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Abstract

Goal Recognition is the task of inferring an agent’s
goal, from a set of hypotheses, given a model of the
environment dynamic, and a sequence of observa-
tions of such agent’s behavior. While research on
this problem gathered momentum as an offshoot of
plan recognition, recent research has established it
as a major subject of research on its own, leading
to numerous new approaches that both expand the
expressivity of domains in which to perform goal
recognition and substantial advances to the state-
of-the-art on established domain types. In this sur-
vey, we focus on the advances to goal recognition
achieved in the last decade, categorizing the result-
ing techniques and identifying a number of oppor-
tunities for further breakthrough research.

1 Introduction
Goal Recognition is a task related to Automated Planning,
where an agent employs abductive reasoning to infer the most
likely desired goal from a sequence of observations of the
observed agent’s plan instead of deducing a plan from an
initial state towards a goal using some kind of domain the-
ory. Research on goal recognition is often situated among
Plan, Activity, and Intent Recognition [Sukthankar et al.,
2014] and employs distinct inference techniques to recog-
nize the ultimate goals of agents under observation. While
goal recognition is related to the problem of Plan Recogni-
tion [Mirsky et al., 2021], which consists of trying to in-
fer the actual plan being carried out by the observed agent,
this survey focuses squarely on goal recognition. The task
of goal recognition has a number of potential and actual ap-
plications, including assisting the handicapped [Geib, 2002],
activities of daily living (e.g., cooking) [Granada et al., 2017],
workplace safety [Inam et al., 2018], smart home [Hegde
and Kenchannavar, 2019], among others [Singh et al., 2020;
Wayllace et al., 2020]. As research on goal recognition
evolves into ever more complex domain models and better
approaches, we expect the state-of-the-art to advance substan-
tially and new application domains to be broken into.

Thus, we survey advances on goal recognition achieved
primarily in the last decade, defining a common formal

framework in Section 2, and exploring key aspects that dis-
tinguish current approaches. We formalize types of domain
models that modern goal recognition approaches process in
Section 3, followed by an analysis of the effect of differ-
ent types of observations in Section 4. Section 5 looks into
the assumptions each recognition approach makes about the
agent being observed, especially regarding the awareness of
the agent to the observer and how optimal the observed agent
is. We evaluate the internal mechanism through which goal
recognition approaches infer goals from observations in Sec-
tion 6. Finally, we discuss various problems related to goal
recognition in Section 7, and organize the approaches sur-
veyed in this paper, pointing how future work can solve many
of the limitations in the current state-of-the-art in Section 8.

2 Goal Recognition as Planning

We lay out the formal foundations of the problem we sur-
vey using a top-down approach and frame goal recognition
in the context of automated planning, outlining the basic en-
vironment model, which we refine throughout the paper to
match the specific approaches we discuss. We then formalize
the task of goal recognition itself based on a planning model,
which we also refine throughout the survey.

2.1 Automated Planning

Planning aims to select what an agent does next, given a
model of the environment specifying how actions and sen-
sors work, a current situation, and what is the goal to be
achieved [Geffner and Bonet, 2013]. Such problem can be
seen as a directed graph in which nodes represent states,
edges represent the transition between states (caused by ap-
plying actions), and the solution is a path (i.e., plan) between
two particular nodes (i.e., initial state and goal state) in this
directed graph. Such graph is induced by a planning task fol-
lowing Definition 1.

Definition 1 (Planning Task) A planning task Π =
⟨Ξ, s0, G⟩ is a tuple composed of a domain definition Ξ, an
initial state s0, and a goal state specification G. A solution
to a planning task is a plan or policy π that reaches a goal
state G starting from the initial state s0 by following the
transitions defined in the domain definition Ξ.
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2.2 Goal Recognition
Goal Recognition is the task of recognizing which goal an
agent aims to achieve by observing its interactions in an en-
vironment [Sukthankar et al., 2014, Chapter 1, Page 3]. Such
observed interactions (i.e., observations) constitute the ev-
idence to recognize goals, and can be executed actions in
the environment (e.g., a simple movement, cook, drive), and
changing properties in an environment (e.g., at home, at work,
resting). In this survey, we consider a goal recognition task
by following the original problem defined by Ramı́rez and
Geffner [2009]. As we formalize in Definition 2, a goal
recognition task follows the same structure of a planning task
(Definition 1), but instead of having a single goal condition, it
has a set of goal hypotheses, and a sequence of observations
induced by the actions executed by the observed agent. Def-
inition 2 does not detail what a solution to a goal recognition
problem is, as different approaches provide different solution
concepts, which we define in Section 6.2.

Definition 2 (Goal Recognition Task) A goal recognition
task ΠΩ

G = ⟨Ξ, s0,G,Ω⟩ is a tuple composed of a domain
definition Ξ, an initial state s0, a set of goal hypotheses G,
and a sequence of observations Ω.

Most goal recognition tasks assume there is at least one
correct intended goal G* ∈ G among the hypotheses. How-
ever, as we see in Section 6.1, how exactly to present such
solutions varies with the specific approach. Our definitions
so far are vague into exactly what constitutes a domain def-
inition, and what form the observations take. This is a de-
liberate presentation choice, as goal recognition approaches
assume a variety of different models and observation types.
Thus, we use Ξ to refer to any type of domain model, and
pin down these types in Section 3. Likewise, we use Ω to re-
fer to any observation sequence so we can define recognition
problems independently of the observations, which we detail
in Section 4. Example 1 illustrates a goal recognition task.

Example 1 Figure 1 illustrates a navigation environment
where a robot can move and pick up objects to achieve its
goals. The goal recognition task presented in the example is
composed of an initial state s0 (e.g., robot position), a set of
goal hypotheses G = ⟨G0, G1, G2⟩, and a sequence of ob-
servations Ω (e.g., a sequence of movements, represented by
the dashed blue arrows). The domain definition Ξ can vary
according to the domain type used to formalize the environ-
ment dynamics, e.g., a deterministic discrete domain model, a
stochastic domain model, among others. For this example, we
consider that Ξ is a deterministic discrete domain model1. A
goal state specification G for this example can be defined as
the robot be at a certain location holding an object (e.g., G1

represents the robot holding the ball in the upper right corner
of the environment). Thus, based on the goal recognition task
depicted in Figure 1, it is possible to infer that, most likely,
the robot aims to achieve the goal condition G2 (e.g., holding
the box in the bottom right corner of the environment).

1In a deterministic discrete domain model the properties are de-
fined as propositional facts and the transition between states has only
one outcome, so every possible action has only one outcome.

Figure 1: Goal Recognition example.

3 Domain Model Types
Most of the early goal and plan recognition approaches treat
the problem as one of parsing, assuming the domain knowl-
edge includes not only the state transition function, but also
production rules restricting the space of possible plans [Geib
and Steedman, 2007]. To the best of our knowledge, the first
practical goal recognition approach using a domain model
recognizable by current approaches goes back to Lesh and
Etzioni [1995]. This approach, instead of abstracting plans
to strings from a grammar, uses a state transition system in-
duced by a planning domain much like that of Definition 1.
In effect, such planning domains induce graphs ⟨S,A⟩ via
their transition function γ, with vertices S and edges A as
in [Hong, 2001]. Definition 1 abstracts the specifics of the
domain definition and what constitutes a state and a transi-
tion system. Indeed, Ξ induces a number of elements of a
planning task, including a state space S , an action space A,
and a transition function γ. Throughout this survey we refine
domain model types defining what exactly states, actions, and
transition systems can be.

3.1 Classical Planning Domain Models
The most common domain model in goal recognition re-
search consists of the STRIPS fragment of PDDL [Fox and
Long, 2003], as used by the seminal work of Ramı́rez and
Geffner [2009] and much subsequent work [Martı́n et al.,
2015; Sohrabi et al., 2016; Pereira et al., 2017; Pereira et
al., 2020]2. In Classical Planning, the state space is of-
ten represented as a set of propositional facts F (i.e., in-
stantiated predicates) denoting what is true in the environ-
ment, or, alternatively, as multivalued variables in a fi-
nite domain representation [Helmert, 2009]. Regardless of
the specific representation, a state comprises a set of vari-
ables V with a finite domain and the state space S is fi-
nite and well-defined. Likewise, in this setting, the action
space A comprises STRIPS-style actions of the form a =
⟨name(a), pre(a), eff(a), cost(a)⟩ with conjunctive precon-
ditions pre(a), and effects eff(a) = eff+(a) ∪ eff-(a) com-
prising both positive eff+(a) and negated facts eff-(a). Such
actions induce a transition function γ : S ×A 7→ S such that
γ(s, a) = s ′, where s ′ = (s ∪ eff+(a))−eff-(a). A Classical
Planning domain model is deterministic and discrete.

For example, for the navigation environment depicted in
Example 1, a Classical Planning task Π comprises a set of
instantiated facts, representing the state properties of this nav-
igation environment, where the robot and the objects are situ-
ated (e.g., (at robot loc-0-0), (at box loc-0-5)), and what

2While space limitations prevent us from providing details of the
PDDL format, we refer to Haslum et al. [2019]
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objects the robot is holding (e.g., (holding ball)), the action
space A = ⟨move, pick-up⟩ (we omit pre and eff+ to save
space), s0 = ⟨(at robot loc-0-0) (at box loc-0-5) . . .⟩,
and G0 = ⟨(and (at robot loc-2-5) (holding ball))⟩.

3.2 Stochastic Domain Models
By contrast, stochastic domains are often modeled in
terms of (Partially Observable) Markov Decision Processes
(POMDPs and MDPs), as in the approaches of Ramı́rez
and Geffner [2011] and Oh et al. [2011]. In such mod-
els, MDPs transition functions γ are stochastic and such that
s ′ ∼ γ(s, a), i.e., subsequent states are sampled following a
stochastic function P [s ′ | s, a] for s, s′ ∈ S , a ∈ A.

3.3 Continuous Domain Models
Vered and Kaminka [2017a; 2017b] formally define the task
of goal recognition by using the formalism of Continuous
Motion Planning. In this setting, the state space S of a
domain model Ξ is represented in a multi-dimensional Eu-
clidean space, where S ⊂ Rn, such that n ≥ 2. This type
of domain model usually represents environments with two
or three dimensions. The action space A is a discrete (pos-
sibly infinite) set of actions, encoding a transition function γ
between states. This transition function γ allows transform-
ing one state (s) into another (s ′) via paths through the state
space (e.g., a straight-line from s to s ′), rather than a discrete
state, as defined in Classical Planning. We note that other
recognition approaches in the literature also adopt this type of
domain model, such as [Masters and Sardina, 2017; Vered et
al., 2018; Kaminka et al., 2018; Masters and Sardina, 2019a;
Masters and Sardina, 2019b]. For the navigation environment
depicted in Example 1, a Continuous Motion Planning task
Π could be defined with three dimensions (x, y, z), so the ac-
tions space A = ⟨move, pick-up⟩ would be performed over
continuous values in x, y, and z, whereas s0 and G would
be represented as a pose (e.g., position and orientation) of
the robot r and the objects in the environment, for instance,
the robot pose would be x(r) = 0.28, y(r) = 1.44, z(r) =
0.93, θ(r) = 45◦.

3.4 Optimal Control Domain Models
Optimal Control aims to control a dynamical system such that
its output follows a desired value, which may be a fixed or
changing value [Bertsekas, 2017]. Pereira et al. [2019b] use
concepts of Optimal Control for recognizing goals in approx-
imate continuous domain models. To model Optimal Control
problems and the range of possible agent behavior, the au-
thors adopt the formalism of Finite-Horizon Optimal Control
(FHOC) [Bertsekas, 2017] problems, incorporating and com-
bining some terminologies of Control [Borrelli et al., 2017]
and Automated Planning [Geffner and Bonet, 2013] to ac-
count for constraints and goal conditions (also referred to as
target regions in the Control literature).

In this setting, transitions between states follow a station-
ary, discrete–time dynamical system xk+1 = γ(xk, uk, wk),
where for each time point k ∈ [0, N ], xk is the state, uk is the
control input and wk is a random variable with a probability
distribution that does not depend on past wj , j < k. States
xk ∈ S , controls uk ∈ U , and disturbances wk ∈ W are

required to be part of Rn. For extracting trajectories, agents
seek to transform initial states x0 into states xN with spe-
cific properties. These properties are given as logical formu-
las over the components of states xk, and the set of states
SG ⊆ S are those where the desired property G, or goal,
holds. The preferences of observed agents to pursue specific
trajectories are accounted for with cost functions of the form
J(x0) = E{g(xN )+

∑N−1
k=0 g(xk, uk, wk)}, where g(xN ) is

the terminal cost, and g(xk, uk, wk) is the stage cost. FHOC
problems are defined as an optimization problem whose solu-
tions are trajectories (i.e., policies) that describe the range of
possible optimal behaviors of observed agents.

3.5 Approximate, Incomplete, and Learned
Domain Models

Regardless of the nature of the underlying model, one of the
key bottlenecks in planning, and by extension, goal recogni-
tion, is the acquisition of a model Π from either structured
or unstructured data. While research on reinforcement learn-
ing yielded reliable model acquisition techniques for stochas-
tic domains driven by reward functions [Sutton and Barto,
2018], relatively less emphasis has been given to the auto-
matic learning of Classical Planning models, with few tech-
niques capable of generating the type of lifted PDDL models
used by most of the approaches described in this survey. Nev-
ertheless, there is renewed focus on developing mechanisms
to learn classical planning models from structured [Aineto et
al., 2019b; Suárez-Hernández et al., 2020] and unstructured
data [Asai and Fukunaga, 2018].

These advances have led to a number of approaches for
goal recognition using automatically derived models. Amado
et al. [2018] develop a goal recognition approach that learns
PDDL models from unstructured data allowing symbolic ap-
proaches [Pereira et al., 2017] to quickly solve problems en-
coded in images. Similarly, Pereira et al. [2019a] adapt exist-
ing landmark-based goal recognition approaches to deal with
incomplete STRIPS domain models [Weber and Bryce, 2011;
Nguyen et al., 2017], which assume that the model available
to the recognizer might contain imprecisions (possible pre-
conditions and effects) due to imperfect model acquisition.
Pereira et al. [2019b] develop a goal recognition approach for
continuous control domains that uses an approximate learned
transition function and an optimal policy to infer goals by
adapting existing symbolic techniques [Vered et al., 2016].
Both approaches achieve a level of accuracy comparable to
traditional approaches that rely on authored domains3, in-
dicating that traditional recognition approaches can be aug-
mented to cope with learned models, even when the models
themselves might have flaws from the learning process.

4 Observation Types
Observations constitute the key piece of evidence for agent
behavior in goal recognition problems. In practice, observa-
tions are an indirect projection of an observed agent’s behav-
ior, and can be thought of as whatever the sensing capabilities

3Authored domains are domain models written by a human using
a specification language like PDDL.
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of the agent performing goal recognition can provide. As we
see in Section 6.2, the model we assume drives agent behav-
ior influences the nature of how observations are generated.
Such dependency on the model leads us to use Definition 3 as
an intermediary structure between an agent’s behavior model
and the generation of observations.

Definition 3 (Trajectories) Let π be a solution to a planning
task Π, π⃗ is a trajectory induced by π. For Classical Plan-
ning tasks, π⃗ is a sequential plan π; for MDPs and stochastic
problems π⃗ is sequence of transitions from s0 to G following
policy π while complying with the transition function; and
for Continuous Planning or Control tasks, π⃗ is a sequence
of poses or configurations (e.g., coordinates ⟨x, y, z⟩ and a
velocity) between which there are infinite intermediary poses.

Having defined trajectories, we can formally define how
actual observations are generated in Definition 4.
Definition 4 (Observations) Let π⃗ = ⟨a⃗1, . . . , a⃗n⟩ be a tra-
jectory for planning task Π = ⟨Ξ, s0, G⟩. An action projec-
tion function tp(s, a⃗) : S ×A 7→ A⃗ is a function that maps
actions to sequences of zero or more observations. An obser-
vation sequence generation function op(s0, π⃗) is a function
mapping a trajectory π⃗ into an observation sequence:

op(s0, π⃗) =

{
⟨⟩ if π⃗ = ⟨⟩
⟨tp(s0, a⃗1)⟩ · op(⟨a⃗2, . . . , a⃗n⟩) if π⃗ = ⟨a⃗1, . . . , a⃗n⟩

Then, a sequence of observations Ω is a sequence projected
from π⃗ into observation state A⃗ maintaining their order.

The sensors available to the observer impose limitations
on types of observations. While most approaches construe
observations as action descriptions of some sort, this is not
necessarily the most realistic abstraction of how sensor data
may be supplied to a goal recognizer. For instance, modern
computer vision approaches to object detection [Wang et al.,
2020] may provide a more reliable representation of the cur-
rent status of objects in an image than action identification.
Indeed, recent work on goal recognition as planning [Sohrabi
et al., 2016] explicitly handles observations as states, the dif-
ference of which we formally define as follows.

Definition 5 (Action and State Observations) Let π⃗ =
⟨a⃗1, . . . , a⃗n⟩ be a trajectory for the planning task Π and
tp(·, ·) be an action projection. A sequence of observations
Ωπ⃗ is a sequence of actions from π⃗ if tp(·, ·) : S ×A 7→ A,
i.e., if A⃗ = A. Alternatively, a sequence of state observations
Ωs is a sequence of states from Sπ⃗ if tp(·, ·) : S ×A 7→ S ,
i.e., if A⃗ = S . We denote the observation corresponding to
action ai as a⃗i and that corresponding to state si as s⃗i

For the navigation environment depicted in Exam-
ple 1, action observations in the Classical Planning set-
ting could be ⟨a⃗0 = (move loc-0-0 loc-0-1), a⃗1 =
(move loc-0-1 loc-0-2), . . .⟩, and state observations in Con-
tinuous Motion Planning setting could be ⟨s⃗0 = x(r) =
0.28, y(r) = 1.44, z(r) = 0.93, θ(r) = 45◦, s⃗1 = x(r) =
0.55, y(r) = 3.73, z(r) = 1.12, θ(r) = 90◦, . . .⟩.

Given limitations in the sensing capability of the recog-
nizer, observations may contain flaws, from missing to out-
right wrong/noisy observations, formalized in Definition 6.

Definition 6 (Missing and Noisy Observations) Let Π be a
planning task, π be a valid plan for Π and Ω be an observa-
tion sequence induced by an observation generation function
op(s0, ·) with an action projection function tp(·, ·). An obser-
vation sequence Ω misses observations (is a partial observa-
tion sequence) with respect to the plan π if the tp(·, ·) function
contains a mapping a 7→ ⟨⟩ for some action a, i.e., it maps
one or more actions into the empty sequence. An observation
sequence Ω contains noisy observations with respect to the
plan π if the tp(si−1, ai) function maps ai into a non-empty
sequence containing either one or more: (i) actions aj ̸= ai

(for action observations); or (ii) states si ̸∈ γ(si−1, ai).

Indeed, most early approaches deal with missing observa-
tions implicitly by imposing a sequential constraint on the
occurrence of elements of Ω in the plans considered plausible
for a goal hypothesis G [Ramı́rez and Geffner, 2009], or ig-
noring most observations focusing on the overlap with neces-
sary conditions [Pereira et al., 2017]. Most approaches also
deal with noisy observations either implicitly [Ramı́rez and
Geffner, 2010; Pereira et al., 2020], or not at all [Ramı́rez and
Geffner, 2009]. In contrast, Sohrabi et al. [2016] compile Π
into a single planning task with special predicates represent-
ing compliance with observations and achievement of goal
hypotheses, as well as additional actions to achieve such pred-
icates. This compilation ensures that goals whose plans have
the least cost while complying with the most observations
have higher probability. An optimal sequence of observations
is extracted from an optimal plan and a sub-optimal sequence
of observations from extracted of a sub-optimal plan.

5 Agent Assumptions
There are two key types of assumption regarding the ob-
served agent that most approaches take into account during
the recognition process: awareness, and optimality.

5.1 Awareness
The awareness assumption determines whether the agent is
aware of it being monitored and what the attitude of the agent
is towards the observer. Research on goal recognition char-
acterize such awareness during the recognition process as
follows [Armentano and Amandi, 2007; Sukthankar et al.,
2014]. Intended Recognition is the recognition process in
which the observed agent is aware of the process of recog-
nition. Therefore, in this type of recognition process the ob-
served agent usually cooperates with the process by notifying
the recognizer about its interactions in the environment. Ob-
structed Recognition, by contrast, is such that the observed
agent is aware of the process of recognition and obstructs pur-
posely the process, so the agent intentionally does not coop-
erate with the recognition process. Keyhole Recognition is a
recognition process in which the observed agent is unaware
of the process of recognition, and the interactions performed
by the observed agent are partially observable inputs to the
recognition process. This type of assumption on recognition
process is the most common, since it allows the recognizer
to ignore any process of interpretation of the actions by the
observed agent as either adversarial or trying to be cooper-
ative. Indeed, using such minimal level assumptions has led
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to many of the current state-of-the-art recognition approaches
to be vulnerable to either changes in target agent behavior or
outright misdirection, especially when taking into considera-
tion inferred agent preferences [Masters et al., 2021].

5.2 Optimality

We now examine what is likely to be the most common as-
sumption among goal recognition models, which is that the
agent under observation either behaves optimally (i.e., per-
fectly rationally), or at least approximately optimally. The
reason for this assumption is grounded on the fact that most
early approaches to goal recognition, and indeed many more
recent ones, carry out recognition by generating valid plans
for all goal hypotheses G. Since it is possible for planning
problems to have infinitely many arbitrary plans that achieve
G (e.g., by introducing irrelevant actions), methods that filter
plausible goals by generating plans must assume optimality
to bound the computation of such plans.

By contrast, methods that yield a probability distribution
for P [G | Ω] must have a criterion to assign probabilities to
goal hypotheses, which often follows the assumption that
agents under observation are approximately optimal having
P [G | Ω] proportional to how the plans that can project Ω
are close to optimal plans towards G [Ramı́rez and Geffner,
2010; Sohrabi et al., 2016], or, alternatively, optimal poli-
cies [Ramı́rez and Geffner, 2011]. Conversely, Pereira et
al. [2017] reasons over necessary conditions to achieve goals
G, instead of considering distributions over the possible plans
an agent might choose to achieve G. In this case, no assump-
tions are made regarding agent optimality and probabilities
are assigned by the degree to which the observations can ac-
count for such necessary conditions.

Indeed, Masters and Sardina [2019b] explore how the per-
vasiveness of the rationality assumption leads to errors in
goal recognition, introducing a mechanism to automatically
gauge rationality and modulate earlier formulas to compute
P [G | Ω]. Assuming rationality and honesty from the agents
leads to a number of other weaknesses in recognition accu-
racy [Masters et al., 2021], allowing agents to act irrationally
to bias recognition away from the actual goal of the agent.

Zhi-Xuan et al. [2020] relax the optimality (rational-
ity) assumption, and introduce an approach that deals with
sub-optimal behavior by modeling the observed agents as
boundedly-rational planners. Here, bounded-rationality re-
stricts the amount of resources available to an agent for plan-
ning, restricting how much the observed agent can plan. The
resulting approach performs online Bayesian inference of
goals and plans by interleaving resource-limited plan search
with agent observations. This boundedly-rational approach
accurately infers goals from both optimal and non-optimal
behaviors involving failure and back-tracking.

6 Goal Recognition Approaches

We now explore approaches in terms of the underlying mech-
anisms to infer the correct goal, the algorithms underpinning
each approach, and how they process observations.

6.1 Filtering vs. Ranking and Probabilities
One of the key assumptions of goal recognition tasks is that
there is a single intented goal G* among the goal hypothe-
ses G. Nevertheless, most realistic goal recognition problems
impose constraints on the quality of the observations and the
level of observability afforded by the recognizer. This means
that inferring goals can be fraught with uncertainty when ob-
servations suffer from flaws such as noisy and missing obser-
vations. Thus, while one may consider the problem of goal
recognition as a filtering process aimed at providing all goal
hypotheses G consistent with Ω [Ramı́rez and Geffner, 2009],
such set of goals may be empty when Ω is too noisy, or en-
compass all hypothesis space G when Ω is too small. In such
cases, it is useful to infer a set of potentially correct goals,
either ranked by some preference relation, or, ideally, a prob-
ability distribution P

[
G* = G

]
, ∀G ∈ G.

Ramı́rez and Geffner [2010] formulate a probabilistic in-
terpretation of goal recognition whereby the solution is prob-
ability P [G | Ω] of a given goal G, given observations Ω. In-
stead of computing that probability directly, most approaches
use Bayes rule, which stipulates that P [G | Ω] = P[Ω|G]P[G]

P[Ω] ,
and compute P [Ω | G]. The conditional probability of ob-
servations given a goal is directly related to the probabil-
ity of the observed agent choosing a plan π for a particu-
lar goal G, which leads to the most common assumption for
plan preference, which is that observed agents are approxi-
mately optimal and prefer plans close to optimal, and thus
P [G | Ω] ∝ (cost(Ω) − cost(π*)). Martı́n et al. [2015] de-
velop a probabilistic approach to goal recognition that relies
on planning graphs. Sohrabi et al. [2016] compute the prob-
ability P [π | G] of the top-k plans π consistent with G while
complying with observations Ω as a proxy for P [Ω | G]. Mas-
ters and Sardina [2017; 2019a] reformulate the probabilistic
interpretation of Ramı́rez and Geffner [2010] in the context
of path-planning, and show that a single-observation recogni-
tion yields similar results in less than half of the recognition
time. In contrast, Pereira et al. [2020] rank hypotheses G fol-
lowing a heuristic based on the number of landmarks inferred
from observations, returning a set of goals within a θ thresh-
old of the highest ranking hypothesis. While probabilistic ap-
proaches notionally incorporate a prior probability P [G] indi-
cating agent preferences over goals, most approaches actually
ignore such prior, and instead assume a uniform prior over the
goals, leading to potential vulnerability to deception [Masters
et al., 2021].

6.2 Search vs. Heuristic Computation
While seminal goal recognition approaches rely on various
graph analysis algorithms [Lesh and Etzioni, 1995; Hong,
2001], the approaches that have dominated the state-of-the-
art in recent years can be broadly divided into two categories.

The first category relies on compilations of the goal recog-
nition task into Classical Planning tasks, running the search
procedure of a planner once or more and comparing the
resulting plans to extract G* [Ramı́rez and Geffner, 2010;
Sohrabi et al., 2016]. The second category uses the struc-
ture of planning tasks derived from ΠΩ

G by adapting plan-
ning techniques to compute G* either through the compu-
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tation of a heuristic or by comparing heuristic values com-
puted for each goal hypothesis. Typical examples of the first
category include Ramı́rez and Geffner [2009] and Sohrabi et
al. [2016]. Ramı́rez and Geffner [2009] generate a planning
task Π from ΠΩ

G by compiling away the observations such
that when a plan tries to solve Π, it must generate plans com-
patible with the observations Ω. By contrast, typical exam-
ples of the second category include the approaches developed
by Pattison and Long [2010], Martı́n et al. [2015], Pereira et
al. [2017], Vered and Kaminka [2017b], and Santos [2021].
Pattison and Long [2010] propose a probabilistic recognition
approach that uses heuristic estimation and domain analysis
to determine which goals an agent is pursuing. Martı́n et
al. [2015] develop a heuristic estimation approach that relies
on planning graphs. Pereira et al. [2017] compute the set of
landmarks [Hoffmann et al., 2004] for each goal hypothesis
G ∈ G and computing which landmarks have definitely been
reached by plans that comply with the observations. Vered
and Kaminka [2017b] propose a very effective recognition
heuristic for continuous domain models. Recently, Santos et
al. [2021] compute a goal ranking using linear programming
over operator counting constraints on the problems induced
by the goal hypothesis.

6.3 Online and Offline
Approaches to goal recognition differ in the way that the
observations are perceived and revealed from the perspec-
tive of the recognizer. Most seminal approaches perform the
recognition task offline [Ramı́rez and Geffner, 2009; Ramı́rez
and Geffner, 2010; Martı́n et al., 2015; Sohrabi et al., 2016;
Pereira et al., 2017; Masters and Sardina, 2019a], in which
the observations Ω are all revealed at once and up front, be-
fore starting the recognition process. The converse way to
perform the recognition task is online, in which the observa-
tions Ω are revealed incrementally and recognition takes place
multiple times, as each observation is revealed.

Online and offline goal recognition are not only differ-
ent in the way that the observations are perceived and re-
vealed, but also in the way the approaches are designed
to perform the recognition task. Online goal recognition
approaches are designed to be efficient and deal with in-
cremental observations. Essentially, it is possible to per-
form online goal recognition by repeatedly calling an of-
fline recognition approach for every new revealed observa-
tion. However, as proven by Vered and Kaminka in [2017a;
2017b], this is quite inefficient. In particular, they develop
an online goal recognition that requires at best one call to a
planner per goal hypothesis and at most half the calls of the
seminal offline approach of Ramı́rez and Geffner [2010].

7 Related Problems
Goal Recognition can be seen as a sub-problem of Plan
Recognition, and it is closely related to a variety of prob-
lems in the literature. Besides what we survey in this paper,
which focuses on Planning models, other lines of research in
Goal and Plan Recognition rely on different domain settings,
such as context-free grammars [Geib and Goldman, 2009],
plan libraries [Avrahami-Zilberbrand and Kaminka, 2005;

Zhuo and Li, 2011; Mirsky et al., 2016; Mirsky et al., 2019],
among others. Given the space limitations, we focus on exist-
ing research closely related to Goal Recognition as Planning.

To the best of our knowledge, the first practical goal recog-
nition approach using a domain model is the work of Lesh and
Etzioni [1995]. However, the first approach that explicitly ad-
dresses goal inference and action understanding as “inverse”
planning is that of Baker et al. [2009]. In this work, the au-
thors develop a probabilistic framework based on Bayesian
“inverse” planning for modeling human action understand-
ing. This probabilistic framework attempts to approximate
the principle of rationality, which expects that the observed
agents plan approximately rationally to achieve their goals.
Ramı́rez and Geffner [2009; 2010] follow Baker et al. [2009],
and formally define Plan Recognition as Planning, claim-
ing that Plan Recognition can be defined as Planning in “re-
verse”. Recent research extends the original problem for-
mulation of Ramı́rez and Geffner for recognizing plans in a
variety of domain models, such as continuous domain mod-
els [Kaminka et al., 2018] and epistemic planning prob-
lems [Shvo et al., 2020]. Alternatively, Aineto et al. [2019a]
introduce Model Recognition as Planning, a novel recogni-
tion task that aims to identify the model that best explains a
sequence of observations.

Keren et al. [2014; 2020] provide an alternate view of the
goal recognition task called Goal Recognition Design that fo-
cuses on modifying the domain model in order to facilitate
the goal recognition process. The aim of this task is optimiz-
ing the domain design so that recognition approaches can dis-
ambiguate goals with as few observations as possible. Over
the past years, a variety of goal recognition design (and de-
rived) approaches have been developed over distinct types of
domain models and settings, such as [Wayllace et al., 2016;
Shvo and McIlraith, 2020].

Pozanco et al. [2018] develop a Counterplanning approach
that relies on techniques from goal recognition and planning
to prevent observed agents from achieving their goals. Most
recently, Bernardini et al. [2020] develop a set of strategies
for Goal Obfuscation, in which the observed agent aims to
maintain its goal private, without revealing it to an observer.
In contrast to Goal Obfuscation, MacNally et al. [2018] for-
malize Transparent Planning, in which agents aim to implic-
itly communicate their true intended goal to observers, facil-
itating goal (and intention) recognition. Analogously, Legi-
ble Planning addresses the task of generating plans that best
disambiguate their goals from a set of other goal hypothe-
sis from an observer’s perspective. This task has been first
introduced in the context of Robot Motion Planning by Dra-
gan et al. [2013], and then extended to other planning set-
tings [Kulkarni et al., 2019; Persiani and Hellström, 2021].

8 Conclusions and Perspectives
We have surveyed advances in Goal Recognition as Planning
from recent years, classifying the various aspects that distin-
guish the approaches, including the types of domains being
handled, how observations are handled, what assumptions are
being made about the agent under observation, culminating
in the algorithms that underpin such approaches. We summa-
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Approach Technique Model Obs. Agent Solution
Flaws Assumption

Offline
Ramı́rez and Geffner
[2009]

Search
Compilation

Authored
Classical

Missing Optimal
Keyhole

Filtering

Ramı́rez and Geffner
[2010]

Search
Compilation

Authored
Classical

Missing ≈Optimal
Keyhole

Probability

Pattison and Long
[2010]

Heuristic Authored
Classical

Missing Optimal
Keyhole

Probability

Ramı́rez and Geffner
[2011]

Search Authored
Stochastic

Missing
& Noisy

Optimal
Keyhole

Probability

Martı́n et al.
[2015]

Heuristic Authored
Classical

Missing ≈Optimal
Keyhole

Ranking
Probability

Sohrabi et al.
[2016]

Search
Compilation

Authored
Classical

Missing
& Noisy

≈Optimal
Keyhole

Ranking
Probability

Masters and Sardina
[2017; 2019a]

Search Authored
Discrete
/Continuous

Missing ≈Optimal
Keyhole

Ranking
Probability

Pereira et al.
[2017; 2020]

Heuristic Authored
Classical

Missing
& Noisy

None
Keyhole

Ranking

Amado et al.
[2018]

Heuristic
/Search

Learned
Classical

Missing None
Keyhole

Ranking
Probability

Masters and Sardina
[2019b]

Search Authored
Discrete
/Continuous

Missing ≈Optimal
Adversarial

Ranking
Probability

Pereira et al.
[2019a]

Heuristic Incomplete
Classical

Missing None
Keyhole

Ranking

Santos et al.
[2021]

Heuristic Authored
Classical

Missing
& Noisy

None
Keyhole

Ranking

Online
Vered and Kaminka
[2017a]

Heuristic Authored
Continuous

Missing Optimal
Keyhole

Ranking
Probability

Vered and Kaminka
[2017b]

Search Authored
Continuous

Missing Optimal
Keyhole

Ranking
Raking
Probability

Vered et al.
[2018]

Heuristic
/Search

Authored
Discrete
/Continuous

Missing ≈Optimal
Keyhole

Ranking

Pereira et al.
[2019b]

Search Learned
Control

Missing Optimal
Keyhole

Ranking
Probability

Zhi-Xuan et al.
[2020]

Search Authored
Classical
/Stochastic

Noisy None
Keyhole

Ranking
Probability

Table 1: Goal Recognition landscape.

rize this classification in Table 1, where Technique refers to
the underlying approach, Model refers to the type of model
that describes the tasks (whether authored or learned, and the
domain description), Observation Flaws refer to the potential
flaws in the observations, Agent Assumption refers to the as-
sumptions made about the agent, and finally, Solution refers
to the type of solution provided by the approach.

Despite the substantial progress in the approaches we sur-
vey, many research challenges remain. Existing approaches
assume pure models in some sense, so models are either
continuous or symbolic. Thus, future research should focus
on what Ramı́rez calls interesting domains, e.g., models de-
scribed in PDDL+ [Fox and Long, 2006], or temporal plan-
ning [Fox and Long, 2003]. Similarly, few approaches deal
with multi-agent domains, which we do not survey [Shvo
et al., 2017; Argenta et al., 2017; Zhuo, 2019]. Expand-
ing the types and complexity of the domains handled by goal
recognition approaches is fundamental for the application of
such technologies. Such applications include detecting de-
viation from safety procedures for work environment safety,
and helping with activities of daily living for elderly care. As
the research matures into deployed technologies, the ability to
predict an individual goal raises significant ethical considera-
tions, primarily on how to make decisions based on the output
of goal recognition approaches. While such decisions are out-
side the scope of the goal recognition process itself [Etzioni
and Etzioni, 2017], practitioners must be especially mindful

of two key limitations in goal recognition: low confidence
predictions and low fidelity models.

Finally, the challenge remains for researchers to compare
approaches in a principled way, to the effect that current re-
sources could be improved in two ways. First, most ap-
proaches use variations of the original problem description
and dataset developed by Ramı́rez and Geffner [2009], all
of them derived from problems in the International Planning
Competition (IPC). While IPC domains constitute challeng-
ing settings for planning implementations, these domains are
not necessarily realistic or representative of goal recognition
problems. Second, and unlike planning algorithms, many of
the approaches surveyed lack an openly accessible reference
implementation amenable to objective comparison. Thus, de-
veloping a unified benchmark in a common format using rep-
resentative goal recognition problems, and making all efforts
openly available constitute key targets for future efforts. Hav-
ing said that, we believe that this survey will be able to guide
new research directions in Goal and Plan Recognition.
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