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Abstract

Traditional end-to-end semantic parsing models
treat a natural language utterance as a holonomic
structure. However, hierarchical structures exist in
natural languages, which also align with the hierar-
chical structures of logical forms. In this paper, we
propose a latent shift-reduce parser, called LASP,
which decomposes both natural language queries
and logical form expressions according to their hi-
erarchical structures and finds local alignment be-
tween them to enhance semantic parsing. LASP
consists of a base parser and a shift-reduce splitter.
The splitter dynamically separates an NL query into
several spans. The base parser converts the relevant
simple spans into logical forms, which are further
combined to obtain the final logical form. We con-
ducted empirical studies on two datasets across dif-
ferent domains and different types of logical forms.
The results demonstrate that the proposed method
significantly improves the performance of semantic
parsing, especially on unseen scenarios.

1 Introduction
Semantic parsing plays a key role in online querying sys-
tems. The purpose of semantic parsing is to convert a nat-
ural language (NL) query into a machine-interpretable mean-
ing representation, which is also called logical form (LF). As
a trend in the last few years, neural semantic parsers have
been widely studied. The structural basis of a neural parser
is a sequence-to-sequence model, which uses an encoder to
comprehend NL sentences and a decoder to generate their
corresponding LFs [Jia and Liang, 2016; Dong et al., 2018;
Shaw et al., 2019]. Though these methods show high accura-
cies on simple queries, they tend to show lower performance
on relatively complex queries [Talmor and Berant, 2018]. On
the one hand, a complex query shows higher diversity on both
meaning and sentence structure, which requires high general-
ization ability of encoder models to understand the structure
and long-term dependencies correctly. On the other hand,
generating long LFs is much harder than generating short
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Figure 1: A motivating example to illustrate the local alignment be-
tween hierarchical structures of NL and LF, which is found by our
model LASP to facilitate better semantic parsing.

LFs, which demands high performance of decoder models to
produce complex LFs at once.

On consideration of the well-defined hierarchical structure
of logical form representations, prior studies explored the
possibility of generating logical forms hierarchically, e.g. via
tree-based decoding [Dong and Lapata, 2016] or coarse-to-
fine decoding [Dong and Lapata, 2018]. These methods free
semantic parsers from making long-sequence predictions at
once, resulting in a simpler decoding procedure. However,
the difficulty of understanding complex queries with long-
term dependency still exists.

Similar to a logical form representation, the underlying
structure of a natural language utterance is also hierarchically
organized, i.e., some smaller spans are nested within larger
spans. For example, as shown in Figure 1, the complex query
“What is the area of the Asia country that has the max popu-
lation?” can be split into several spans according to its hierar-
chical structure. By parsing each span into sub LF separately
and composing them under the same hierarchical structure,
a complex LF can be obtained. When such local alignment
exists between the hierarchical structures of NL queries and
LFs, it is possible to reduce the burden of semantic parsing
by adding this kind of alignment to the parsing process.

In this paper, we propose a novel neural Latent Shift-
Reduce Parser (LASP) for semantic parsing, which explicitly
models the local alignment between hierarchical structures of
NL queries and LFs. Given an NL query, LASP first uses a
shift-reduce splitter to read tokens by SHIFT operations and
detect the hierarchical structure. Once a semantic span is de-
tected, LASP takes a REDUCE operation to convert it into a
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Figure 2: Illustration of LASP with an example from ComplexWQ.

sub LF with a base parser and uses a span semantic vector
to replace the original span. This process goes iteratively un-
til the whole NL query is parsed. In contrast to traditional
shift-reduce parsers which require expert-designed lexicons
and grammars, our proposed LASP is a latent model that
largely weakens the reliance on supervised training data or
expert rules.

Our proposed LASP has three advantages: (1) It decom-
poses a complex NL query into several spans according to
its hierarchical structure, and the structure also locally aligns
with that of LF. This decomposition diminishes the demand
for complex model designing and numerous training data.
(2) It is a latent shift-reduce parsing model. The only su-
pervision needed is the complete utterances, not the detailed
splitting points. (3) The base parser and shift-reduce split-
ter are optimized iteratively during training. The two mod-
ules promote each other during the training process to achieve
self-adaptation. We conduct experiments on two datasets that
show improvement against the state-of-the-art parsers.

2 Methodology
2.1 Latent Shift-Reduce Parser
Latent Shift-Reduce Parser (LASP) is a compositional se-
mantic parsing approach where a complex natural language
(NL) query can be decomposed into multiple spans and
solved separately. The LASP consists of two modules, i.e.,
a shift-reduce splitter transforms a sequence of NL tokens
into several NL spans in a hierarchical tree structure, and a
base parser converts an NL span into an LF representation.
Figure 2 shows the illustration of LASP with a real exam-
ple. Given an NL query, the shift-reduce splitter reads it to-
ken by token and detects whether a semantic-complete span
is loaded. Once a span is detected out, it is fed into the base
parser to produce the corresponding sub logical form (sub LF)
and span semantic vector. The span semantic vector stands
for the semantic meaning of the span and takes the place of
the span in the original NL query. For example, in Figure
2, “<vec>” takes the place of the span “country in Casey
TimeZone” in the next iteration. This process goes iteratively
until the whole NL query is parsed. At last, all the sub LFs
are combined to generate the complete LF of the original NL
query. Next, we will introduce the simple base parser in Sec-
tion 2.2 and the shift-reduce splitter in Section 2.3 in detial.

2.2 Base Parser
Let x = (x1, x2, · · · , xN ) denote the sequence of an NL
span. The element xn can either be an NL token or a span
semantic vector from the previous iteration. The base parser
aims at converting x into its corresponding logical form y and
generating a new span semantic vector v to represent x.

For spans consisting of NL tokens only, we employ a sim-
ple sequence-to-sequence model as the base parser. At first,
the span x passes by a token embedding layer and the output
embedding vectors are denoted as u = (u1,u2, · · · ,uN ).
On top of the token embedding layer, we use a bi-directional
Recurrent Neural Network (RNN) as the encoder, whose ba-
sic unit is Gated Recurrent Units (GRU). The span semantic
vector v is produced by the encoder as an abstract semantic
representation of the span x:

v = BiGRUenc(u). (1)

Another GRU model is used as the decoder and generates the
logical form y:

y = GRUdec(v). (2)

As mentioned, due to the compositional structure of LASP,
the base parser is designed to support span semantic vector as
input in addition to NL tokens. For the sake of simplicity, we
leverage an MLP layer to transfer the span semantic vectors
into a hidden vector, which has the same dimension as token
embedding vectors.

2.3 Shift-Reduce Splitter
We employ a shift-reduce splitter to capture the composition-
ality of NL queries and decompose them into spans. Shift-
reduce parsing algorithm is capable of transforming a se-
quence of NL tokens into a tree that represents its hierarchical
structure. This structure aligns with the structure of its cor-
responding LF. The shift-reduce splitter splits a complex NL
query into several spans according to its hierarchical struc-
ture, and each of them is parsed separately.

Our proposed shift-reduce splitter takes the form of a gen-
erative model, which predicts an action sequence given an
NL query. Similar to a standard shift-reduce parsing algo-
rithm, our presented shift-reduce splitter is initialized with an
empty stack (S) and a buffer (B) containing all tokens of the
NL query. In addition, we use a sub LF list (L) to store all
parsed sub LFs. At each step, the shift-reduce splitter chooses
an action among the three ones:

• SHIFT pops out the first token from the buffer B and
pushes it into the stack S.

• REDUCE(k) pops out k tokens from the top of the stack
S to form a span, where k is a parameter to be predicted.
We set the maximum length of a span to beK. This span
is parsed by the base parser to a sub LF, which is stored
in the sub LF list L.

• FIN is a shortcut to REDUCE, which pops out all ele-
ments from the stack S and finishes the shift-reduce pro-
cess. It can break the span length limitation of REDUCE.

The shift-reduce splitter takes action step by step until the
buffer is empty and only one vector is left in the stack. Then
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Figure 3: Stack’s behaviours when taking SHIFT and REDUCE op-
erations by the shift-reduce splitter, with the full query being “what
is the most populous state in the US”.

we get a sequence of actions a = (a1, a2, · · · , aT ), called a
trajectory.

Besides NL tokens themselves, both stack S and buffer
B stores a meaning representation vector for each token.
Let w = (w1, w2, · · · , wM ) denotes the token sequence
of the NL query. We use a BiGRU model as encoder to
convert NL tokens into their meaning representation vectors
e = (e1, e2, · · · , eM ):

e = BiGRUsplitter(w), (3)

which helps each token to absorb contextual information of
the whole query.

Additionally, at step t, a state vector st is stored by the
stack S to represent its current state. Due to the dynamics
of S, a StackGRU is adopted to compute this state vector. A
StackGRU is an extension of a standard GRU model, which
supports dynamic changes caused by the push and pop oper-
ations of a standard stack. Specifically, if a SHIFT operation
is taken, the new hidden state st is updated by the last hid-
den state st−1 in the stack (i.e., s5 in Figure 3 top) and the
pushed NL token (i.e., e6 in Figure 3 top). If a REDUCE(k)
is taken, we firstly pop out k tokens from the stack and sum-
marize them into a span semantic vector v. Then, StackGRU
takes the last hidden state in the stack s−1 (i.e., s2 in Figure
3 bottom) and the span semantic vector v to update the new
stack state st, where the subscript −1 indicates the last (top)
element of the stack.

st =

{
StackGRU (s−1, e

t) if at=SHIFT

StackGRU (s−1,v) if at=REDUCE
, (4)

As a result, for a SHIFT action, we form a new stack element
as (wt, et, st), where wt denotes the NL token that enters the
stack at step t and et is its representation vector. For a RE-
DUCE action, we form the new element as (<placeholder>,
v, st). Then, the newly generated stack element is pushed
into the top of the stack.

To decide which action to take at each step, we adopt a two-
stage process for the shift-reduce splitter: firstly, the splitter
selects an action among SHIFT, REDUCE and FIN; and sec-
ondly, the reducing length k is decided if the action REDUCE
is selected in the first stage. We will introduce them in turn.
Stage 1. At step t, the action at is predicted based on the
information from both the stack S and the buffer B. We con-
catenate three vectors to obtain a state representation vector

answer(largest_one(population_1(state(traverse_1(riverid(messissippi))))))

NL Query

Trajectory S   S S S S S S S S S S R(6)   R(4)   R(3)
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Figure 4: An example of trajectory search.

zt that represents the current state of the shift-reduce splitter:
the hidden state of the stack’s last element (s−1), the token
representation vector of the stack’s last element (e−1) and
the token representation vector of the buffer’s first element
(e′). Then, the state representation vector is transformed with
a multilayer perceptron (MLP) to decide this high-level op-
eration.

zt = [s−1; e−1; e
′] ,

at = argmax (MLP (zt)) .
(5)

Stage 2. The second stage is to decide the length of span to
reduce if the REDUCE action is chosen in the first stage. We
adopt an attention mechanism to decide the splitting position,
whose key is the state representation vector zt and values are
the vectors related to each token stored in the stack S:

r−i = [e−i; s−i] ,

p = (p−K , · · · , p−3, p−2)
= Attn (zt, [r−K , · · · , r−3, r−2]) ,

(6)

where K is the maximum length of the REDUCE operation,
e−i is the vector of the penultimate i-th token in the stack,
s−i is the corresponding state vector, Attn is the attention
mechanism (dot attention in our experiments), and p−i is the
probability of reducing a span with length i. Notice that if K
is larger than the length of S, we set K = |S|.

3 Training
The LASP consists of two sub modules, i.e., a base parser
and a shift-reduce splitter. The hard decision made by shift-
reduce splitter makes it hard to train these models together
with back propagation directly. We propose an EM training
approach to solve this problem, which trains these two mod-
ules separately and iteratively. Another difficulty of training
these two modules is the lack of span-level supervised data.
Our key solution to this obstacle is to find the correct trajec-
tories with high confidence. We design a trajectory search
approach to help find possible correct splitting and sub LFs
for each NL query and use a trajectory memory to store them.
We then use these stored trajectories to dump pseudo training
data and optimize the two sub modules of LASP.

3.1 Trajectory Search
A trajectory is a sequence of actions produced by the shift-
reduce splitter by running on an NL query. Taking the query
shown in Figure 4 as an example, given a trajectory corre-
sponded with an NL query, the query can be split into several
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parts with corresponding predict LF representations. By com-
paring these predicted sub LFs with the ground truth LF, we
can determine if the trajectory has a high probability of being
correct, as well as possibly fix parsing mistakes, as the sub
LF in red in Figure 4.

Trajectory search aims to search for global-high-
probability trajectories. On finding possible trajectories
during trajectory decoding, we adopt a back-tracing-based
searching algorithm. When predicting a single action at each
step, apart from the most possible operation decided by the
shift-reduce splitter, we also add some operations with less
probability into possible candidate trajectories. Specifically,
if the predicted operation is a SHIFT, we also search a trajec-
tory with this step being REDUCE if the probability of RE-
DUCE is above a threshold τ ; if a REDUCE operation is pre-
dicted, we search for the top 2 possible span length to reduce
and add them to possible trajectory list. These trajectories
are stored in a trajectory memory, which is later used for the
training process of the base parser and shift-reduce splitter.

3.2 Base Parser Training
Having those searched trajectories stored in the memory, we
first extract training pairs of NL spans and corresponding sub
LFs from them. For an NL query with its corresponding tra-
jectories, we compare the predicted sub LFs with the ground
truth LF and fix possible mistakes of each sub LF. Concretely,
we compare the predicted sub LFs in the ground-truth LF
from both inside-out and outside-in directions, as the exam-
ple shown in Figure 4. If the ground-truth LF matches exactly
with a combination of all sub LFs, we assume this NL query
is correctly parsed and the predictions from NL spans to sub
LFs are fully correct. Otherwise, the left unmatched NL span
and LF are formed as a span-level pair.

The base parser is trained with above span-level pairs of
NL queries and sub LFs, as well as each NL query without
splitting. Note that we use a hierarchical dynamic training
procedure, i.e. spans are dynamically split out during train-
ing, so that the loss from outsider LF prediction can also in-
fluence the span encoding vector generated by insider span
through back propagation. Besides, the supervised span-level
training data for the base parser is changed during training
iterations w.r.t to the shift-reduce splitter and searched trajec-
tories, so that the base parser training helps the parser to fit
the splitting pattern of the shift-reduce splitter.

3.3 Shift-Reduce Splitter Training
The shift-reduce splitter is also trained with the searched tra-
jectories. In this scenario, the selection of the best trajectory
â = (â1, â2, · · · , âT ) can be modeled as a latent variable.
In a unsupervised setting where the ground-truth is not avail-
able, a maximum marginal likelihood (MML) estimation can
be calculated. MML marginalizes the likelihood of each tra-
jectory a given the NL query w with respect to the splitter
parameters θ.

P (y|w; θ)=
∑
a∈A

P (y|a)P (a|w; θ)=
∑
a∈A

P (a|w; θ),

JMML(θ|w,A)=− log
∑
a∈A

P (a|w; θ),
(7)

where A denotes for all possible trajectories.
However, there are two major problems in the MML ob-

jective in training such a model. On the one hand, the search-
ing space of possible action trajectories can be very large,
which grows exponentially as sentence length grows. This is-
sue makes it impossible to discover every possible trajectory.
On the other hand, exploring only a subset of action trajec-
tories cannot ensure the correct trajectory being selected, and
the searching process is time consuming. In consideration
of these drawbacks, we adopt a hard EM training strategy to
train the model with only the most possible trajectory.

A heuristic ranking is applied for selecting the best trajec-
tory. The principle of finding the best trajectory is to find the
most possible and correct one for each NL query. To be spe-
cific, we categorize the parsing results of all trajectories into
“correct”, “partially correct” and “wrong”. Then the trajec-
tory with the best correctness of category and highest prob-
ability is selected as the most possible trajectory. In other
words, if there are correctly parsed trajectories, we will select
the most possible one from it; otherwise, we continue to se-
lect the most possible one from partially correct trajectories.

Having the searched most possible trajectory â, the model
is optimized with a standard negative log likelihood objective
with respect to â:

J(θ|w, â) = − logP (â|w; θ) = − T
max
i=1

logP (âi|w; θ). (8)

Pretraining. To solve the cold starting problem and boost
the training process, both the base parser and the shift-reduce
splitter need to be pre-trained. The base parser is pre-trained
with a set of NL queries without splitting (e.g., simple queries
from the training set), which ensures a basic ability of the
parser to convert simple NL queries into correct LFs. Then,
the pre-trained base parser is applied to find split points of
each query. The principle of searching split points is that the
predicted sub LFs of each split out NL span can be composed
into the ground truth LF. Given each query’s split points, a
trajectory can be produced, which is used as pseudo-data for
the shift-reduce splitter pre-training. Note that an NL query
can have no split point, which means the trajectory is filled
with a list of SHIFT operation and a FIN operation at last.

4 Experiments
4.1 Datasets
We conducted the experiments on two datasets, i.e. the
Geoquery dataset and the Complex Web Questions (Com-
plexWQ) datasets. They have a large diversity in topic, query
length, and type of LF representation, which challenges the
flexibility and generality of our proposed LASP.
Geoquery. This dataset collects 880 NL queries about U.S.
geography with the corresponding Functional Query Lan-
guage (FunQL) meaning representations [Zettlemoyer and
Collins, 2012]. 600 of them are split out as training set with
the rest 280 examples as test set.
ComplexWQ. This dataset contains NL questions and their
SPARQL logical forms on Freebase [Talmor and Berant,
2018]. All the questions in this dataset are much longer and
more complex than the queries in the Geoquery dataset, and
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require multi-hop reasoning to solve. ComplexWQ is prepro-
cessed in the same way as [Zhang et al., 2019] to anonymize
the entities in the SPARQL LF representations.

4.2 Implementation Details
The basic encoder-decoder model with attention is used for
the base parser, each of whom has a single bi-directional
GRU hidden layer with the hidden dimension being 512. For
the shift-reduce splitter, we search the word embedding di-
mension in the range [50, 100, 300, 512], hidden size in
the range [128, 256, 512] and select the best hyperparame-
ters as marked in bold for experiments. For the ComplexWQ
dataset, we leverage Stanford NLP to give POS tags to each
token. During model processing, the POS tags are converted
into tag embedding vectors with dimensions being 30, which
is concatenated by the word embedding vector of each token
as additional information. We do not adopt a more compli-
cated base parser, since we focus on the structural composi-
tionality of NLs and LFs in this paper. One of the advantages
of our proposed LASP is to free the base parser from han-
dling very complex NL queries. A complex query is divided
into several shorter and easier parts, so that a simple seq2seq
parser can handle most cases.

Geoquery and ComplexWQ adopt different pre-training
strategies and sub LF representations based on their charac-
teristics. On pre-training strategy, Geoquery dataset is rele-
vant small with various NL query lengths, so we use the orig-
inal training data to pre-train the base parser and use the pre-
trained base parser to detect possible spans from complete NL
queries. Those found spans are converted into trajectories and
used for shift-reduce splitter pre-training. Unlike Geuquery,
ComplexWQ is a synthetic dataset, where each NL query is
composed of two simple queries. We randomly select 20%
queries from the training set and split each query by decom-
posing it into the original two sub queries by heuristic rules
and dump pseudo data for pre-training. Note that this heuris-
tic splitting cannot ensure a high accuracy, which should be
further fixed during model training. On sub LF representa-
tion, Geoquery uses the nested FunQL representation, where
the return value of a sub LF becomes a sub part of the higher
sub LF, and thus we use a “<placeholder>” to take the place
of the inside sub LF in the outside LF. For ComplexWQ with
SPARQL, simply connecting all predicted sub LFs can form
the complete one.

4.3 Baseline Models
The simplest yet meaningful baseline of our model is a pure
Seq2Seq model [Dong and Lapata, 2016], as we just add a
shift-reduce splitting mechanism to it. Some common se-
mantic parsing methods are also chosen as baseline mod-
els, including Seq2Tree [Dong and Lapata, 2016], Scan-
ner [Cheng et al., 2017], Coarse2Fine [Dong and Lapata,
2018] and UNIMER [Guo et al., 2020]. Besides, for the Geo-
query dataset, we add GNN model [Shaw et al., 2019] as a
baseline model, which uses GNN to model the correlation
between tokens and is one of the state-of-the-art parsers. For
the ComplexWQ dataset, we also compare our method with
HSP [Zhang et al., 2019], which decomposes NL queries but
predicts LFs as a whole with a complex three-stage process.

Method Accuracy
Compositional Semantic Parser

DCS [Liang et al., 2013] 87.9%
TIPS [Zhao and Huang, 2015] 88.9%

Neural Semantic Parser
Seq2Seq [Dong and Lapata, 2016] 84.6%
Seq2Tree [Dong and Lapata, 2016] 87.1%
Scanner [Cheng et al., 2017] 86.7%
Coarse2Fine [Dong and Lapata, 2018] 88.2%
GNN [Shaw et al., 2019] 89.3%
GNN+BERT [Shaw et al., 2019] 92.5%
UNIMER [Guo et al., 2020] 86.2%

Latent Shift-Reduce Semantic Parser (Ours)
LASP 90.3%

- splitter 85.5%

Table 1: Parsing accuracies on Geoquery dataset.

Method Accuracy
Seq2Seq [Dong and Lapata, 2016] 47.3%
Seq2Tree [Dong and Lapata, 2016] 49.7%
Transformers [Vaswani et al., 2017] 53.4%
Coarse2Fine [Dong and Lapata, 2018] 58.1%
HSP [Zhang et al., 2019] 66.2%
LASP 68.3%

Table 2: Parsing accuracies on ComplexWQ dataset.

4.4 Results
The parsing accuracies on Geoquery is shown in Table
1. Compared with previous compositional semantic parsers
which require complex lexicon and syntax designing, our pro-
posed LASP achieves higher performance even with a simple
Seq2Seq semantic parser without BERT. In comparison with
neural semantic parsers, LASP shows the highest accuracy
among all methods except the GNN+BERT, which takes ad-
vantage of big pre-trained BERT. Similar observations appear
on the ComplexWQ dataset, as shown in Table 2. Our model
outperforms the state-of-the-art method HSP as well as other
baseline models.

These results verify that our proposed LASP can efficiently
split an NL query into spans according to its hierarchical
structure, which matches with the hierarchical structure of
the corresponding LF representation. Besides, by splitting
a complex NL query into several spans, the requirement of
parser’s capability is reduced so that a simple base parser can
achieve state-of-the-art accuracies.

4.5 Closer Analysis
Recent studies pointed out that the compositionality of log-
ical form matters more than that of NL queries, as generat-
ing a logical expression already seen in the training set does
not exhibit the composition capabilities of the model [Herzig
and Berant, 2020]. Bearing this principle in mind, we con-
duct another set of experiments to test the composition ability
on logical forms of our proposed method. For the Geoquery
dataset, We resplit it according to logical forms and set all NL
queries related to the same logical form skeleton into either
training set or test set. As shown in Table 3, by resplitting the
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Method Geoquery(resplit) ComplexWQ
LASP 77.7% 68.3%

- trajectory train 68.2% 52.9%
- splitter 62.4% 47.3%

GECA [Andreas, 2020] 60.3% N/A

Table 3: Ablation study of LASP.

1 What state border the state that borders
the most states Correct

2
What three college do Robert F. Kennedy
attend, and the organization found date
is before 1885-03-16

Correct

3
What language is spoken in the country
that have the national anthem “ afghan
national anthem ”

Correct

4 What is the holy book of the religion
whose sacred site be kushinagar Wrong

5 What is the profession of the person who
write “ the world I see ” Wrong

Table 4: Case study on NL splitting.

dataset, the pure Seq2Seq model without splitting drops to an
accuracy of 62.4%, while our LASP remains an accuracy of
77.7%, which is much higher.

On ablation studies, we conduct experiments to test the
effectiveness of NL splitting and trajectory-based training
method on the Geoquery(resplit) and ComplexWQ dataset.
LASP with only heuristic supervised data training achieves
an accuracy of 68.2% on Geoquery(resplit), which is much
lower than the one with trajectory search and training. A sim-
ilar observation can be drawn from the results of the Com-
plexWQ dataset. These results demonstrate the effectiveness
of span-level NL-LF supervision. Data augmentation could
be another way to enhance the parser performance, hence
we also compared our LASP with a data-augmentation-based
method GECA [Andreas, 2020] on the Geoquery (resplit),
and LASP also shows better performance than GECA.

The trajectory-search process, which generates span-level
supervised NL-LF pairs, can split a long NL query into sev-
eral short spans with the corresponding sub LFs. Some of
these NL spans may not exist in the original training set along,
but are searched out by cutting long NL queries. By adding
those unseen NL spans and the corresponding LFs into the
training set, the parser is more reliable in generating correct
LF predictions. Besides, the trajectory search process can fix
the wrong splits caused by heuristic rules. A cyclic training
between the base parser and the shift-reduce splitter helps the
two modules adapt to each other and work better together.

4.6 Case Study
Table 4 shows some cases. Case 1 comes from the Geoquery
dataset. It can be observed that our LASP supports splitting
an NL query into multiple spans dynamically and each span
is correctly parsed into a sub logical form representation. An
advantage of LASP is that it can support dynamic and arbi-
trary splitting of NL queries. LASP can decide whether an
NL query needs to be decomposed, and into how many parts.

The flexibility of our method in splitting NL queries ensures
applicability in different scenarios and LF types.

Case 2-5 are from the ComplexWQ dataset. Case 2 and
Case 3 are correctly split while the last two are wrongly split.
Error splitting is one of the main reasons of error cases in the
ComplexWQ dataset. We randomly picked out 30 NL queries
with their splits and manually analyzed them. We found that
7 out of 30 are wrongly split, and among the correctly split
queries there are 5 error parsed ones. Surprisingly, one error
split NL query got a correct parsing result, which is case 4 in
Table 4. Though this NL query is wrongly split, key tokens
for predicting sub LFs are kept in each span, thus a correct
LF is predicted.

5 Related Work
Semantic Parsing has been a focused topic for a long time.
Neural semantic parsing uses an encoder-decoder frame-
work as the basic pipeline, which frees semantic parsing
from heavy expert work, but these models lack the ability
to solve complex NL queries [Lake, 2019; Keysers et al.,
2020]. Compositional semantic parsing breaks an NL ut-
terance into several sub spans, which are much easier to
parse. However, the splitting operation requires for pre-
defined lexicon and grammar [Zelle and Mooney, 1996;
Zettlemoyer and Collins, 2012; Berant et al., 2013; Pasupat
and Liang, 2015], or complex model designing and super-
vised training [Zhang et al., 2019; Herzig and Berant, 2020].
Our work strives to blend the strengths of compositional se-
mantic parsing and neural semantic parsing.

On NL decomposition, dependency parsing and syntactic
parsing explore possible solutions for decomposing an NL
utterance into spans, but these spans are not suitable for se-
mantic parsing [Nivre, 2003; McDonald et al., 2005]. The
key challenge to task-specific NL decomposition is the lack
of supervised data [Shen et al., 2019]. A common solution is
to generate pseudo-data by heuristic rules or by data augmen-
tation [Andreas, 2020]. However, the quality of rules impacts
the overall performance greatly, and these rules are not ex-
tendable. Our proposed LASP is a latent model that finds the
pseudo splitting supervision by the model itself.

6 Conclusion
In this paper, we propose LASP, a latent shift-reduce parser
for semantic parsing. LASP splits an NL query according to
its hierarchical structure, which also aligns with the hierar-
chical structure of LF. LASP does not require span-level su-
pervision for NL query splitting but uses supervised pseudo
data generated during training by a trajectory search process.
Experimental results show that LASP consistently improves
the performance of different datasets with different LF types.
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