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Abstract
Incomplete multi-view clustering aims to cluster
samples with missing views, which has drawn more
and more research interest. Although several meth-
ods have been developed for incomplete multi-view
clustering, they fail to extract and exploit the com-
prehensive global and local structure of multi-view
data, so their clustering performance is limited.
This paper proposes a Clustering-induced Adaptive
Structure Enhancing Network (CASEN) for incom-
plete multi-view clustering, which is an end-to-end
trainable framework that jointly conducts multi-
view structure enhancing and data clustering. Our
method adopts multi-view autoencoder to infer the
missing features of the incomplete samples. Then,
we perform adaptive graph learning and graph con-
volution on the reconstructed complete multi-view
data to effectively extract data structure. Moreover,
we use multiple kernel clustering to integrate the
global and local structure for clustering, and the
clustering results in turn are used to enhance the
data structure. Extensive experiments on several
benchmark datasets demonstrate that our method
can comprehensively obtain the structure of incom-
plete multi-view data and achieve superior perfor-
mance compared to the other methods.

1 Introduction
Describing objects from different aspects constitutes multi-
view data. For instance, an image can be described by differ-
ent features such as color, texture, surrounding texts or deep
features. The content of a web page can be described by text,
images, and videos, etc. Each view contains some specific
information that other views do not have. Therefore, lever-
aging multiple views can obtain multi-view complementary
information and generate more complete descriptions of da-
ta. Multi-view clustering aims to exploit diverse and com-
plementary features of different views to improve cluster-
ing performance, and many methods have been developed in
the past few years [Kang et al., 2020; Zhang et al., 2020b;
Li et al., 2020; Kang et al., 2021].
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In real-world applications, it is often the case that each
view suffers from loss of information due to data collection
equipment failures or environmental changes [Li et al., 2014;
Zhang et al., 2020a]. For instance, different types of test-
s may be conducted for different medical applications, which
leads to the loss of some views. However, conventional multi-
view clustering methods assume that all views are available
for each sample so that they cannot well handle the incom-
plete multi-view data. It is more challenging and meaningful
to endow the method with adaptive capability and high effec-
tiveness for view-missing situations.

To discover clusters from incomplete multi-view data, a
variety of incomplete multi-view clustering (IMC) methods
have been developed [Peng et al., 2019; Yang et al., 2021;
Huang et al., 2020]. Some methods adopt matrix factor-
ization model to extract a consensus matrix from incom-
plete multi-view data. PVC [Li et al., 2014] establish-
es a latent subspace where the instances corresponding to
the same sample in different views are close to each oth-
er. Several methods further extend PVC method. IMG
[Zhao et al., 2016] adopts a graph Laplacian term to cou-
ple the incomplete multi-view samples. MIC [Shao et al.,
2015] integrates weighted nonnegative matrix factorization
and l2,1 regularization to handle the incomplete multi-view
data. Moreover, some methods adopt multiple graph learn-
ing or multiple kernel learning for IMC [Wen et al., 2019;
Zhou et al., 2019]. OPIMC [Hu and Chen, 2019b] direct-
ly obtains clustering results for large-scale multi-view data
through a regularized matrix factorization model. PIC [Wang
et al., 2019] adopts spectral perturbation theory and learn-
s a consensus Laplacian matrix from incomplete multi-view
data for clustering. MKKMIK [Liu et al., 2019] integrates
kernel imputation and clustering into a unified learning pro-
cedure, where incomplete kernels can be adaptively imputed
and combined for clustering.

In addition to the shallow models mentioned above, some
deep learning based methods are proposed for IMC [Wang et
al., 2018; Wen et al., 2020b]. AIMC [Xu et al., 2019] learns
the consensus latent space and performs missing data infer-
ence simultaneously, where a generative adversarial network
is used to infer missing data. CDIMC-net [Wen et al., 2020a]
incorporates view-specific deep encoders and graph embed-
ding into a framework to capture the local structure of each
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view, and a self-paced strategy is adopted to train the deep
model. Deep learning based IMC methods can well handle
the discrepancy and dependence among multiple views, so
they achieve better clustering performance and wider appli-
cation prospects than the shallow models.

Despite significant progress has been made in the field of
incomplete multi-view clustering, there are still some issues
that have not been well solved. First, it is difficult to ob-
tain the complete data structure when some views are miss-
ing. Most of the existing IMC methods fail to complete the
missing features to extract the intrinsic data structure. Sec-
ond, both global and local structures are essential for IMC,
yet most of the existing methods fail to simultaneously use
them so that the data structure information cannot be com-
prehensively exploited. Third, the reliability and accuracy
of views are different, so they should have different impor-
tance during the clustering process. However, the existing
deep learning based IMC methods ignore this factor and their
clustering performance are limited.

In order to solve the above issues, we propose a nov-
el incomplete multi-view clustering method, i.e., Clustering-
induced Adaptive Structure Enhancing Network (CASEN).
We develop an end-to-end trainable framework for join-
t multi-view structure enhancing and data clustering. CASEN
is composed of a multi-view autoencoder module, an adap-
tive multi-view graph structure extraction module and a
clustering-induced structure enhancing module. We intro-
duce multi-view autoencoder to extract the global structure of
multi-view data as well as infer the missing features of incom-
plete samples. Then, we leverage adaptive graph learning and
graph convolution networks (GCNs) to extract and encode the
local structure of data. Our method can accurately extract
local structure of data by learning suitable graph represen-
tation that best serves the clustering task. To obtain robust
and reliable clustering results, we adopt multiple kernel clus-
tering to assign different weights to views and integrate both
global and local structures. The clustering results are used to
supervise the network training through the self-supervision
strategy so that the learned data structures can be further en-
hanced. We conduct comprehensive experiments on several
benchmark datasets to study the properties of the proposed
method. Experimental results show that CASEN consistently
outperforms the state-of-the-art IMC methods, which demon-
strates the advantages of our method. The main contributions
of this work are summarized as follows:

• We develop a novel deep learning framework to simul-
taneously reconstruct the missing views and learn da-
ta structure from the reconstructed complete multi-view
data. Our method can explore and extract comprehen-
sive data structure from incomplete multi-view data to
reduce the impact of missing views on structure learn-
ing.

• We exploit both global and local structures to reveal the
complex relationship and intrinsic distribution of multi-
view data. The global and local structure information
can be effectively preserved and encoded into the laten-
t representation of the network, which can yield better
clustering performance.

• We introduce multiple kernel clustering to obtain more
reliable clustering results, which is achieved by assign-
ing different weights to views according to their impor-
tance. The multiple kernel clustering and structure learn-
ing can promote each other during network training, so
the learned structures can be further enhanced.

2 Methodology
CASEN is an end-to-end multi-view clustering network
which is composed of three modules as shown in Figure
1. Multi-view autoencoder module and adaptive multi-view
graph structure extraction module learn the global and local
structure, respectively. Clustering-induced structure enhanc-
ing module utilizes multiple kernel clustering to obtain clus-
tering results and supervises the training of the network. We
introduce the details of CASEN in the following parts.

2.1 Problem Definition
Incomplete multi-view data with V views and n samples can
be denoted by a set of matrices {X(v)}Vv=1, where X(v) =

[x
(v)
1 , x

(v)
2 , ..., x

(v)
n ]T ∈ Rn∗mv , mv is the feature dimensions

of the v-th view. If the i-th sample xi = {x(1)i , x
(2)
i , ..., x

(V )
i }

loses the features of the j-th view, then x(j)i is filled by zeros.
Assume that each sample would not lose the features of all
the views. Our objective is to cluster n unlabeled multi-view
data samples into c categories.

2.2 Multi-View Autoencoder Module
Different views have different physical meanings and they are
not directly comparable. Therefore, we introduce multi-view
autoencoder to obtain the common latent representation of
multi-view data. By training multi-view autoencoder to en-
code and decode data, the latent representation can well ex-
plore the global structure of multi-view data and fully pre-
serve multi-view complementary information. Additionally,
multi-view autoencoder can be used to infer missing views of
incomplete samples by the reconstruction process, which en-
ables the model to learn the complete graph representation of
multi-view data.

Multi-view autoencoder consists of several view-specific
encoders {f (v)}Vv=1 and corresponding decoders {g(v)}Vv=1.
To obtain the common representation of multi-view data,
we make the encoders of each view {f (v)}Vv=1 share the
same top hidden layer so that they have the same output.
When the sample xi is input into encoders, hi is the out-
put of the encoders which provides the common represen-
tation of xi. The decoders of each view take hi to recon-
struct original data. The reconstruction process of decoders
is x̂(v)i = g(v)(hi), ∀v = 1, ..., V . Noted that decoders can
generate the features of all the views, thus the missing views
of incomplete samples can be infered. The reconstructed data
is denoted by X̂(v) = [x̂

(v)
1 , x̂

(v)
2 , ..., x̂

(v)
n ]T ∈ Rn∗mv . The

loss function of multi-view autoencoder is defined as:

LR =
1

2n

V∑
v=1

||X(v) − P (v)X̂(v)||2F (1)
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Figure 1: Architecture of the proposed Clustering-Induced Adaptive Structure Enhancing Network (CASEN).

where P (v) ∈ Rn∗n is a diagonal matrix which records the
view missing information. P

(v)
ii = 1 if the i-th sample is

available in the v-th view, otherwise, P (v)
ii = 0. By training

the multi-view autoencoder to reconstruct data, the learned
latent representation H = [h1, h2, ..., hn]

T ∈ Rn∗kh can
capture the global structure of multi-view data and provide
effective representation for data clustering.

2.3 Adaptive Multi-View Graph Structure
Extraction Module

Although the multi-view autoencoder module is able to cap-
ture the global structure of multi-view data, it ignores the lo-
cal relationship of samples. In the adaptive multi-view graph
structure extraction module, we introduce adaptive graph
structure learning to learn graph representation of multi-view
data, and leverage GCNs to further extract and explore the
local structure information of multi-view data.

Given the reconstructed multi-view data {X̂(v)}Vv=1, we
aim to learn a graph with affinity matrix S(v) ∈ Rn∗n for
each view to represent the pairwise relationship between sam-
ples. Inspired by [Jiang et al., 2019], we implement adaptive
graph learning via v single-layer neural networks, which are
parameterized by the weight vector a(v) ∈ Rmv∗1. Let S(v)

ij
represent the similarity between xi and xj for the v-th view
which is learned by

S
(v)
ij =

exp(σ(a(v)
T|x̂(v)i −x̂

(v)
j |))∑n

k=1 exp(σ(a
(v)T|x̂(v)i −x̂

(v)
k |))

(2)

where σ is the activation function. Softmax operation on each
row of S(v) can guarantee the learned graph satisfying the
following property∑n

j=1
S
(v)
ij = 1, S

(v)
ij ≥ 0 (3)

To ensure the graph can well capture the local structure of
multi-view data, we adopt the following loss function to learn
S(v) and the weight vectors {a(v)}Vv=1,

LG =
1

n

V∑
v=1

(

n∑
i,j=1

||x̂(v)i − x̂
(v)
j ||

2
2S

(v)
ij + λ||S(v)||2F ) (4)

where λ is the tradeoff parameter to control the sparsity of
learned graph S(v). By adjusting the sparsity of S(v), we can
establish the neighborhood relationship and local structure of
multi-view data adaptively.

Next, we introduce GCN to further extract the local struc-
ture of multi-view data and encode them into the latent repre-
sentation. For the v-th view,Z(v)

l is the representation learned
by the l-th layer of GCN, which can be obtained by the fol-
lowing operation,

Z
(v)
l = σ(D(v)−1/2

S(v)D(v)−1/2
Z

(v)
l−1W

(v)
l−1) (5)

where l ∈ {1, ..., L}, D(v) is a diagonal matrix with diagonal
element D(v)

ii =
∑n
j=1 S

(v)
ij , W (v)

l−1 is the weight matrix of
the convolution layer, σ is the activation function. We set the
reconstructed multi-view feature as the initial node feature of
GCN, i.e., Z(v)

0 = X̂(v). The last layer of GCN Z
(v)
L is de-

noted by Z(v) ∈ Rn∗kc for simplicity. GCN is able to encode
both the local structure and node features. Therefore, the lo-
cal structure of multi-view data can be effectively encoded
into the learned representation {Z(v)}Vv=1.

2.4 Clustering-Induced Structure Enhancing
Module

Now, we present the clustering-induced structure enhancing
module to achieve multi-view clustering. Considering the re-
liability of views are different, we adopt multiple kernel clus-
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tering (MKC) [Tzortzis and Likas, 2012] which assigns dif-
ferent weights to views so that more accurate clustering re-
sults can be obtained. Then, the clustering results are used to
enhance the learned structures through a self-supervision s-
trategy. Our method jointly implements multiple kernel clus-
tering and structure enhancing so that they can promote each
other and the clustering performance can be further improved.

In multiple kernel clustering, K(·, ·) is the kernel function.
The kernel matrix for each view is constructed by K(v) =
K(Z(v), Z(v)), and another kernel is constructed to capture
the global structure by K(V+1) = K(H,H). The unified
kernel is defined by Ku =

∑V+1
v=1 β

(v)rK(v), where β =

[β(1), β(2), ..., β(V )] is the weight parameter of kernels and r
controls the sparsity of β. The objective of MKC is presented
as follows,

min
Q,β

Tr(Ku(In −QQT ))

s.t. QTQ = Ic, β
T1V+1 = 1, β ∈ RV+1

+

(6)

where Q ∈ Rn∗c is the embedding matrix to be learned. The
detailed algorithm for solving (6) is shown in Algorithm 2.
By performing k-means clustering on Q, we can obtain the
clustering results qi ∈ {0, 1}c for each sample xi.

We adopt self-supervision strategy to utilize the cluster-
ing results to guide the network training. The output of
multi-view autoencoder and GCNs are concatenated by R =
[H||Z(1)||Z(2)||...||Z(V )], and then we put R into FC layers.
The output of FC layers is denoted by {yi ∈ Rc}ni=1. We use
self-supervision strategy to train the whole network by inte-
grating cross-entropy loss and center loss [Wen et al., 2016]
as follows:

LC =
1

n

n∑
i=1

(ln(1 + e−y
T
i qi) + θ||ri − ρφi ||22) (7)

where yi is a normalization of yi via softmax. ri is the i-th
row of R, which represents the concatenated representation
of the i-th sample. φi takes the cluster index of qi, and ρφi

is
the cluster center which corresponds to the i-th sample. θ is
the tradeoff parameter. The clustering result qi provides the
pseudo labels for network training. Noted that the label in-
dex assigned to a cluster undergoes an unknown permutation
during clustering. Hence, the class labels from two succes-
sive clusterings may be inconsistent. To address this issue,
Hungarian algorithm [Munkres, 1957] is adopted to find an
optimal assignment between the pseudo labels of successive
iterations and then feed them into loss function (7).

2.5 Overall Loss Function
The overall loss function of CASEN is proposed by inte-
grating multi-view autoencoder module, adaptive multi-view
graph structure extraction module and clustering-induced
structure enhancing module. By putting together the loss
functions in (1), (4), and (7), the end-to-end trainable frame-
work is formulated as follows,

L = LR + η1LG + η2LC (8)
where η1 and η2 are tradeoff parameters to control the im-
portance of each component. By optimizing (8), our network
is capable of jointly enhancing multi-view data structure and
achieve effective clustering results.

Algorithm 1: The learning procedure of CASEN.

Input: Input data {X(v)}Vv=1, tradeoff parameters, network
parameters, Tmax, T1, iter=1.

Output: The trained network and clustering results {qi}ni=1.

1 Pre-train the multi-view autoencoder and initialize all the
parameters of the network.

2 Perform MKC to get initial clustering results.
3 while iter ≤ Tmax do
4 Given the clustering results, update the network T1

epoches by optimizing the overall loss function (8).
5 Perform MKC to update clustering results by Algorithm 2.
6 iter← iter + 1.
7 end

Algorithm 2: The learning procedure of MKC.

Input: {K(v)}V +1
v=1 , r, c.

Output: Clustering results {qi}ni=1.

1 Initialize β(v) = 1/(V + 1).
2 while not converged do
3 Update Ku =

∑V +1
v=1 β

(v)rK(v).
4 Update Q by c largest eigenvectors of Ku.
5 Update d(v) = Tr(K(v)(I −QQT )), v ∈ {1, ..., V + 1}.

6 Update β(v)=1/
∑V +1

v′=1 (
d(v)

d(v
′) )

1
r−1

, v ∈ {1, ..., V + 1}.
7 end
8 Obtain clustering results {qi}ni=1 by performing k-means on Q.

2.6 Implementation
Pre-training the network. Before training the whole net-
work, we pre-train multi-view autoencoder by using loss
function (1). All features of the missing views are filled with
zero. Stochastic gradient descent (SGD) is adopted to pre-
train the multi-view autoencoders.
MKC model learning. For multiple kernel clustering, lin-
ear kernel is adopted as the kernel function for its simplicity
and effectiveness. An iterative algorithm that alternates be-
tween updating the embedding matrix Q and updating the k-
ernel weights β is adopted. The updating rules for Q and β
can be derived by Lagrange multiplier method. The detailed
learning process of MKC is shown in Algorithm 2.
Training the whole network. After pre-training the net-
work, we use the overall loss function (8) to train the w-
hole network. Specifically, given the clustering result, we
update the other parameters in the network for T1 epoches.
Then, we perform multiple kernel clustering to update the
clustering result. The two steps are performed alternately un-
til the network is well trained. The initial clustering result is
achieved by performing MKC on H , which is obtained from
the pre-trained multi-view autoencoder. We present the de-
tailed training procedure of CASEN in Algorithm 1.

3 Experiments
3.1 Experimental Settings
Datasets. We adopt four well-known multi-view learning
datasets to demonstrate the effectiveness of the proposed
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ACC NMI
Database Method\p% 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7

B
B

C
BestSV 38.52± 1.53 36.12± 1.45 31.56± 1.34 25.52± 1.82 24.99± 2.33 23.41± 2.64 18.81± 1.60 17.74± 3.47
MIC 57.75± 2.30 54.25± 0.53 44.00± 3.36 35.75± 1.41 61.00± 0.53 53.50± 0.89 48.75± 0.91 37.75± 0.58
OMVC 46.78± 3.72 38.05± 4.29 29.86± 4.03 18.18± 0.87 50.02± 2.62 42.65± 2.26 33.35± 3.51 21.31± 3.78
IMG 47.04± 2.16 44.70± 1.73 41.57± 1.98 39.95± 2.24 68.23± 1.05 66.12± 1.28 62.25± 1.54 58.77± 1.70
DAIMC 56.85± 3.47 48.43± 2.81 36.73± 2.88 24.80± 1.58 38.74± 2.41 31.77± 2.83 27.76± 2.55 18.50± 3.17
UEAF 55.17± 3.41 49.67± 1.18 35.17± 2.13 22.62± 1.52 73.75± 1.41 65.67± 0.70 48.89± 6.81 33.16± 3.17
OPIMC 59.60± 2.13 47.76± 2.42 36.63± 2.56 23.09± 2.17 54.95± 1.74 45.55± 2.04 37.08± 1.26 30.45± 1.02
PIC 62.23± 2.45 57.13± 2.57 49.16± 1.63 43.39± 2.59 74.31± 0.88 68.94± 1.09 59.04± 0.74 49.12± 0.69
CASEN 63.54± 1.89 59.50± 1.47 50.25± 1.51 46.32± 1.57 75.48± 0.87 72.39± 1.12 68.18± 1.37 63.25± 2.04

C
al

te
ch

20

BestSV 43.66± 2.46 38.34± 1.65 33.54± 2.07 30.38± 0.95 51.44± 1.46 39.16± 0.61 34.99± 0.61 28.91± 0.43
MIC 32.10± 1.86 26.93± 2.36 24.90± 2.50 20.33± 3.01 38.50± 3.41 33.99± 2.92 29.44± 3.17 24.68± 3.68
OMVC 41.32± 0.81 31.39± 0.93 31.85± 1.51 22.49± 2.33 41.78± 0.98 27.02± 0.99 28.43± 2.25 14.90± 2.16
IMG 46.40± 1.74 43.60± 2.43 42.63± 2.59 38.06± 3.16 58.96± 1.84 54.55± 1.62 53.04± 2.27 47.69± 2.46
DAIMC 43.26± 3.61 42.82± 2.27 40.26± 2.96 34.57± 3.05 59.05± 1.83 58.28± 1.22 53.23± 0.86 38.52± 1.38
UEAF 33.78± 1.54 32.36± 0.98 30.84± 1.86 19.28± 2.40 34.94± 1.33 32.11± 1.10 30.24± 1.59 19.23± 2.76
OPIMC 55.57± 3.62 50.23± 2.30 42.21± 2.34 23.24± 3.19 47.46± 5.48 50.15± 4.12 48.20± 3.08 30.16± 6.35
PIC 54.27± 2.62 53.90± 2.55 53.11± 2.37 48.77± 2.35 60.21± 3.59 61.87± 1.14 60.03± 2.11 56.92± 2.52
CASEN 64.66± 1.20 60.29± 1.63 57.88± 1.16 50.25± 2.24 65.45± 1.05 63.31± 1.32 61.06± 1.84 58.24± 2.21

W
ik

ip
ed

ia

BestSV 45.02± 0.23 41.34± 0.64 33.99± 0.54 24.38± 1.06 49.21± 0.66 40.26± 0.76 31.91± 0.16 24.45± 3.14
MIC 48.67± 1.33 46.43± 1.04 45.93± 1.50 42.45± 2.77 37.80± 0.25 36.18± 1.39 35.40± 1.25 30.90± 1.41
OMVC 44.54± 2.03 38.92± 1.56 32.84± 2.15 26.39± 1.94 45.21± 1.42 39.29± 1.78 33.31± 1.67 27.21± 1.55
IMG 51.52± 1.43 47.77± 1.48 45.87± 1.62 42.47± 2.42 51.06± 1.21 46.29± 2.13 42.35± 1.87 40.00± 1.39
DAIMC 56.04± 0.99 45.26± 1.56 33.24± 1.28 20.69± 1.70 45.95± 0.77 29.45± 1.02 18.41± 1.57 11.32± 1.46
UEAF 54.67± 1.64 45.23± 1.70 35.11± 1.32 26.38± 1.26 50.92± 1.09 39.74± 1.62 28.32± 1.68 19.62± 1.03
OPIMC 46.10± 0.95 30.11± 1.83 17.87± 0.95 10.15± 1.14 55.60± 1.17 43.18± 3.26 34.96± 1.33 27.54± 1.79
PIC 45.72± 0.12 41.29± 0.63 30.93± 0.12 27.11± 0.37 34.60± 0.18 29.11± 0.27 15.14± 0.12 11.67± 0.30
CASEN 58.33± 0.87 50.54± 1.10 46.68± 1.74 42.59± 1.88 57.76± 0.93 49.13± 1.14 44.65± 1.45 41.87± 1.95

M
N

IS
T

BestSV 44.73± 0.34 40.18± 0.29 29.06± 0.85 22.83± 2.31 38.75± 0.29 37.90± 0.26 27.34± 1.01 23.41± 2.73
MIC 61.75± 2.65 54.28± 1.99 48.19± 0.35 41.38± 1.06 62.03± 0.49 55.72± 0.25 50.34± 0.16 37.75± 0.58
OMVC 60.50± 2.49 55.79± 1.97 49.88± 1.66 37.52± 2.16 58.29± 2.52 53.16± 1.80 46.87± 1.75 35.68± 1.91
IMG 55.70± 1.31 50.37± 1.69 43.62± 2.02 36.84± 2.43 67.50± 1.02 60.69± 0.85 53.56± 1.72 40.28± 1.88
DAIMC 63.48± 1.30 51.53± 1.49 32.79± 0.93 20.49± 1.04 65.97± 0.59 49.29± 0.85 37.12± 0.96 25.86± 1.11
UEAF 73.77± 2.17 54.34± 1.75 47.62± 2.53 34.05± 1.76 68.14± 1.84 47.09± 2.57 36.12± 3.90 29.29± 1.87
OPIMC 61.60± 4.42 44.77± 3.17 26.15± 2.17 18.09± 2.17 65.92± 4.74 51.88± 4.91 32.59± 3.86 23.45± 1.02
PIC 65.47± 0.79 60.26± 1.17 50.44± 0.77 41.52± 2.03 70.85± 0.33 66.18± 0.48 53.11± 0.38 40.57± 0.56
CASEN 77.13± 1.29 68.34± 1.32 56.63± 1.58 44.31± 1.69 76.36± 0.87 67.86± 1.47 55.02± 1.86 41.59± 1.35

Table 1: Clustering performance (mean ± standard deviation) on the benchmark datasets. Bold font shows the best performance.

method. 1) BBC: It consists of 685 documents from BBC
news website which corresponds to stories about five topi-
cal areas. Each sample is described by four views [Greene
and Cunningham, 2006]. 2) Caltech20: It is a subset of Cal-
tech101 dataset, which consists of 2386 images of 20 classes.
To obtain multiple views, we manually extract six kinds of
visual features as in [Cai et al., 2013]. 3) Wikipedia: It con-
tains 2866 multimedia documents which are collected from
Wikipedia [Rasiwasia et al., 2010]. Each document contain-
s two views i.e., the image view and the text view. 4) M-
NIST: It is composed of 10000 samples of ten digits. Pixel
feature and edge feature are adopted as two views [LeCun et
al., 1998]. To construct the incomplete multi-view data, for
data with more than two views, we randomly remove p% in-
stances from each view while guarantee that each sample at
least have one view. Wikipedia and MNIST datasets have on-
ly two views, we randomly choose 1− p% samples and keep
their views complete, and the remaining samples are treated
as single view samples. Half of the single view samples have
the first view and the others have the second view.

Baseline methods. The compared methods include sever-
al representative IMC methods. BestSV: We reports the best
clustering results achieved by performing k-means on each
view. MIC [Shao et al., 2015]: It learns the latent feature
matrices for all the views and generates a consensus ma-
trix so that the difference between each view is minimized.
OMVC [Shao et al., 2016]: It learns the latent feature ma-

trices for all the views by pushing them towards a consen-
sus. IMG [Zhao et al., 2016]: It imposes the orthogonal
constraint on the basis matrix of each view to handle the out-
of-sample problem. DAIMC [Hu and Chen, 2019a]: It is
based on weighted semi-nonnegative matrix factorization to
obtain cluster results. UEAF [Wen et al., 2019]: A locality-
preserved reconstruction term is introduced to infer the miss-
ing views so that all views can be aligned. OPIMC [Hu
and Chen, 2019b]: It adopts regularized and weighted matrix
factorization to obtain clustering results. PIC [Wang et al.,
2019]: It learns a consensus Laplacian matrix from incom-
plete multi-view data for clustering. We adopt two widely
used evaluation metrics: Clustering accuracy (ACC) and nor-
malized mutual information (NMI) to validate the clustering
performance.

Parameter settings. The autoencoders f (v) and g(v)

are stacked by four layers and the dimensions are with
[0.8mv, 0.8mv, 1200, 50] and [50, 0.8mv, 0.8mv,mv], re-
spectively. We adopt two convolution layers in GCN and the
dimensions are [0.8mv, 50]. The FC layers in LC are de-
signed with four layers [l, d1, d2, d3], l is the dimension of
the input layer, d1 and d2 are the dimensions of hidden lay-
ers, d3 is the dimension of output layer. We set d1 = n,
d2 = 0.8n, d3 = c. The other parameters are set as η1 = 0.1,
η2 = 0.01, λ = 0.5, θ = 0.1, r = 2. Rectified Linear Unit
(ReLU) is adopted as the activation function of our network.
We run all the methods 10 times and report the average per-
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formance. CASEN is implemented in PyTorch and executed
on an Ubuntu 18.04 machine with Nvidia GeForce RTX 2080
Ti GPU.

3.2 Performance Comparison
All the methods are conducted on four benchmark datasets
with different missing rates p ∈ {10%, 30%, 50%, 70%} and
the results are shown in Table 1. The experimental results
illustrate that our method CASEN consistently achieves bet-
ter performance than the baseline methods on each dataset.
Specifically, for missing rate p = 0.3, compared to the sec-
ond best method, CASEN improves ACC by 2.37%, 6.39%,
2.77%, 8.08% on BBC, Caltech20, Wikipedia and MNIST
datasets, respectively, which demonstrates the effectiveness
of CASEN. We would like to highlight several aspects of the
experimental results: 1) Multi-view clustering methods gen-
erally obtain better performance than BSV, which indicates
that different views can complement each other and lever-
aging multi-view complementary information is beneficial to
improve clustering performance. 2) MIC, OMVC and DAIM-
C are based on matrix factorization. However, their clustering
performance are limited because the local structure informa-
tion is ignored and the learned latent representation cannot
well capture data correlations. 3) UEAF and PIC leverage lo-
cal structure for multi-view clustering, while they neglect to
use global structures so they cannot obtain effective cluster-
ing results. 4) The proposed method CASEN performs bet-
ter than the other methods by utilizing both local and global
structure to capture comprehensive data correlations. More-
over, multi-view clustering and network training are jointly
conducted so that the two tasks can promote each other to
achieve better clustering performance.

3.3 Component and Parameter Analysis
We study the effectiveness of each module of CASEN on
Caltech20 and Wikipedia datasets. Three baseline methods
are introduced: 1) CASEN-AE: Remove adaptive multi-view
graph structure extraction module from CASEN, where only
global structure is leveraged in the model. 2) CASEN-GCN:
Remove multi-view autoencoder module from CASEN,
where only local structure is used. 3) CASEN-KM: Perform
k-means clustering on R to obtain clustering results instead
of using multiple kernel clustering. From Figure 2 we can
observe that by jointly exploiting global and local structure
and conducting multi-view clustering through MKC, CASEN
outperforms the other three degradation models, which veri-
fies the effectiveness of each module.

The sensitivity analysis experiments are conducted on Cal-
tech20 and Wikipedia datasets for p = 0.3 in Figure 3, where
the two important parameters η1 and η2 in (8) are studied. We
search η1 and η2 in [10−4, 101] and present how the cluster-
ing performance changes. It can be observed that the perfor-
mance of our method is relatively stable with the two parame-
ters. Promising performance can be obtained in a wide range
for η1 ∈ [10−3, 10−1] and η2 ∈ [10−3, 100].

4 Conclusion
We propose an end-to-end trainable network CASEN for joint
adaptive structure enhancing and incomplete multi-view clus-

(a) Caltech20 (b) Wikipedia

Figure 2: Component analysis experiments of CASEN on Caltech20
and Wikipedia datasets.

(a) Caltech20 (b) Wikipedia

Figure 3: Clustering performance of CASEN for different η1 and η2
on Caltech20 and Wikipedia datasets. The missing rate is 0.3.

tering. Unlike the existing incomplete multi-view cluster-
ing methods that only use the incomplete multi-view struc-
ture information, CASEN further improves clustering per-
formance by completing the missing features and integrating
both global and local structures of multi-view data. Multiple
kernel clustering is introduced to obtain reliable and accurate
clustering results, and the clustering results in turn are used
to guide network training through a self-supervision strate-
gy. Extensive experiments conducted on several benchmark
datasets demonstrate the effectiveness and reasonableness of
CASEN and its advantages over the other methods.
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