
Solving Math Word Problems with Teacher Supervision

Zhenwen Liang , Xiangliang Zhang∗

King Abdullah University of Science and Technology (KAUST), Saudi Arabia
{zhenwen.liang, xiangliang.zhang}@kaust.edu.sa

Abstract
Math word problems (MWPs) have been recently
addressed with Seq2Seq models by ‘translating’
math problems described in natural language to
a mathematical expression, following a typical
encoder-decoder structure. Although effective in
solving classical math problems, these models fail
when a delicate variation is applied to the word ex-
pression of a math problem, and leads to a remark-
ably different answer. We find the failure is because
MWPs with different answers but similar math for-
mula expression are encoded closely in the latent
space. We thus designed a teacher module to make
the MWP encoding vector match the correct solu-
tion and disaccord from the wrong solutions, which
are manipulated from the correct solution. Exper-
imental results on two benchmark MWPs datasets
verified that our proposed solution outperforms the
state-of-the-art models.

1 Introduction
Making computers to understand and solve math word prob-
lems (MWPs) is a very important and fundamental task of
Nature Language Understanding (NLU) and has been studied
a half century ago [Bobrow, 1964]. As it shows in Table 1,
a math word problem usually contains text description with
some given quantities, then has a question regarding an un-
known quantity. The answer of the question is a mathematical
formula showing how to infer the unknown quantity correctly.
Building automatic MWP solvers remains a challenging task
due to the wide semantic gap to parse the human-readable
words into machine-understandable logics so as to facilitate
quantitative reasoning [Zhang et al., 2019].

Since deep neural networks have shown their effective-
ness on addressing diverse nature language processing (NLP)
tasks, MWPs solvers are recently designed to ‘translate’ math
problems into a mathematical expression via Seq2Seq mod-
els [Wang et al., 2017; Wang et al., 2018; Wang et al., 2019;
Li et al., 2019; Xie and Sun, 2019; Zhang et al., 2020b],
which have a typical encoder-decoder structure: the encoder
learns the representation of the problems, while the decoder

∗Corresponding Author

Problem1: Bob spends 2(n0) hours to process
10(n1) components. How many hours
does he need to process one compo-
nent?

Expression: x = (n0/n1) = 2/10
Solution: 0.2

Problem2: Bob spends 8(n0) minutes to process
1(n1) component. How many compo-
nent he makes per minute?

Expression: x = (n1/n0) = 1/8
Solution: 0.125

Graph2Tree: x = (n0/n1) = 8/1 (wrong)
Our Solver: x = (n1/n0) = 1/8 (correct)

Table 1: Two MWP examples from Math23k dataset. The solution
to testing Problem2 from Graph2Tree [Zhang et al., 2020b] and from
our solver is presented when Problem1 is included in training.

transforms the latent representation to a math formula ex-
pression (e.g., x = 2/10 in Table 1). Compared with
earlier semantic-parsing methods [Shi et al., 2015; Koncel-
Kedziorski et al., 2016; Huang et al., 2017] or template-
based machine learning approaches [Kushman et al., 2014;
Hosseini et al., 2014; Roy and Roth, 2018], Seq2Seq mod-
els are able to generate new formula expressions that have
not been seen in the training data. Moreover, tree-structured
decoder is recently introduced to model the relationship be-
tween quantities [Liu et al., 2019; Xie and Sun, 2019].
To catch the relationships and order information among the
quantities in MWPs, a Graph2Tree model is proposed in
[Zhang et al., 2020b], which has a graph-based encoder to
learn the latent quantity representations and a tree-based de-
coder to generate solution expression trees.

Although the Seq2Seq based models have achieved
promising results, they fail when a delicate variation is ap-
plied to the word expression of a math problem, and leads to
a remarkably different answer. For example in Table 1, Prob-
lem1 and Problem2 have similar expression in text and math,
but different answers. Graph2Tree [Zhang et al., 2020b]
trained by samples including Problem1 gives a wrong so-
lution to Problem2. The key reason is that Seq2Seq based
models do not intentionally segregate MWPs with different

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3522

(a) (b)

Figure 1: We visualize the representations of MWPs with solution
(a ∗ b)/c (blue dots) and with (a− b)/c (red dots), obtained by the
encoder in Graph2Tree (a) and in our proposed solver (b).

answers but similar math formula expression. Figure 1 visu-
alizes the representation of two types of MWPs from the en-
coder in Graph2Tree model by T-SNE. We can see that some
MWPs with solution (a ∗ b)/c have similar representation of
to those with solution (a − b)/c. They differ only by one
operator but have obviously different meanings. Therefore,
we can conclude that the existing Seq2Seq based models, in-
cluding Graph2Tree, concentrate only on the generation of
expression, e.g., (a ∗ b)/c or (a− b)/c, as correct as possible
from the given MWPs, and are weak on managing of distri-
bution of MWPs representation obtained from the encoder.
The overlap of two different types of MWPs can cause wrong
solution generation, and lead to wrong answers.

We propose to intentionally separate the representations of
MWPs with similar expression by a teacher supervision. The
idea is from the process how we are taught to solve math
problems. We are supervised by a human teacher to give out
the correct solutions, and are also warned to avoid the wrong
solutions, such that we master math problems by knowing
what is correct and how the correct answer is different from
the wrong ones. Therefore, we add a teacher module to make
the encoder generate the representation matching the correct
solution but disaccording from the wrong solutions, which
are manipulated from the correct solution. By doing so, the
representation of MWPs with different solutions but similar
expression can be more separated, as shown in Figure 1(b).

The overall framework of our proposed solution is illus-
trated in Figure 2. In the training process, the encoder and de-
coder are jointly updated to generate correct solutions, while
the encoder is additionally trained to generate high-quality
representations that are examined by the teacher with both
correct and manipulated wrong answers. Meanwhile, the
teacher is trained to make accurate judgement about the en-
coded representation. Once the training is completed, the
teacher module is discarded. The trained encoder-decoder
takes input a given MWP and solves it by outputting the in-
ferred solution and answer.

To evaluate the effectiveness of our proposed model, we
conducted extensive experiments on two benchmark MWPs
datasets and verified the following advantages of our model:

• The designed teacher module guides the encoder to

learn separable representation between MWPs with sim-
ilar math formula expression but markedly different an-
swers. The resulted MWP solver outperforms state-of-
the-art baselines.
• The teacher module can flexibly work with any Seq2Seq

based MWP solvers, with various encoder and decoder
architectures, and always improve the solvers with better
encoded representation and more accurate solutions.
• The idea of presenting wrong solutions manipulated

from correct solution strengthens the capability of MWP
solvers. In particular, manipulating both numbers and
operators in the math expression is more effective than
manipulating only numbers or operators. This resonates
our idea of introducing the teacher supervision to know
not only what are correct and also what are wrong.

2 Related Works
MWPs were initially solved by rule-based methods [Fletcher,
1985; Bakman, 2007] and traditional statistical methods [Mi-
tra and Baral, 2016; Kushman et al., 2014]. However, those
prior methods usually use a template to generate a solu-
tion, and thus require all templates to be covered in the
training set. Otherwise the problems out of the training
templates will be solved with wrong solutions. Recently,
MWPs are addressed as a translation task, translating na-
ture human language into mathematical language. There-
fore, Seq2Seq models with encoder-decoder structure be-
come the dominant solver. The vanilla Seq2Seq was initially
employed in [Wang et al., 2017], and achieved impressive
performance. Then, equation normalization method [Wang et
al., 2018] is proposed to deal with the problem that A + B
and B + A are both effective solutions and have the same
result. Inspired by the success of Transformer [Vaswani et
al., 2017], multi-head attention mechanism is also applied
in MWP solver [Li et al., 2019]. On the one hand, the en-
coder in Seq2Seq is designed to learn with graphs to en-
rich the feature representation of MWPs in [Zhang et al.,
2020b]. Teacher-student network [Zhang et al., 2020a] is
also applied in math problem solver, which leverages knowl-
edge distillation and differs from our approach. On the other
hand, the decoder in Seq2Seq is popularly constructed as
tree-based math expression generators [Wang et al., 2018;
Liu et al., 2019]. Moreover, inspired by the human-like goal-
driven study, a tree-structure recursive decoder achieves great
performance and becomes a standard choice of decoder for
MWPs solvers [Xie and Sun, 2019]. All above-discussed
models have no control on reducing the overlap of two dif-
ferent types of MWPs in the problem embedding space. Our
designed teacher module can be plugged into those state-of-
the-art solvers and improve their performance.

3 Proposed Methods
3.1 Problem Statement
Solving MWPs is to take the input of a text sequence W =
{w1, w2, ..., wn}, and give the output answer sequence A =
{A1, A2, ..., Am}. Here n is the length of W and m is the
length of A. Each wi in the text sequence W is a word, and

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3523

Encoder Module Decoder Module

w1 w2 … wn

…

Label = 0 or 1

The elementary school bought 6 volleyballs and 6
basketballs, it totally takes 510 yuan, we know that each
volleyball costs 40 yuan, then how much is a basketball?

G
R

U

G
R

U

G
R

U…

G
R

U

G
R

U

G
R

U…

qroot /

q1 -

q2 510 q3 ×

q4 40 q5 6

q6 6

x = (510-40×6)/6

G
R

U

G
R

U

G
R

U…
 Concatenation

Teacher Module

Figure 2: The proposed network architecture. The encoder module contains a bidirectional Gated Recurrent Unit (GRU) to learn latent
features from the problem. The decoder module generates a tree expression of the problem. The teacher module supervises the representation
learning by measuring the conformity between the learned representation and the corresponding math expression.

The price of one
basketball

Target Equation: (510 – 40 × 6) / 6

/

- 6

510 ×

40 6

All the money used
to buy basketballs

All the money used
to buy volleyballs

Figure 3: The description of math word problem by a tree.

Ai in the math answer sequence A is one numeric value from
Vnum, or one operator from Vop, or one constant from Vcon.
Note that, Vnum contains all the numeric values that appeared
in the input sequence W , defined by their orders. The set Vop
contains all the operators in the output, e.g., ’+’, ’-’. Vcon
contains all the constant values used in the answer, e.g., π.

3.2 Model Architecture
The designed model architecture is shown in Figure 2. It con-
tains an encoder module, a decoder module and a teacher
module. We next introduce these modules in details.

Encoder Module
Following the state-of-the-art MWP solver GTS model [Xie
and Sun, 2019], we employ a bidirectional Gated Recurrent
Unit (GRU) [Cho et al., 2014] as our encoder for learning
the MWP representation. Firstly, the text sequence W is pre-
sented as a sequence of the embedding vectors corresponding
to the words in W . The resulted sequence Wembed is given to
the bidirectional GRU and transformed to the representation
Z ∈ Rn∗d,

Z =
−−−→
GRU(Wembed) +

←−−−
GRU(Wembed) (1)

where d is the embedding dimension,
−−−→
GRU denotes the gated

unit for left-to-right direction, and
←−−−
GRU denotes the unit for

right-to-left direction.
In Graph2Tree model [Zhang et al., 2020b], a graph trans-

former is employed as the MWP encoder for learning the rep-
resentation Z. Our model is in fact flexible for the usage of
any form MWP encoder, and can be deployed with the future
powerful encoders, which is not the focus of this study.

Decoder Module
The decoder is expected to output answer sequence A =
{A1, A2, ..., Am}, from which a tree-based math expression
can be built. One example of the tree is shown in Figure 3,
where numeric values are at leaf nodes and operators sit at
the non-leaf nodes. The tree has no parenthesis and makes
the answer expressed in a simple way. The decoder in [Xie
and Sun, 2019; Zhang et al., 2020b] predicts the pre-order
traversal sequence of the expression tree, and has been shown
as an effective generator for the mathematical expression for
the solution.

To generate the tree, the root node is featured by adding
two last hidden states of the GRU encoder:

qroot =
−−−→
GRU(Wembed)n +

←−−−
GRU(Wembed)0 (2)

where qroot ∈ Rd is the latent feature of the root node,−−−→
GRU(Wembed)n is the last hidden state of forward sequence
at position n,

←−−−
GRU(Wembed)0 is the last state of backward

sequence at position 0.
The root node (featured as qroot) is put in a stack. The

generator takes the decoding steps given next to construct the
tree, i.e., predicting the token of Ai in the answer sequence
A. In each step, the prediction is in fact to classify the node
feature q to one of token in {Vnum ∪ Vop ∪ Vcon}: Ai =
ft(q). Here, ft is implemented as a two-layer neural network
following [Xie and Sun, 2019]. The numeric values in Vnum
are extracted from theW , the Vop is a set of known operators,
and the Vcon is given by prior knowledge.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3524

Step 1 Pop one node from the stack. Predict the token of cur-
rent node, if the prediction Ai is a number (in Vnum
or Vcon), repeat step 1 until the stack is empty. If the
prediction is an operator (in Vop), go to step 2.

Step 2 Generate two children nodes for the current node.
For the left child, calculate its representation ql =
fL(qp, Z), where qp is the parent node representation
and Z is the encoder output. For the right child, cal-
culate its representation qr = fR(qp, Z, ql). Here, fL
and fR are implemented as a two-layer neural net-
work with gating mechanism following [Xie and Sun,
2019]. Then, push the right child into stack. Predict
the token of the left child node. If the prediction is a
number, go to step 1. If the prediction is an operator,
repeat step 2.

Teacher Module
With the designed encoder and decoder module, the typi-
cal Seq2Seq-based MWP solvers (e.g., [Xie and Sun, 2019;
Zhang et al., 2020b] optimize the neural network parameters
by maximizing the probability of generating the sequences A
with input W in training data. Our proposed teacher module
additionally examines the conformity between the represen-
tation Z of input problem W and the ground-truth sequence
A.

As shown in Figure 2, an answer sequence A is sent to a
bidirectional GRU, for getting its representation hA ∈ Rm∗d:

hA =
−−−→
GRU(A) +

←−−−
GRU(A). (3)

The representation hA can then be compared with the repre-
sentation Z for measuring their conformity, since they repre-
sent the same math problem but are obtained from two differ-
ent views. Thus, the mean vector of hA and Z are concate-
nated and sent to a fully-connected (FC) layer. Their confor-
mity is predicted as a binary classification problem:

y = FC([Z̄ : h̄A]) (4)

where Z̄ ∈ Rd and h̄A ∈ Rd are the mean vector of hA and
Z, respectively.

Considering to extract higher level features about the prob-
lem W , we stack another layer of bidirectional GRU on Z,
and have the second option for measuring the conformity,

hZ =
−−−→
GRU(Z) +

←−−−
GRU(Z)

y =FC([h̄Z : h̄A])
(5)

where hZ ∈ Rn∗d is the representation of problem W from
two-layer bidirectional GRU, and h̄Z ∈ Rd is the mean vector
over the n hidden states (corresponding to n words). In our
evaluation results, we compared these two options and show
that the higher-level representation hZ is more comparable to
hA than Z in the conformity measurement.

To train the FC classifier, both positive examples and neg-
ative examples should be provided. Positive examples are
those Z and A pairs from training data. Negative samples
should be specially designed for meeting our teacher super-
vision target. In pairwise ranking recommendation systems,
negative samples are shown to play important roles for pro-
mote the recommendation results [Rendle et al., 2009]. In

Algorithm 1 Negative Answer Generation
Input: Positive answer A = {A1, A2, ..., Am}
Parameter: Disturbance probability λ
Output: Negative answer Aneg = {Aneg

1 , ..., Aneg
m }

1: Let Aneg = A
2: while Aneg == A do
3: for i = 1 to m do
4: p← a random value between 0 and 1
5: if p<λ then
6: if Ai ∈ Vnum then
7: Aneg

i ← a random element from Vnum \Ai

8: else if Ai ∈ Vop then
9: Aneg

i ← a random element from Vop \Ai

10: end if
11: end if
12: end for
13: end while
14: return Aneg

our case, one simple idea is to randomly select an answer
from a different problem to be a negative sample of the given
problem W . However, the selected answer can be markedly
different from the positive answer A, making it as a too easy
negative sample to be distinguished from the positive. Then,
the classifier works for a too simple task as a supervisor. To
this end, we design a negative answer generation algorithm
for manipulating the positive answer A to get a valuable neg-
ative answer Aneg for the given problem, as shown in Algo-
rithm 1. The parameter λ is a disturbance probability, decid-
ing if changing the current token in A or not. Empirically,
we set λ as 0.1. For each positive answer, we can generate
different number of negative answers for training the teacher
module. The evaluation results reported later show that one
negative answer is enough.

3.3 Learning Objectives
Loss Function for Teacher Module. The teacher module
conducts binary classification for the positive and negative
samples. The objective is to minimize the binary cross-
entropy loss:

Lteacher(θ) = − logP (y = 1|A,Z, θ)
− logP (y = 0|Aneg, Z, θ)

(6)

where θ denotes the network parameters to optimize in the
teacher module, including those in the bidirectional GRU and
the FC classifier network.

Loss Function for Encoder-Decoder Module. Given a
training pair (W,A), the Encoder-Decoder module mainly
targets on maximizing the probability of generating A for W .
Moreover, with the participation of the teacher module, the
encoder should maximize conformity of the representation Z
and the answer A. Thus, the loss function to minimize is:

Lencoder−decoder(φ) = − logP (A|W,φ)

−α× logP (y = 1|A,Z, θ) (7)

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3525

where φ denotes the network parameters in the Encoder-
Decoder module, and parameter α tunes the weight of teacher
module loss in the training process.

4 Experimental Settings
4.1 Dataset
We take two widely used benchmark datasets for the experi-
mental evaluation, Math23K and MAWPS.
Math23k. Math23k [Wang et al., 2017] is one of the most
commonly used dataset for MWP solver evaluation. It has
23161 math word problems. Each of these problems has
one ground truth mathematical expression and answer value.
A test set including 1000 problems is provided in Math23k.
Most of the prior work evaluates their MWP solvers on this
test set. There are also others using a 5-fold cross validation
to measure the performance of their solvers. In our experi-
ments, we report the accuracy for both settings.
MAWPS. MAWPS [Koncel-Kedziorski et al., 2016] is a
relatively small dataset which only contains 2373 problems.
We also perform 5-fold cross validation on this dataset. To
make a thorough evaluation, the performance of our solvers
and baseline solvers are also evaluated on this dataset. How-
ever, the ablation study and case study are conducted on the
larger dataset Math23k.

4.2 Implementation Details
The embedding dimension ofWembed is set to 128. The latent
feature dimension d is set to 512. Our models are trained for
120 epochs. The training was conducted in two stages. Stage
1-minimizing Eq.(6) and the first term of Eq.(7): we train the
teacher and the encoder-decoder module separately at first.
Stage 2-minimizing Eq.(6) and Eq.(7): after 30 epochs when
the teacher was able to give a reasonable guidance to encoder-
decoder, we apply teacher loss (i.e., the second term in
Eq.(7)). We use Adam optimizer [Kingma and Ba, 2014] with
initial learning rate 0.001, which is halved every 30 epochs.
Dropout [Hinton et al., 2012] on embedding matrix of prob-
ability 0.5 is employed to prevent overfitting. During testing,
we use beam search of size 8 to generate the math expression
sequence. The weight α in Eq. (7) is set to 0.1, by its sensi-
tivity analysis. Our code in Python with Pytorch framework
can be found at https://github.com/derderking/MWP-teacher.

4.3 Baselines
We conduct a comprehensive comparison with the state-of-
the-art baselines, including:
• Deep Neural Solver (DNS) [Wang et al., 2017], a vanilla

Seq2Seq model;
• Math-EN [Wang et al., 2018], employing math equation

normalization to reduce the space of solution;
• T-RNN [Wang et al., 2019], applying tree-structured

templates;
• Group-ATT [Li et al., 2019], employing multi-head at-

tention;
• GTS [Xie and Sun, 2019], a goal-driven tree-structure

solver with a powerful recursive decoder;

Math23k Math23kcv MAWPS
DNS - 58.1 59.5

Math-EN 66.7 - 69.2
T-RNN 66.9 - 66.8

Group-ATT 69.5 66.9 76.1
GTS 75.6 74.3 82.6

Graph2Tree 77.4 75.5 83.7
GTS + Teacher 76.5 74.6 83.5

Graph2Tree+Teacher 79.1 77.2 84.2

Table 2: The accuracy (%) of MWP solvers on two datasets.
Math23kcv denotes the result of 5-fold cross validation on Math23k.

• Graph2Tree [Zhang et al., 2020b], enriching the repre-
sentation from encoder by using graph neural networks.

To avoid the implementation error that may cause unrepro-
ducible results of baseline models, we reported the results
of these baselines from the papers where they are published.
Since the testing set is fixed, we report our results on the same
testing data when varying the encoder-decoder architectures.
The GTS and Graph2Tree model have achieved better per-
formance than all other baselines. We thus evaluate our ap-
proach with the encoder-decoder in GTS and Graph2Tree, to
show the effectiveness of the proposed teacher supervision
strategy.

The evaluation metric is solution accuracy, which is used
as a common setting in MWP solver evaluation. We firstly
translate the generated solution tree into a numerical value,
then compare it with the ground truth value. The percentage
of correctly addressed problems in the testing set is reported
as accuracy.

5 Experimental Results
5.1 Accuracy Analysis
Table 2 shows the performance of baseline models, and the
performance of GTS and Graph2Tree with our proposed
teacher module. It is obvious that our teacher supervision can
improve the accuracy of both GTS and Graph2Tree by a no-
table margin among different evaluation settings and datasets.
For example, the accuracy on Math23k dataset of GTS model
is improved by 0.9% with teacher loss, i.e., addressing 9
problems more correctly in the testing set. The accuracy of
Graph2Tree model increases 1.7%, i.e., addressing 17 prob-
lems more correctly in the testing set. Although the solved
problem set increased only by less than 20, this is already a
big step, as the left un-solved problems are those specially
challenging one. Note that the improvement of Graph2Tree
over GTS was also just 1.8%. In the end, among 1000 prob-
lems in Math23K testing set, the model Graph2Tree with
Teacher can correctly address 791 problems. This new state-
of-the-art result is contributed by both the advanced encoder
architecture in Graph2Tree, and the proposed teaching mod-
ule on better learning of the that encoder. Later in case
study, we will report the problems that Graph2Tree failed but
Graph2Tree+Teacher addressed correctly, to further analyze
the effectiveness of the proposed teacher supervision.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3526

https://github.com/derderking/MWP-teacher

Baseline Graph2Tree 77.4
Manipulation only operators 78.0

of A only numbers 78.5
both 79.1

Number of 1 79.1
negative 3 79.0
samples 5 78.4

to generate 10 76.7

Table 3: The impact of generated negative samples, evaluated in
Graph2Tree+Teacher.

GTS 75.6
Graph2Tree 77.4
GTS + Teacher (α = 0.01) 75.5
GTS + Teacher (α = 0.1) 76.5
GTS + Teacher (α = 1) 70.2
Graph2Tree + Teacher (α = 0.01) 78.0
Graph2Tree + Teacher (α = 0.1) 79.1
Graph2Tree + Teacher (α = 1) 73.1
GTS + Teacher with Z 75.8
Graph2Tree + Teacher with Z 77.9

Table 4: The influence of weight α in Eq. (7), and the usage of Z,
in stead of hZ (by default) in teacher classifier.

5.2 Ablation Study
To further evaluate the contribution of the teacher module, we
conduct extensive ablation experiments. All the experiments
here are conducted on the fixed testing Math23k dataset,
while accuracy is still used as the evaluation metric.

Analysis of the Generated Negative Samples
The negative samples are generated in Algorithm 1 by manip-
ulating the positive sample A. We compare the manipulation
on different elements and report the results in Table 3. The
manipulation on both operators and numbers is more effec-
tive than the manipulation of either one. This resonates our
idea of introducing the teacher supervision to know not only
what are correct and also what are wrong.

Regarding the number of negative samples to generate, the
results in Table 3 show that using only one negative sample is
sufficiently good. Too many negative samples discourage the
representation learning of the encoder.

The Sensitivity Analysis of α
The weight α in Eq. (7) tunes the importance of the teacher
loss. We report its sensitivity in Table 4. In general, keeping
α as a relatively small value (e.g., α =0.1) is appropriate. A
too large value of α will emphasize too much on the teacher
loss and make the model lose control on the answer genera-
tion. However, a too small weight on teacher loss will have a
limited impact on improving the accuracy of the model.

The Usage of Z and hZ in Teacher Classifier
We also compare the two options of Eq.(4) (using Z) and
Eq.(5) (using hZ) in teacher module. The results in Table 4

Training Sample: Two teams A and B are repairing
a 1400(n0)-meter road. Team
A repairs 80(n1) meters per day,
and Team B repairs 60(n2) me-
ters per day. How many days
will it take to finish repairing?

Ground Truth: x = n0/(n1 + n2)

Testing Sample: Two teams A and B are repairing
a 7.15(n0)-meter road. Team A
repairs 0.65(n1) meters per day,
and Team B repairs 0.13(n2)
meters more than Team A per
day. How many days will it take
to finish repairing?

Ground truth: x = n0/(n1 + n1 + n2)

Graph2Tree: x = n0/(n1 + n2) (wrong)
Graph2Tree+Teacher: x = n0/(n1 +n1 +n2) (correct)

Table 5: Case study from Math23k. n0 denotes the firstly appeared
number in the problem description, n1 is the second and so on.

show that using hZ is the key to make the teacher module
work. Because the higher level features hZ is more appropri-
ate for measuring the conformity with the generated A.

5.3 Case Study

Table 1 has already shown a case study, comparing the perfor-
mance of Graph2Tree and Graph2Tree+Teacher on solving a
math problem that has a delicate variation from the known
problem. Table 5 shows another case study, where the test-
ing sample is varied slightly from a training sample on word
expression. However, the Graph2Tree model gives a wrong
solution, while the Graph2Tree+Teacher solves it correctly.

6 Conclusion
In this paper, we target on solving MWPs, especially those
with similar text description, but markedly different solu-
tions. We propose to intentionally separate their represen-
tations by a teacher supervision, which measures the con-
formity between the problem representation and the ground
truth solution in math expression. The resulted representa-
tions of MWPs with different solutions but similar expres-
sion are more separated than those from the baseline models.
Experimental results show that the teacher module can make
Graph2Tree achieve new state-of-the-art performance. More-
over, our teacher loss is only computed in training phase,
without any computational burden during testing. In our fu-
ture work, we will explore how to use dynamic negative sam-
pling which has been widely used for training recommenda-
tion systems to get better negative samples.

Acknowledgements
This work is supported by King Abdullah University of Sci-
ence and Technology (KAUST), Saudi Arabia.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3527

References
[Bakman, 2007] Yefim Bakman. Robust understanding of

word problems with extraneous information. arXiv
preprint math/0701393, 2007.

[Bobrow, 1964] Daniel G. Bobrow. Natural language input
for a computer problem solving system. Technical report,
Massachusetts Institute of Technology, USA, 1964.

[Cho et al., 2014] Kyunghyun Cho, Bart van Merriënboer,
Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase
representations using rnn encoder–decoder for statistical
machine translation. In EMNLP, pages 1724–1734, 2014.

[Fletcher, 1985] Charles R Fletcher. Understanding and
solving arithmetic word problems: A computer simula-
tion. Behavior Research Methods, Instruments, & Com-
puters, 17(5):565–571, 1985.

[Hinton et al., 2012] Geoffrey E Hinton, Nitish Srivas-
tava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R
Salakhutdinov. Improving neural networks by prevent-
ing co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580, 2012.

[Hosseini et al., 2014] Mohammad Javad Hosseini, Han-
naneh Hajishirzi, Oren Etzioni, and Nate Kushman. Learn-
ing to solve arithmetic word problems with verb catego-
rization. In EMNLP, pages 523–533, 2014.

[Huang et al., 2017] Danqing Huang, Shuming Shi, Chin-
Yew Lin, and Jian Yin. Learning fine-grained expressions
to solve math word problems. In EMNLP, pages 805–814,
2017.

[Kingma and Ba, 2014] Diederik P Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[Koncel-Kedziorski et al., 2016] Rik Koncel-Kedziorski,
Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh
Hajishirzi. Mawps: A math word problem repository. In
NAACL, pages 1152–1157, 2016.

[Kushman et al., 2014] Nate Kushman, Yoav Artzi, Luke
Zettlemoyer, and Regina Barzilay. Learning to automat-
ically solve algebra word problems. In ACL, pages 271–
281, 2014.

[Li et al., 2019] Jierui Li, Lei Wang, Jipeng Zhang, Yan
Wang, Bing Tian Dai, and Dongxiang Zhang. Modeling
intra-relation in math word problems with different func-
tional multi-head attentions. In ACL, pages 6162–6167,
2019.

[Liu et al., 2019] Qianying Liu, Wenyv Guan, Sujian Li, and
Daisuke Kawahara. Tree-structured decoding for solving
math word problems. In EMNLP-IJCNLP, pages 2370–
2379, 2019.

[Mitra and Baral, 2016] Arindam Mitra and Chitta Baral.
Learning to use formulas to solve simple arithmetic prob-
lems. In ACL, pages 2144–2153, 2016.

[Rendle et al., 2009] Steffen Rendle, Christoph Freuden-
thaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr:

Bayesian personalized ranking from implicit feedback. In
Proceedings of the Twenty-Fifth Conference on Uncer-
tainty in Artificial Intelligence, pages 452–461, 2009.

[Roy and Roth, 2018] Subhro Roy and Dan Roth. Mapping
to declarative knowledge for word problem solving. Trans-
actions of the Association for Computational Linguistics,
6:159–172, 2018.

[Shi et al., 2015] Shuming Shi, Yuehui Wang, Chin-Yew
Lin, Xiaojiang Liu, and Yong Rui. Automatically solving
number word problems by semantic parsing and reason-
ing. In EMNLP, pages 1132–1142, 2015.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. NIPS/NeurIPS, 30:5998–6008, 2017.

[Wang et al., 2017] Yan Wang, Xiaojiang Liu, and Shuming
Shi. Deep neural solver for math word problems. In
EMNLP, pages 845–854, 2017.

[Wang et al., 2018] Lei Wang, Yan Wang, Deng Cai, Dongx-
iang Zhang, and Xiaojiang Liu. Translating a math word
problem to a expression tree. In EMNLP, pages 1064–
1069, 2018.

[Wang et al., 2019] Lei Wang, Dongxiang Zhang, Jipeng
Zhang, Xing Xu, Lianli Gao, Bing Tian Dai, and Heng Tao
Shen. Template-based math word problem solvers with re-
cursive neural networks. In AAAI, volume 33, pages 7144–
7151, 2019.

[Xie and Sun, 2019] Zhipeng Xie and Shichao Sun. A goal-
driven tree-structured neural model for math word prob-
lems. In IJCAI, pages 5299–5305, 2019.

[Zhang et al., 2019] Dongxiang Zhang, Lei Wang, Luming
Zhang, Bing Tian Dai, and Heng Tao Shen. The gap of
semantic parsing: A survey on automatic math word prob-
lem solvers. IEEE transactions on pattern analysis and
machine intelligence, 2019.

[Zhang et al., 2020a] Jipeng Zhang, Roy Ka-Wei Lee, Ee-
Peng Lim, Wei Qin, Lei Wang, Jie Shao, and Qianru Sun.
Teacher-student networks with multiple decoders for solv-
ing math word problem. In IJCAI, pages 4011–4017,
2020.

[Zhang et al., 2020b] Jipeng Zhang, Lei Wang, Roy Ka-Wei
Lee, Yi Bin, Yan Wang, Jie Shao, and Ee-Peng Lim.
Graph-to-tree learning for solving math word problems.
In ACL, 2020.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3528

	Introduction
	Related Works
	Proposed Methods
	Problem Statement
	Model Architecture
	Encoder Module
	Decoder Module
	Teacher Module

	Learning Objectives

	Experimental Settings
	Dataset
	Implementation Details
	Baselines

	Experimental Results
	Accuracy Analysis
	Ablation Study
	Analysis of the Generated Negative Samples
	The Sensitivity Analysis of
	The Usage of Z and hZ in Teacher Classifier

	Case Study

	Conclusion

