when the quality level drops below a certain threshold.

Let us first analyze the tracking of the latent variables in
Figure 1 (bottom). As we can see, the proposed algorithms
are able to successfully track the a-priori unknown evolution
of the friction coefficient in both sequences.

As shown in Figure 1 (top), Bayes-TRIO achieves the best
results in this domain. It is worth noting that its performance
overlaps with the one of its oracle variant for the whole si-
nusoidal task sequence, while in the sawtooth ones perfor-
mance drops occur only when the golf course gets repaired
(i.e., when its friction changes abruptly). Indeed, before these
abrupt changes occur, the agent believes that the next task
would have a higher friction and, thus, it strongly shoots the
ball towards the goal. However, as the friction abruptly drops,
the agent overshoots the hole, thus incurring a highly nega-
tive reward. This behavior is avoided in few episodes, when
the agent recovers the right evolution of the friction coeffi-
cient and restores high performance. A similar reasoning ap-
plies to TS-TRIO, which, however, obtains much lower per-
formance, especially in sequence A. The main cause of this
problem is its naı̈ve exploration policy and the way TS han-
dles task uncertainty. In fact, since its policy is trained con-
ditioned on the true task, the agent successfully learns how to
deal with correct friction values; however, even when negli-
gible errors in the inference procedure are present, the agent
incurs catastrophic behaviors when dealing with small fric-
tion values and it overshoots the ball beyond the hole. When
the friction is greater, as close to the peaks of sequence B,
the errors in the inference network have less impact on the
resulting optimal policies, and TS-TRIO achieves the same
performance as Bayes-TRIO.
VariBAD achieves high performance in situations of low
abrasion, but its expected reward decreases as friction in-
creases. This is due to the fact that, at the beginning of each
episode, the agent swings the putter softly seeking informa-
tion about the current abrasion level. While this turns out
to be optimal for small frictions, as soon as the abrasion in-
creases, these initial shots become useless: if the agent knew
that a high friction is present, it could shoot stronger from the
beginning without risking to overshoot the ball. A similar be-
havior is observed for RL2. Finally, MAML (Oracle) suffers
from worse local maxima than context-based approaches and
performs significantly worse.

5.2 MuJoCo
We show that TRIO successfully scales to more complex
problems by evaluating its performance on two MuJoCo
benchmarks typically adopted in the meta-RL literature. We
consider two different environments: 1) HalfCheetahVel, in
which the agent has to run at a certain target velocity; and
2) AntGoal, where the agent needs to reach a certain goal
in the 2D space. We modify the usual HalfCheetahVel re-
ward function to make the problem more challenging as fol-
lows: together with a control cost, the agent gets as reward
the difference between its velocity and the target velocity;
however, when this difference is greater than 0.5, an addi-
tional −10 is added to model the danger of high errors in the
target velocity and to incentivize the agent to reach an ac-
ceptable speed in the smallest amount of time. For AntGoal,
we consider the typical reward function composed of a con-
trol cost, a contact cost, and the distance to the goal position.
At test time, the non-stationarity affects the target speed in
HalfCheetahVel and the goal position in AntGoal. We con-
sider different non-linear sequences to show that TRIO can
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Figure 1: Meta-test performance on different sequences of the selected domains. All plots concerning the Minigolf (MuJoCo) domain are
averages and standard deviations of 20 (5) policies, each of which is tested 50 times on the same episode; each task is composed of 4 (1)
episodes. (top) Expected rewards per task. (bottom) Latent-variable tracking per task. The figures report the true latent variable of each task
(True task), the posterior mean of TRIO at the end of each task (Bayes-Posterior and TS-Posterior), and the GP prediction of TRIO for the
next task (Bayes-GP and TS-GP). For the first task, Bayes-GP and TS-GP are replaced by the initial prior given to the algorithm. For the
AntGoal sequences, we report only the x-coordinate of the goal position.

track complex temporal patterns.
Figure 1 reports two sequences for AntGoal and one for

HalfCheetahVel. As we can see, in all cases, TS-TRIO
and Bayes-TRIO successfully track the changes occurring in
the latent space. In HalfCheetahVel, our algorithms outper-
form state-of-the-art baselines. In this scenario, TS-TRIO
achieves the best results. We conjecture that this happens
due to its simpler task-conditioned policy model, which po-
tentially leads to an easier training process that ends up in
a slightly better solution. Interestingly, differently to what
reported in [Zintgraf et al., 2019], we also found RL2 to
perform better than VariBAD. This might be due to the fact
that we changed the reward signal, introducing stronger non-
linearities. Indeed, VariBAD, which uses a reward decoder
to train its inference network, might have problems in recon-
structing this new function, leading to a marginally worse so-
lution. Finally, MAML (Oracle) suffers from the same limi-
tation as in the Minigolf domain.

In AntGoal, both our algorithms reach the highest perfor-
mance. It is worth noting that, in line with the Minigolf do-
main, when the non-stationarity presents high discontinuities
(as in sequence B), TRIO suffers a perfomance drop which
is resolved in only a handful of episodes. MAML (Oracle)
achieves competitive performance with VariBAD; however,
we recall that MAML’s results are shown post-adaptation,
meaning that it has already explored the current task multi-
ple times. Finally, being the problem more complex, RL2,

compared to VariBAD, faces more troubles in the optimiza-
tion procedure, obtaining a worse behavior.

Finally, it has to be highlighted that, in both problems, our
algorithms are able to exploit the temporal patterns present in
the non-stationarity affecting the latent variables. Anticipat-
ing the task evolution before it occurs leads to faster adapta-
tion and higher performance.

6 Conclusions
We presented TRIO, a novel meta-learning framework to
solve non-stationary RL problems using a combination of
multi-task learning, curve fitting, and variational inference.
Our experimental results show that TRIO outperforms state-
of-the-art baselines in terms of achieved rewards during se-
quences of tasks faced at meta-test time, despite having no
information on these sequences at training time. Tracking
the temporal patterns that govern the evolution of the latent
variables makes TRIO able to optimize for future tasks and
leads to highly-competitive results, thus establishing a strong
meta-learning baseline for non-stationary settings.

Our work opens up interesting directions for future work.
For example, we could try to remove the need of task descrip-
tors at training time, e.g., by building and tracking a reward-
driven latent structure [Kamienny et al., 2020] or a represen-
tation to reconstruct future rewards [Zintgraf et al., 2019].
The main challenge would be to build priors over this learned
latent space to be used for training the inference module.
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