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Abstract

To learn an effective model with less training ex-
amples, existing active learning methods typically
assume that there is a given target model, and try
to fit it by selecting the most informative exam-
ples. However, it is less likely to determine the
best target model in prior, and thus may get subop-
timal performance even if the data is perfectly se-
lected. To tackle with this practical challenge, this
paper proposes a novel framework of dual active
learning (DUAL) to simultaneously perform model
search and data selection. Specifically, an effec-
tive method with truncated importance sampling is
proposed for Combined Algorithm Selection and
Hyperparameter optimization (CASH), which miti-
gates the model evaluation bias on the labeled data.
Further, we propose an active query strategy to la-
bel the most valuable examples. The strategy on
one hand favors discriminative data to help CASH
search the best model, and on the other hand prefers
informative examples to accelerate the convergence
of winner models. Extensive experiments are con-
ducted on 12 openML datasets. The results demon-
strate the proposed method can effectively learn a
superior model with less labeled examples.

1 Introduction

Labeling a large number of examples for model training is
expensive in many real applications. Active learning (AL)
[Settles, 2009] is a common approach to reduce the labeling
cost. It usually requires a target model to evaluate the unla-
beled data, and tries to select the most informative instances
for querying their labels from the oracle.

A common assumption in the AL literature is that the target
model is given as a prior. However, due to the lack of knowl-
edge of the task, one can hardly determine the best model be-
fore querying in practice. A naive solution for active learning
is simply applying a commonly used model for data selection.
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Unfortunately, this simple method will significantly jeopar-
dize the performance of AL. It has been reported that, if ap-
plying different models for data evaluation and task learning,
AL tends to be noneffective (i.e., comparable to the random
strategy) [Lowell et al., 2019].

One possible remedy is introducing the model search (i.e.,
model selection) [Elshawi et al., 2019] to active learning to
discover the applicable target model [Sugiyama and Rubens,
2008; Ali et al., 2014; Geifman and El-Yaniv, 2019]. How-
ever, most of existing works simply conduct data querying
and model selection separately, they neglect the vulnerabil-
ity of either of these two parts in such a challenging setting.
Specifically, i) The distribution of the labeled data is skewed
with the active querying, the model evaluation on the training
set can be highly biased. ii) The target model varies during
the AL process due to the model search. Greedily sampling
with the winner model in the current iteration could be my-
opic. iii) Model search is usually time-consuming. It is im-
practical to perform model selection after each query, which
will seriously affect the labeling efficiency. Although Ali et
al. [2014] try to refrain from the first problem by maintaining
an unbiased validation set by random sampling, this simple
strategy may lead to extra labeling cost. As a result, it is still
a challenging problem to reach the optimal performance with
least cost when the target model prior is unavailable.

In this paper, we propose a novel DUal Active Learning
(DUAL) framework to cope with the practical challenges by
simultaneously performing model search and data selection.
It well addresses all the concerns raised above, and deeply
exploits the characteristics of both active querying and Com-
bined Algorithm Selection and Hyperparameter optimization
(CASH) [Thornton et al., 2013] to improve the final perfor-
mance. Specifically, we propose an effective CASH method
to search model configurations (i.e., algorithm and hyperpa-
rameters) along with the data querying process. It is equipped
with the truncated importance sampling and a successive
function to better accommodate to the framework. The for-
mer ameliorates the evaluation bias on the skewed labeled
set, and the latter dramatically lowers the computational com-
plexity of the algorithm. Based on the results of CASH, an
effective active data querying strategy is proposed. It on one
hand tries to help CASH identify the models with high poten-
tial to achieve the best performance by selecting the most dis-
criminative examples, and on the other hand queries informa-
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tive instances to accelerate the convergence of winner models
of CASH. Consequently, the performance on the given task
will be significantly improved with a few queries. The ex-
perimental results on 12 openML datasets demonstrate the
superiority of the proposed framework.

2 Related Work

Active learning has been extensively studied in many tasks
with expensive labeling cost, such as multi-label learning
[Huang er al., 20171, multi-modality learning [Gao et al.,
20181, deep learning [Shui et al., 2020], and so on. Many
criteria are proposed to evaluate the informativeness of un-
labeled data. There are mainly two groups of methods,
namely uncertainty-based [Yan and Huang, 2018; Kirsch et
al., 2019] and representativeness-based [Sener and Savarese,
2018; Li et al., 2020al. The former prefers the uncertain
data to the target model, while the latter favors the exam-
ples which can represent most patterns in the dataset. It
has also been reported that a mixture of multiple criteria
can usually achieve a better performance [Du ef al., 2015;
Huang and Chen, 2016; Tang and Huang, 2019]. Recently,
several works are proposed to learn a query strategy rather
than designing one heuristically [Konyushkova et al., 2017;
Casanova er al., 2020]. Most of these works require the tar-
get model prior, which can hardly be satisfied in practice.

CASH [Thornton et al., 2013] and Neural Architecture
Search (NAS) [Elsken er al., 2019] are popular topics in au-
tomatic machine learning [Elshawi et al., 2019]. The for-
mer mainly focuses on the traditional models, while the latter
considers deep models, which typically lead to much higher
cost for model evaluation. In this paper, we mainly con-
sider the CASH setting. CASH methods can be roughly di-
vided into black-box optimization methods and multi-fidelity
optimization methods. The former is mainly implemented
by Bayesian optimization [Hutter er al., 2011; Bergstra et
al., 2011; Falkner et al., 2018], and the latter tries to dy-
namically allocate time resource to different configurations,
which is usually implemented by bandit algorithms [Jamieson
and Talwalkar, 2016; Li er al., 2017, Hu et al., 2019,
Huang et al., 2020]. All these methods require an unbiased
evaluation, such information may not be directly obtained in
active learning framework.

Recently, several works try to combine the active learning
and model selection for better performance. However, they
are significantly different from our work. Specifically, ALMS
[Ali et al., 2014] queries points for either model training or
model selection. If the maximum score of all unlabeled data
for model training is higher than model selection, a point will
be selected by the expectation of improvements of the candi-
date models, and added to the training set. Otherwise, a ran-
domly selected point will be added to the validation set for
model selection. However, the algorithm performs leave-2-
out cross-validation to calculate the expected model improve-
ment. It could be extremely expensive when the number of
candidate models and unlabeled data are large, which limits
its practicability. Moreover, the method maintains an unbi-
ased validation set for model selection by random sampling.
It may lower the utilization of the labeling cost.
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Geifman and El-Yaniv [2019] propose Active-iNAS to
search for the proper network architecture along with the
AL process. It is different from DUAL with the following
aspects. Firstly, the authors apply off-the-shelf data selec-
tion methods to query data based on the winner architecture
searched by NAS. The query strategy does not consider the
model selection. While in our approach, the data querying
and CASH are well supported by each other. Secondly, the
authors believe that the model capacity should monotonically
increase with the size of labeled data. They neglect the char-
acteristics of the dataset. While in our approach, the search
space will be adjusted accordingly for different tasks. Lastly,
they focus on NAS while we consider the CASH problem.

3 The Proposed Framework

We denote the dataset with n instances by D, which includes
asmall labeled set £ = {(x;,y;)};L, with n; instances, and a
large unlabeled set U = {a:l}gj:_;l with n,, instances, where
ny < ny andn = ng +n,. Let A = {Al, ... AKX} be the
set of candidate algorithms (e.g., SVM, decision tree, etc.).
The corresponding hyperparameter space of A7 is A;. A con-
figuration A7 is a specific algorithm with hyperparameters A
where A7 € A, A € A;. The objective of CASH is searching
for the best configuration based on a quality metric V'(-) (e.g.,
the cross-validation accuracy), which can be formulated as

A} = argmax V(A%, L)
A 1
st. Ale A e Yje{l,...,K}.

3.1 Model Selection

CASH module responses for discovering the best model con-
figurations for the current task. One challenge here is the
distribution of labeled data is not identical to the test distri-
bution due to the active querying, while the model evaluation
usually requires an unbiased estimation of the performance
for an accurate selection. For this reason, directly conducting
cross validation on the labeled set may be suboptimal.

To cope with this problem, we employ the importance sam-
pling [Tokdar and Kass, 2010] to alleviate the bias of evalua-
tion. As discussed in [Sugiyama et al., 20071, the importance
weighted validation error is an unbiased estimation of gener-
alization error.

j 1 = pa(®i)
WwiN A ) L£)=— {(A] yLi) (2)
Pq( A ) ny Zzzl pq(wz) ( A )

where p, and p, are the distributions of queried data and the

whole dataset, £( A7, x;) is the loss of the trained model A7}
on example x;.

In order to get the importance weights of the validation
data (sampled randomly from the labeled set), inspired by the
recent works [Zhang et al., 2018], we train a domain discrim-
inator to distinguish the data sampled from labeled set and
data pool. The objective of the discriminator is

Irgn Ez~p, [log D(x)] + Egznp, [log(l — D(x))].  (3)
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By setting the partial derivative to zero as in [Goodfellow et
al., 20141, the optimal D* can be represented by p, and py.
In this way, the importance weights w for the validation data
can be approximated by D*
D~ _Pa _Ppa_ 1
Pd + Dq Dq D+
However, sometimes the discriminator D may output a very
small value. It will lead to an extremely large importance
weight to overemphasize a specific example and may mis-
lead the model selection. Here we further apply the truncated
importance sampling [Ionides, 2008] to mitigate this practi-
cal problem. Let w' = w A 7 be the truncated importance
weight, where A is the minimum of w and 7, and 7 is a hy-
perparameter. Next, by applying the results from [Ionides,
2008], we show that the validation error with truncated im-
portance weights is consistent with the generalization error.

—1. “)

Theorem 1. Supposing that K(Ai,wi) < oo and

pa(xi)0(AL, x;) = 0 whenever pq(wl) = 0. Denote w) =
w'(x;), the bias and variance of - -3 wil(AL, ;) will
converge to zero, as long as T — 00 and /ni — 0.

Proof. The bias is calculated as

Eamp, [w/(x)E(Ag, as)] — Eqp, [w(as)z(Ag,w)

= [ ) (@) A7) - ule) py(a)ds
x:pq(x)>0

-/ (A}, @) (rp,(@) — pa(a)) da
JU:Pd(w)>7—pq(‘P)qu(w)>0

| ©)

Since ‘Z(AJ ) (Tpy(x) — pd(x))( < ‘z(Ag,m)pd(m) , the

bias — 0 when 7 — oo. To bound the variance,
) 2
Enp, {(w/(m)é(A]A, z)) ]

- / E(A{\, 33)2 (w(x) A T)2pq(iL‘)d$
z:pg(z)>0 (6)

< T/ E(Ag\,ac)2w(ac)pq(az)dx
x:pq(x)>0
< 7Eqp, [e(Ag,m)ﬂ .
Since
1N,

_ - / N < J
Varg,~p, [m ;wzf(/&/\,wz) < TEgmp, [ (A, ) }/nh
@)
O

when 7/n; — 0, the variance — 0.

Letting V (A}, L) be the truncated importance weighted
performance on validation set, it is a consistent estimation
of the generalization performance. In this case, the off-the-
shelf CASH method for model search can be applied. How-
ever, simply performing CASH after each query is unaccept-
able due to the computational complexity. To this end, in-
spired by [Li et al., 2020b], we further propose a successive-
SMAC method to better accommodate the problem setting. It

is based the SMAC [Hutter et al., 2011] method, with adopt-
ing an elimination function to filter less effective candidates
algorithms along with the query process for efficiency.
Specifically, we maintain a set of well-performed candi-
date algorithms Ag = {A',... A9}, A¢ C A, and per-
form SMAC for each of them separately with the identical
time budget after each query. At iteration ¢, the configu-

ration Ai* with the highest importance weighted validation
t

performance 7] (e.g., accuracy) for each algorithm j in the
candidate set will be returned. In this way, each algorithm
j has a history performance vector R/ = {r{,...,r!}. In
order to remove those less effective algorithms according
to the past performances, we calculate the mean and stan-
dard deviation of the performances in the last C' iterations
{r],r]_1,...,ml_o}, which are denoted by m7,v]. Then
we remove the less effective algorithms, which are defined

as {A7|m] + vl <mbF—vF jkell,... g k+#7}.

3.2 Data Selection

To maximize the performance on the target task, we believe
that the active querying strategy should on one hand help
CASH promptly discover the high potential algorithms for
the current task, and on the other hand try to improve the
winner model to accelerate its convergence. We term these
two characteristics as “exploration” and “exploitation”, re-
spectively. By well balancing these two aspects, we expect
that the size of candidate algorithms should decrease rapidly
at early stage. After the best algorithm is identified, the data
selection tends to focus more on improving the winner model.
For the exploration, we try to query examples to help
CASH in model search. Before we elaborate the selection cri-
terion, we first introduce a lemma to explain our motivation.
Remember that we search for the best configuration of each
candidate algorithm after each query, and we would like to
discover the best algorithm with least iterations. If we regard
the performance {7} }~_; as reward, it is accord with the non-
stochastic multi-armed bandit problem [Jamieson and Tal-
walkar, 2016], where each algorithm is an arm, each arm will
be pulled once time at each iteration, the received rewards are
non-stochastic (i.e., not sampled i.i.d from a probability dis-
tribution supported on [0, 1]). The goal is to identify the best
arm with least trials.
Formally, define e] =

max{rg|b = .t} we

can have that {et} is bounded and non- decreasmg As-
sume limy oo €], = 17, and |limy_,oc €], — et| < (),
im0 7y (t) = 0. We introduce the following lemma to
deduce our data querying strategy.
Lemma 1. [Jamieson and Talwalkar, 2016] Assume v' >

v? > ... > v9. Define v; 7' (a) = min{t € N: v;(t) < a}.
Ift; > %,1(” Y=Y and t; > v 1(”12;”J), then

, o Ly

er, =€, = (e, =)+ (W —el) +2A—5—)

—v

)>0.

(1) = (ty) + 2

The lemma indicates tha_t when the assumptions are met, it
is guaranteed that e;, > e/ with ' > 7. On the contrary,

%
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if we do not know which v is bigger, comparing e%l and eij
suffices to identify, which can be proofed by contradiction.
Moreover, the larger the gap between algorithms v — /7, the
earlier we can distinguish the better one. Since the distribu-
tion of training examples is controlled by the data querying
strategy, it is reasonable to select the instances which lead to
significant divergence of candidate algorithms. For this rea-
son, we query the data based on the disagreement between the
promising configurations of the candidates A, in order to
make the superior and inferior algorithms distinguishable as
soon as possible. The implementation is deferred to Eq. (9).

For the exploitation, we directly utilize the winner model
returned by CASH, and query by uncertainty to accelerate its
convergence. Formally, Supposing that there are g candidate
algorithms at iteration ¢, and rtl > e > rf , we have the
following selection criterion S(x) for data

S@) ==Y |Pay, (i) log Pay_ (yil)+
P ‘ ©)
/8 : C(AGv Z, yl)/g 1Og (C(AGa T, y7)/g):| )

where i ranges over all possible labels, Py (yi|x) is the

probability prediction of model trained with' configuration
A%\,* for example « on class ¢, 3 is the tradeoff, and

c(Ag ®,y:) = Y9 1A (=) =w),  (10)

where I(-) is the indicator function, Ag\* (z) is the prediction
t

of the configuration of data @. The first term of S(-) is the
prediction entropy of data according to the winner model, the
second term is the vote entropy for estimating the disagree-
ment between the best configurations of each candidate algo-
rithm in 4. We summarize the proposed DUAL framework
in Algorithm 1.

4 Experiment

4.1 Empirical Settings
We compare the proposed DUAL method with the following
approaches in the experiments.

e Coreset: [Sener and Savarese, 2018] A
representativeness-based method which selects the
data point to best cover the unlabeled pool.

e QUIRE: [Huang et al., 2014] A query strategy that con-
siders both uncertainty and representativeness in AL.

e Entropy: An uncertainty-based method to select the
data point with the highest entropy value according to
the prediction of the target model.

¢ Random: Randomly selecting examples to query.

e CASH: Performing successive CASH for model search,
along with random querying.

e ALMS: [Ali ef al., 2014] Selecting model by cross-
validating each candidate model, and querying data by
expected model improvement.

o Active-iNAS: [Geifman and El-Yaniv, 2019] Querying
examples by entropy, and searching models from simple
to complex gradually.
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Algorithm 1 The DUAL Algorithm

Input: Candidate algorithms A, performance history R/,
iteration ¢, truncated threshold 7, tradeoff parameter /3,
unlabeled pool U, labeled set L.

Output: Selected data x4, best configuration AI)’\:.

1: Loy, Loar < split(L) > Split labeled data into training
set L4, and validation set L.
: D < trainD(Lyy, L JU) > Train domain discriminator
D from labeled data and the whole dataset.
Yy  predict(D, Lyar)
Dwl (yi — 1) A7 > Get truncated importance weights.
: forj < 1togdo > Perform CASH for candidates.
T’g, A&z < SMAC(AJ, Aj, Etr; Evaly 'LU:], V)
RI+ R Ur]
m] < mean(R’,C);v] <+ var(R’,C) > Calculate
m; and v] with the last C elements of R7.
9: end for ‘
10: b < arg max;(r})
11: B+ {AJ|mg +U€ < mf*’l)f,j,k S [Lag]ak?éJ}
12: Ag + Ag \ B > Remove less effective algorithms.
13: Z < {S(z;)|x; €U} > Scoring unlabeled data with
Eq. (9).
14: q + argmax;(7)
15: U U\ {zg}; L+ LU{z,}
16: Update and test model with configuration Ab;

[\%}

Note that the last 3 methods will conduct model search af-
ter each query, and DUAL, CASH, Active-iNAS will use
the model search method proposed in this paper for better
comparison. ALMS requires a given discrete candidate set
for model selection, which will be specified latter. The oth-
ers employ a fixed target model for data selection, which is
searched on the initially labeled set.

We conduct our experiments on 12 openML [Vanschoren et
al., 2013] multiclass classification datasets. The basic infor-
mation is summarized at Table 1. For each case, we randomly
sample 40% data as test set, 5% data as initially labeled set,
and the rest is treated as the unlabeled pool. The data split is
repeated for 10 times with different random seeds.

For the initial candidate algorithms in CASH module, we
employ 12 commonly used models: Adaboost, Random For-
est, Libsvm SVC, SGD, Extra Trees, Decision Tree, K Near-
est Neighbors, Passive Aggressive, Gradient Boosting, LDA,
QDA, Multi Layer Perceptron. We use the default implemen-

Dataset (ID) #1ns. Dataset (ID) #1ins.
vehicle (54) 846 tic-tac-toe (50) 958
semeion (1501) | 1593 segment (36) 2310
dna (40670) 3186 kr-vs-kp (3) 3196
churn (40701) 5000 | phoneme (1489) | 5404
optdigits (28) 5620 | phishing (4534) | 11055
mozilla4 (1046) | 15545 letter (6) 20000

Table 1: The basic information of the datasets in our experiments.
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Figure 1: The learning curves of the compared methods.

tation of auto-sklearn [Feurer et al., 2015] for model search.

ALMS can only work with a set of discrete candidate mod-
els. We set the candidate models as the default model of each
algorithm in A (i.e., the model with default parameters in
scikit-learn). Note that even with this small set, it is still very
time-consuming, and can hardly be performed in the datasets
with more than 2,000 examples. Thus we only report its re-
sults in the relative small datasets.
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For Active-iNAS, it requires the complexity rank of can-
didate algorithms as prior. However, it is hard to compare
the complexity of traditional models. To compare with this
method, we empirically set the order of candidate algorithms,
which is deferred to the supplementary material. Note that
once the method selects a complex model, it can never return
to a simple one.

For the hyperparameters in our method, we follow the sug-
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Performance (%) Running time
Datasets DUAL DUAL w/o DUAL w/o DUAL DUAL w/o I?UAL w/o
active active & succe. active active & succe.

vehicle 73.28+2.23 | 71.80+2.32 | 72.50+1.68 | 2.71+0.50 | 3.30 £ 0.87 12.00 + 0.00
tic-tac-toe | 86.20 +1.25 | 80.90 + 1.65 80.53 £+ 1.60 3.49 + 0.46 5.40+0.71 12.00 + 0.00
semeion 84.72+0.74 | 81.07+1.26 81.51 +1.53 5.53 +0.57 7.01 £0.74 12.00 + 0.00
segment 95.38 £ 0.31 | 91.52 +0.63 91.82+0.84 4.06 + 0.63 5.39 + 0.80 12.00 + 0.00
dna 90.28 £ 1.05 | 86.59 +1.30 87.77+1.25 3.48 +0.42 | 3.95+0.91 12.00 + 0.00
kr-vs-kp 96.95 +0.40 | 94.22 +£0.76 94.29 + 0.59 2.06 +0.44 3.25 +1.18 12.00 + 0.00
churn 91.09 +£1.03 | 88.17 +1.06 87.87 £ 0.51 3.89 + 0.82 7.84+1.74 12.00 + 0.00
phoneme | 81.65+0.76 | 79.92 £ 0.64 79.73 £ 0.77 4.32 + 0.83 5.86 + 0.97 12.00 + 0.00
optdigits 96.70 £ 0.30 | 94.45 4+ 0.58 94.45 £ 0.65 3.92+0.70 | 4.60+0.74 12.00 + 0.00
phishing 93.62 +0.21 | 92.50 +0.38 92.26 +£0.34 3.33+0.25 | 3.47 +0.04 12.00 + 0.00
mozilla4 93.89 £ 0.26 | 93.07 +0.40 93.08 £0.45 2.86 +0.19 3.64 +0.34 12.00 + 0.00
letter 82.20 £ 0.89 | 80.05 4 0.88 79.80 = 0.69 2.71+0.70 3.05 +0.53 12.00 + 0.00

Table 2: The mean and standard deviation values of the accuracy curves (used to compare the performance) and number of candidate
algorithms along with querying process (employed to compare the running time) of each variant method across 10-fold experiments. The
best and its comparable performances based on paired t-test at 0.05 significance level are highlighted in boldface.

gestion in [Ionides, 2008] to set the truncated threshold as
7 = y/m, where m is the number of validation data. For the
tradeoff 3, we believe that the primary task of DUAL at early
stage is to explore the applicable algorithms, the improve-
ment of winner models should be preferred later. To achieve
this goal, we set the parameter empirically as 5 = 1/g, since
the number of candidate algorithms g will decrease along
with the query process. Note that the results of parame-
ter sensitivity in the supplementary material indicate that our
method is insensitive to 3.

4.2 Performance Comparison

We plot the averaged learning curves in Fig. 1. Some legends
of the figures are omitted to avoid the occlusion, the figures
in the same line have the same legends. It can be observed
that, our proposed DUAL method can outperform the others
significantly in most cases, which demonstrates its effective-
ness. The CASH method with random querying can usually
achieve the second best. This phenomenon indicates that an
effective target model may bring more benefits than the query
strategy, which implicitly reveals the practicability of the pro-
posed framework, since the target model is hard to be de-
cided as a prior in real tasks. ALMS does not perform well.
Note that its computational complexity immensely limits the
size of candidate models. Due to this defect, the best target
model can hardly fall into the candidate set, which impairs
the performance. Active-iNAS searches model from the sim-
plest one initially, thus it has a different initial point with the
other methods. It works well on some datasets but fails on the
others. Note that this method heavily relies on the intuition
of the increasing model complexity, which may not be suit-
able for every dataset. The rest query strategies with the fixed
model perform diversely across datasets. It may be caused
by the varying target models, which are searched based on
the limited initially labeled data. This result also implies the
importance of simultaneously considering the model and data
selection in active learning, because a query strategy can per-
form inconsistently with different target models.
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4.3 Ablation Study

To further validate the effectiveness of each component in
DUAL, we conduct the ablation studies. Due to the space lim-
itation, we report the mean values of the accuracy and num-
ber of candidate algorithms along with the querying process
on 12 openML datasets instead of plotting them. ‘w/o active’
means eliminating the active querying part, and ‘succe.” rep-
resents the successive function in model search. The results
are reported in Table 2.

we can observe that DUAL significantly outperforms the
methods without active sampling in both effectiveness and
efficiency, which demonstrates the superiority of the data se-
lection strategy on both exploration and exploitation aspects.
Also, we find that the two ablation methods have comparable
performances, but the one with successive function is much
faster than another. It reveals that the function could accel-
erate the model search significantly without impairing the
performance. These results on one hand show that the data
querying strategy is helpful for both model search and accu-
racy improvement, on the other hand validate the efficiency
of the successive function.

5 Conclusion

In this paper, we propose a novel dual active learning frame-
work DUAL to tackle with the lack of target model prior
problem by simultaneously performing model and data se-
lection. On one hand, we propose an efficient CASH method
with the truncated importance sampling to search for the best
model configuration based on the skewed labeled set. On the
other hand, we propose a data querying strategy to adaptively
help CASH in model search or improve the winner models
by active sampling. Both parts are well supported by each
other to improve the final accuracy. Experimental results on
12 openML datasets demonstrate the effectiveness and prac-
ticability of the proposed framework. In the future, we would
like to introduce the meta learning to deal with the scarcity of
prior knowledge problem.
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