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Abstract
Semantics based on weak admissibility were re-
cently introduced to overcome a problem with self-
defeating arguments that has not been solved for
more than 25 years. The recursive definition of
weak admissibility mainly relies on the notion of
a reduct regarding a set E which only contains ar-
guments which are neither in E, nor attacked by E.
At first glance the reduct seems to be tailored for
the weaker versions of Dung-style semantics only.
In this paper we show that standard Dung semantics
can be naturally reformulated using the reduct re-
vealing that this concept is already implicit. We fur-
ther identify a new abstract principle for semantics,
so-called modularization describing how to obtain
further extensions given an initial one. Its impor-
tance for the study of abstract argumentation se-
mantics is shown by its ability to alternatively char-
acterize classical and non-classical semantics.

1 Introduction
Dung’s abstract argumentation frameworks (AFs) provide a
formally simple basis to capture the essence of different non-
monotonic formalisms [Dung, 1995]. They are focusing en-
tirely on conflict resolution among arguments, treating the lat-
ter as abstract items without logical structure. Hence, the only
information available in AFs is the so-called attack relation
that determines whether an argument is in a certain conflict
with another one. Coherent world views, i.e. jointly accept-
able subsets of the arguments, are determined by so-called
semantics.

Until recently, most of the existing argumentation seman-
tics were either based on the concept of naivity or admissibil-
ity [van der Torre and Vesic, 2017]. The former is satisfied
if the selected sets are maximal conflict-free. A set of ar-
guments S is admissible if each attacker of an element of S
is counterattacked by some element within S. This means,
naive sets do not have to defend themselves against any ar-
gument whereas admissible ones have to counterattack each
single attacker. In a recent paper [Baumann et al., 2020b] a
mediating position between these two extreme cases was in-
troduced, so-called weak admissibility. The new concept lim-
its the effect of self-defeating arguments, that is, arguments

which attack themselves directly or indirectly through an odd
loop of arguments. Intuitively, a self-defeating argument can-
not rule out an argument it attacks unless the self-defeat is
eliminated by an argument breaking up the odd loop from
outside. The newly introduced semantics satisfying weak ad-
missibility are based on the notion of a reduct of an AF. In-
tuitively, the E-reduct of an AF is the part of the AF which
is still undecided, given a conflict-free set of arguments E is
accepted.

Among others, the reduct induced by a certain extension
will be a central notion in the present paper. Let us consider
the following example illustrating some of the core concepts
we are going to investigate. Assume an agent living in Eu-
rope is planning a trip. After carefully weighing all options,
the (exclusive) choice is between Paris and Las Vegas. More-
over, the agent did not yet decide whether to travel by train
or airplane. Of course, Las Vegas is too far away to travel by
train. The agent’s knowledge base can thus be expressed by
the following simple AF:

train planeV egasParis

Assume the agent decides for Paris. By standard assumptions,
this renders Paris “accepted”, Vegas “rejected” and train as
well as plane are still open. This can be formalized by the
reduct of the given AF:

train planeV egasParis

This reduced AF possesses both train and plane as acceptable
arguments, formalizing that the agent can reach Paris both
ways. With no further constraints imposed, this means both
{Paris, train} and {Paris, plane} should be acceptable.
The so-called modularization property will formalize this ob-
servation. If the agent decides for Vegas, the argument plane
is not challenged anymore in the corresponding reduced AF,
yielding {V egas, plane} as unique extension.

Although these concepts appear quite natural and are in-
deed implicit in many AF semantics proposed in the litera-
ture, the modularization property turned out to be a surpris-
ingly powerful tool to investigate their properties and behav-
ior. In this extended abstract we highlight some main results
around weak admissibility and modularity. In particular:
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• We rephrase some of the standard notions of abstract ar-
gumentation in terms of the reduct. This sheds new light
on the relationship between standard and weak admissi-
bility semantics.

• We present new interesting properties for semantics,
most notably the property of modularization, which go
beyond the properties studied so far in abstract argumen-
tation. These properties play a key role for the investi-
gation of former and newly introduced semantics.

2 Background
Let us start by giving the necessary preliminaries.

2.1 Standard Concepts and Classical Semantics
We fix a non-finite background set U . An argumentation
framework (AF) [Dung, 1995] is a directed graph F =
(A,R) where A ⊆ U represents a set of arguments and
R ⊆ A × A models attacks between them. In this paper we
consider finite AFs only (cf. [Baumann and Spanring, 2015;
Baumann and Spanring, 2017] for a consideration of infinite
AFs). Let F denote the set of all finite AFs over U . Given an
AF F = (B,S) we let A(F ) = B and R(F ) = S. Now as-
sume F = (A,R). ForU ⊆ Awe letF↓U= (A∩U,R|U×U ).
For a, b ∈ A, if (a, b) ∈ R we say that a attacks b as well as
a attacks (the set) E given that b ∈ E ⊆ A. A set U ⊆ A is
called unattacked if there is no a ∈ A\U attacking U . More-
over, E is conflict-free in F (for short, E ∈ cf (F )) iff for
no a, b ∈ E, (a, b) ∈ R. We say a set E classically defends
(or simply, c-defends) an argument a if any attacker of a is
attacked by some argument of E.

A semantics σ is a mapping σ : F → 22
U

where we have
F 7→ σ(F ) ⊆ 2A, i.e. given an AF F = (A,R) a semantics
returns a subset of 2A. In this paper we consider so-called
naive, admissible, complete, preferred, grounded and stable
semantics (abbr. na , ad , co, pr , gr , stb).

Definition 2.1. Let F = (A,R) be an AF and E ∈ cf (F ).

1. E ∈na(F ) iff E is ⊆-maximal in cf(A),

2. E ∈ad(F ) iff E c-defends all its elements,

3. E ∈co(F ) iff E ∈ ad(F ) and for any x c-defended by E
we have, x ∈ E,

4. E ∈pr(F ) iff E is ⊆-maximal in co(F ),

5. E ∈gr(F ) iff E is ⊆-minimal in co(F ), and

6. E ∈stb(F ) iff E+ = A \ E.

In addition, we also consider strong admissible sets relying
on a recursive definition [Baroni and Giacomin, 2007].

Definition 2.2. Let F = (A,R) be an AF. A set E ⊆ A
strongly defends a ∈ A if for any attacker b of a, there is
some c ∈ E \{a} attacking b and E \{a} strongly defends c.
A set E ⊆ A is strongly admissible in F (E ∈ ad s(F )) if
each a ∈ E is strongly defended by E.

Assume we are given an AF F and a semantics σ. Then we
say an argument a ∈ A is credulously accepted (skeptically
accepted) if a ∈

⋃
σ(F ) (a ∈

⋂
σ(F )). If σ is uniquely

defined, i. e. |σ(F )| = 1 for each AF F = (A,R) we may

simply speak of accepted arguments as both notions coincide.
As usual, we slightly abuse notation and use σ ⊆ τ for two
semantics σ, τ if σ(F ) ⊆ τ(F ) for any AF F .

2.2 Reduct and Weak Admissibility
The reduct is a main subject of study in this paper. For a
compact definition, we use E+ = {a ∈ A | E attacks a} as
well as E⊕ = E∪E+ for a given AF F = (A,R). The latter
set is known as the range of E.
Definition 2.3. Let F = (A,R) be an AF and let E ⊆ A.
The E-reduct of F is the AF FE = (E∗, R ∩ (E∗ × E∗))
where E∗ = A \ E⊕.

By definition, FE is the subframework of F obtained by
removing the range of E as well as corresponding attacks,
i. e. FE = F↓A\E⊕ . Intuitively, the E-reduct contains those
arguments whose status still needs to be decided, assuming
the arguments in E are accepted. Consider therefore the fol-
lowing illustrating example.
Example 2.4 (Reduct and Admissibility). Let the F be the
AF depicted below. In contrast to {a} we verify the admis-
sibility of {b} in F . However, their reducts are identical and
contain the self-defeating argument c only.

a bc

F :

a bc

F {a} = F {b} :

Observe that the reduct does not contain any attacker of the
admissible set {b} in contrast to the non-admissible set {a}.

The reduct is the central notion in the definition of weak
admissible semantics [Baumann et al., 2020b]:
Definition 2.5. For an AF F = (A,R), E ⊆ A is called
weakly admissible (or w-admissible) in F (E ∈ adw(F )) iff

1. E ∈ cf (F ) and

2. for any attacker y of E we have y /∈
⋃

adw
(
FE
)
.

The major difference between the standard definition of ad-
missibility and the “weak” one is that arguments do not have
to c-defend themselves against all attackers: attackers which
do not appear in any w-admissible set of the reduct can be
neglected.
Example 2.6 (Example 2.4 ctd.). In the previous example
we observed {a} /∈ ad(F ). Let us verify the weak ad-
missibility of {a} in F . Obviously, {a} is conflict-free in
F (condition 1). Moreover, since c is the only attacker of
{a} in F {a} we have to check c /∈

⋃
adw

(
F {a}

)
(con-

dition 2). Since {c} violates conflict-freenes in the reduct
F {a} = ({c}, {(c, c)}) we find {c} /∈ adw

(
F {a}

)
yielding⋃

adw
(
F {a}

)
= ∅. Hence, c /∈

⋃
adw

(
F {a}

)
holds prov-

ing the claim.
Now weakly preferred semantics is defined in the natural

way as ⊆-maximal w-admissible extensions.
Definition 2.7. For an AF F = (A,R), E ⊆ A is called
weakly preferred (or w-preferred) in F (E ∈ prw(F )) iff E
is ⊆-maximal in adw(F ).
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3 Semantics and their Reduct
The reduct was introduced to define weak admissibility. At
first sight, it may seem that this is the only use of a some-
what ad hoc concept. However, it turns out that the notion
of the reduct also helps to understand the behavior of clas-
sical AF semantics, and in particular to identify interesting
connections between the classical and the new semantics. We
show that classical semantics can be characterized concisely
in terms of the reduct:

Proposition 3.1. Let F = (A,R) be an AF and E ∈ cf (A).

1. E ∈stb(F ) iff FE = (∅, ∅),
2. E ∈ad(F ) iff no attacker of E occurs in FE ,

3. E ∈pr(F ) iff E ∈ ad(F ) and
⋃
ad
(
FE
)
= ∅, and

4. E ∈co(F ) iff no attacker of E occurs in FE and no argu-
ment in FE is unattacked.

We proceed with the central modularization property. It
formalizes the following intuitive idea: given a solid point
of view based on an AF (an extension) and a ”compatible”
point of view based on the remaining AF (an extension of the
reduct), these can be merged to again obtain a solid point of
view (an extension of the original AF).

Definition 3.2. A semantics σ satisfies modularization if for
any AF F we have: E ∈ σ(F ) and E′ ∈ σ

(
FE
)

implies
E ∪ E′ ∈ σ(F ).
Proposition 3.3. Let F = (A,R) be an AF. Each semantics
σ ∈ {ad , co, pr , gr , stb} satisfies modularization.

The intuitive reason for σ = ad is that the reduct FE of
some E ∈ ad(F ) i) contains only arguments that do not at-
tack E and ii) contains all arguments that are not yet defeated
by E. Hence, E′ ∈ ad

(
FE
)

is compatible with E and all its
attackers are defeated, at least if E is present.

Thus, in some sense, one may view the modularization
property as a tool to verify whether a given semantics pos-
sesses some notion of defense. It is therefore no surprise
that naive semantics does not satisfy modularization. That is,
a naive extension is not restrictive enough to be compatible
with naive extensions of the corresponding reduct. A vanilla
odd cycle suffices to illustrate this.

Example 3.4. Of course, E = {a1} is a naive extension of
F = ({a1, a2, a3}, {(a1, a2), (a2, a3), (a3, a1)}). The cor-
responding reduct is FE = ({a3}, ∅) possessing the unique
naive extension E′ = {a3}. Since E ∪ E′ /∈ cf (F ), naive
extensions cannot be modular.

It is easy to recognize that the previous example makes use
of the fact that E = {a1} does not defend itself against {a3}
and thus tolerates E′ = {a3} in the reduct FE .

Let us return to Proposition 3.3. We claimed that preferred,
grounded and stable semantics satisfy modularization. One
may proof this assertion by showing that for those semantics,
it must hold that σ

(
FE
)
= {∅}, whenever E ∈ σ(F ). This

is stronger property than modularization and interesting on its
own. We will call this property meaningless reduct.

Definition 3.5. A semantics σ satisfies meaningless reduct if
for any AF F we have: E ∈ σ(F ) implies σ

(
FE
)
= {∅}.

Proposition 3.6. Each semantics σ ∈ {pr , gr , stb} satisfies
meaningless reduct.

Preferred and grounded semantics both satisfy meaningless
reduct and thus also modularization. In order to distinguish
them on an abstract level, we introduce a further property. We
consider the following notion:
Definition 3.7. A semantics σ satisfies unattack inclusion if
for any AF F and any unattacked argument a, there is some
E ∈ σ(F ) with a ∈ E; σ satisfies strict unattack inclusion if
for any unattacked argument a, {a} ∈ σ(F ) and additionally,
∅ ∈ σ(F ).

Apart from the possibly collapsing stable semantics all
classical Dung’s semantics satisfy unattack inclusion. As the
following Lemma formalizes, modularization even ensures
that all unattacked arguments occur in the same σ-extension,
if unattack inclusion is satisfied.
Lemma 3.8. Let σ be any semantics satisfying modulariza-
tion and unattack inclusion. If X is a set of unattacked argu-
ments in F , then there is some E ∈ σ(F ) with X ⊆ E.

We are now in the position to characterize grounded se-
mantics as⊆-least semantics regarding credulous acceptance.
Proposition 3.9. For any semantics σ satisfying unattack in-
clusion and modularization we have

⋃
gr(F ) ⊆

⋃
σ(F ) for

any AF F .
A further central result of this paper is the following:

Strongly admissible semantics can be seen as the ⊆-least se-
mantics among all semantics satisfying strict unattack inclu-
sion and modularization.
Theorem 3.10. For any semantics σ satisfying strict unattack
inclusion and modularization we have: ad s ⊆ σ.

4 Weak Admissibility Semantics
Let us now turn to the “weak” counterparts of Dung’s se-
mantics. In this section, we will discuss various properties
of weak admissibility semantics.Our first observation - with
a couple of interesting consequences - is that adw satisfies
modularization as well. Since weakly admissible extensions
are not admissible in general, this in particular implies that a
modular semantics σ does not necessarily satisfy σ ⊆ ad .
Theorem 4.1. Let F = (A,R) be an AF and E ∈ adw(F ).
Suppose E ∩ E′ = ∅. Then E′ ∈ adw

(
FE
)

if and only if
E ∪ E′ ∈ adw(F ).
Corollary 4.2. The semantics adw satisfies modularization.

Let us illustrate modularization for adw with a slightly ex-
tended version of the AF considered in Example 2.4.
Example 4.3. Let F be the AF depicted below.

c dbaF :

Since E = {b} is only attacked by a self-attacker in its reduct
FE , E ∈ adw(F ). Now E′ = {d} ∈ adw

(
FE
)

is trivial
since {d} is even admissible in FE .

c dbaFE :
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By modularization we obtain E ∪ E′ = {b, d} ∈ adw(F ).
Indeed, adw(F ) = {∅, {b}, {d}, {b, d}}.

We want to stress that modularization also helps to restrict
a given semantics σ. For example, the AF F cannot pos-
sess {c} as w-admissible extension, because modularization
would enforce {b, c} contradicting adw(F ) ⊆ cf (F ).

c dbaF {c} :

Analogously to strong admissibility (Theorem 3.10) we
formulate a concise assertion regarding weak admissibility.
Namely, adw can be seen as a ⊆-maximal semantics among
all semantics satisfying conflict-freeness and modularization.
This quite surprising result can without any doubt be consid-
ered as the main theorem of this section.

Theorem 4.4. For any conflict-free semantics σ satisfying
modularization and adw ⊆ σ, we already have σ = adw.

This means weak admissibility is among the least restric-
tive conflict-free semantics satisfying modularization which
sheds a new light on semantics based on it. The initial moti-
vation was to obtain a weaker version of defense, more pre-
cisely to disregard self-defeating arguments. The connection
to satisfaction of the modularization property established in
Theorem 4.4 is thus rather surprising: Being more liberal
than adw already forces a semantics σ to either drop conflict-
freeness or modularization. Moreover, it is interesting to see
that strong admissible semantics is in a certain sense the most
restrictive modular semantics (Theorem 3.10) while weak ad-
missible semantics is among the most liberal ones (Theo-
rem 4.4).

The modularization property allows us to infer that a w-
preferred extension E does not tolerate existence of weakly
admissible arguments in the reduct FE . This yields a charac-
terization of prw similar to classically preferred extensions,
replacing preferred and admissible with w-preferred and w-
admissible, respectively (see Proposition 3.1).

Theorem 4.5. Let F = (A,R) be an AF. Then E ∈ prw(F )
if and only if E is conflict-free such that

⋃
adw

(
FE
)
= ∅.

Since FE does not possess w-admissible arguments for
E ∈ prw(F ), we have prw

(
FE
)
= {∅}, implying prw sat-

isfies meaningless reduct and hence also modularization.

Corollary 4.6. The semantics prw satisfies meaningless
reduct and modularization.

Observe that we now have for any E ∈ cf (F )

• E ∈adw(F ) iff no attacker of E is in
⋃
adw

(
FE
)
,

• E ∈pr(F ) iff
⋃
adw

(
FE
)
= ∅

which is analogous to the characterizations for the classical
semantics given in Proposition 3.1, items 2 and 3.

5 Summary and Related Work
The investigation of argumentation semantics which rest
upon weaker notions of admissibility and defense than
Dung’s is rather new. This is somewhat surprising as poten-
tial problems with the original versions were already pointed

out by Dung himself. In this paper we presented fundamental
new results regarding weak admissibility semantics as well as
classical ones. We showed that the reduct plays a key role also
in the classical semantics, which sheds new light on the rela-
tionship between the new and the existing semantics. Among
others, we introduced the central property of modularization
playing a decisive role in finding new extensions as well as in
classifying semantics. In the full version of this paper [Bau-
mann et al., 2020a] we also analyzed strong equivalence and
identified the relevant kernels which allow strong equivalence
to be checked by a purely syntactic transformation; an inves-
tigation of the odd cycle-free and acyclic fragments of AFs
can also be found in this paper.

The handbook chapter [Baroni et al., 2018] deals with
modularity in AFs. It discusses and compares concepts like
directionality and SCC-recursiveness [Baroni and Giacomin,
2007], splitting [Baumann, 2011] as well as decomposabil-
ity, among others. The idea underlying all these concepts is
the division of an AF in different parts, s.t. the semantics of
the initial framework can be obtained by the semantics of the
smaller parts. Such divide and conquer approaches were al-
ready successfully implemented. For instance, in [Baumann
et al., 2011], it was shown that splitting methods may improve
the performance of algorithms computing extensions.

Weak admissibility satisfies conflict-freeness but violates
classical admissibility. Conflict-tolerant semantics in contrast
give up the requirement of conflict-freeness [Arieli, 2012;
Grossi and Modgil, 2015]. For instance, in weighted argu-
ment systems [Dunne et al., 2011] each attack is assigned a
numerical weight and conflicts within extensions are allowed
as long as a certain predefined inconsistency budget is not
exceeded. The issue of self-defeat was already studied in
[Pollock, 1987].Pollock analyzed argument-based defeasible
reasoning and proposed a semantics similar to grounded se-
mantics. This semantics considers self-defeat as self-attack
only, but not via arbitrary odd loops as we do.

This paper induces interesting future work directions. A
study of the relationship between the criteria investigated in
[Baroni et al., 2018] and modularization would contribute to
a deeper understanding of the latter; also consideration of fur-
ther criteria from the literature [Amgoud and Besnard, 2013;
Caminada and Amgoud, 2007]. Moreover, the capabilities
of modularization when trying to characterize semantics does
not appear to be exhausted at all. Finding further character-
izations, maybe with the help of additional abstract criteria,
is a promising future research direction. Since all semantics
considered in this paper are modular in the sense of Defini-
tion 3.2, it might also be interesting to perform a more ab-
stract and principled investigation: Why is this property im-
plicit for so many standard AF semantics? Is modularization
always connected to a certain notion of admissibility?
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