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Abstract

Anomaly mining is an important problem that finds
numerous applications in various real world do-
mains such as environmental monitoring, cyberse-
curity, finance, healthcare and medicine, to name
a few. In this article, I focus on two areas, (1)
point-cloud and (2) graph-based anomaly mining.
I aim to present a broad view of each area, and
discuss classes of main research problems, recent
trends and future directions. I conclude with key
take-aways and overarching open problems.
Disclaimer. I try to provide an overview of past
and recent trends in two areas within 4 pages. Un-
doubtedly, these are my personal view of the trends,
which can be organized differently. For brevity, I
omit all technical details and refer to corresponding
papers. Again, due to space limit, it is not possible
to include all (even most relevant) references, but a
few representative examples.

1 Point-cloud Anomaly Mining
Point-cloud data consists of points that reside in a feature
space, each of which can be seen as a d dimensional vector.
Anomalous points are typically referred to as outliers, and in
this section I will adopt this terminology.

Outlier mining has a very large literature, where most at-
tention has been given to outlier detection (OD) under var-
ious settings [Aggarwal, 2013]. There exist a large pool of
detectors that are distance-based, density-based, statistical-,
cluster-, angle-, and depth-based, among many others [Chan-
dola et al., 2009]. Most detection models assume outliers to
be scattered isolate points, while some specifically aim to de-
tect collective outliers that can be seen as micro-clusters [Han
et al., 2012]. Another class of detectors target contextual out-
liers, which stand out within a specific context [Liang and
Parthasarathy, 2016; Macha et al., 2018]. These can also be
seen as conditional outliers [Song et al., 2007]. In addition,
dynamic/streaming point-cloud OD has been studied at large
[Gupta et al., 2013] as outliers may often arise in settings
where data is collected and monitored over time.
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In the rest of this section, I discuss some of the trending
classes of problems in outlier mining, organized into four
lines of work as (1) user-centric OD, (2) deep learning based
OD, (3) automating OD, and (4) fairness-aware OD.

1.1 User-centric Outlier Detection
User-centric outlier mining comprises two related topics: (i)
explanations, and (ii) human-in-the-loop detection (HILD).
Explaining the detected anomalies is crucial for settings in
which outliers need to be vetted by human analysts. The pur-
pose of vetting could be root-cause analysis/troubleshooting
or sanity-checking/justification. An example to the former
scenario is when the analyst identifies faults or inefficiencies
in a production line or data center through OD and aims to
fix the issues generating these outliers. The aim for the lat-
ter scenario is to distinguish statistical outliers from domain-
relevant ones, where e.g. in claims auditing, not all outliers
are necessarily associated with fraud. Related, HILD aims
to leverage human feedback for sieving mere statistical out-
liers out of domain-relevant ones to eliminate false positives
and thereby increase detection rate. These two problems are
intertwined, since explanations could be presented to human
analysts for acquiring effective feedback during HILD.

Although the vast body of work on outlier explanations
is recent, the earliest example dates back several decades
[Knorr and Ng, 1999], which provided what is called “in-
tensional knowledge” by identifying minimal subspaces in
which outliers stand out. Most existing work in this area are
discriminative, since explanation proceeds detection that out-
puts (outlier/inlier) labels, and aim to identify subspaces that
well-separate the outliers from the inliers [Dang et al., 2014;
Kuo and Davidson, 2016; Liu et al., 2018]. While these have
focused on providing a separate explanation for each out-
lier, others aim to provide explanations for groups of outliers
[Macha and Akoglu, 2018; Gupta et al., 2018] with the intent
to reduce information overload on the analyst.

On the other hand, interactive OD mainly aims to lever-
age the (ground-truth) labels provided by a human-analyst
during an auditing process to maximize the total number of
true anomalies shown within a given auditing budget [Das et
al., 2016]. In addition to detection precision, others also fac-
tor human-effort in the overall objective [Lamba and Akoglu,
2019; Chai et al., 2020].

Some of the remaining challenges in user-centric OD in-
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clude causal explanations and novel paradigms for human-
in-the-loop OD. Specifically, when the purpose is putting the
explanations into action, e.g. fixing the production line, ex-
planations should reflect a causal relation with the outcome,
whereas work in this area is currently quite limited [Janzing
et al., 2019]. As for interactive OD, ideas at the intersection
of OD and crowdsourcing could further be explored to design
effective ways of leveraging human input.

1.2 Deep Learning for Outlier Detection
With the recent advent of deep neural networks (NNs), deep
learning based OD has attracted attention. Main lines of work
include reconstruction-based techniques (e.g. via autoencod-
ing or generative adversarial networks), one-class classifica-
tion based training, or simply using deep NNs for representa-
tion learning that is better suitable for OD. Some approaches
also leverage synthesized pseudo-outlier points or estimate
what-is-called pseudo-labels for existing points. I refer to one
recent survey for extensive details [Pang et al., 2021].

Deep NNs have real prowess for many learning problems,
especially those in NLP and computer vision. However, a
major obstacle to achieving similar ground-breaking perfor-
mance on OD for such models appears to be model selection.
Deep NNs exhibit several hyperparameters (e.g. depth, width,
learning rate, drop-out rate, weight decay, number of training
epochs, etc.). In the face of lack of any labels, it remains a big
hurdle to effectively setting them for unsupervised OD tasks.

1.3 Automating Outlier Detection
Provided a large body of detection models exists, each with
their own assumptions, a key question is which model would
be most suited for a given new task. Moreover, most out-
lier detectors exhibit (hyper)parameters (HPs) to be set by
users, e.g. number of nearest neighbors (NNs) k for NN-
based methods. It is understood that most detectors are quite
sensitive to the choice of their HPs [Campos et al., 2016].
This is perhaps especially the case for deep NN based OD
models. As such, the problem of selecting an algorithm (i.e.
detection model) as well as its associated HPs is a critical one.

There has been some work on outlier model selection in re-
cent years. AutoOD [Li et al., 2020] focuses specifically on
a deep autoencoder based detection model and automatically
searches for an optimal neural network architecture within a
predefined search space. Here they assume the availability of
some labeled data that is used for validation. MetaOD [Zhao
et al., 2020b] employs meta-learning, transferring knowledge
from historical OD tasks in the form of various models’ per-
formances to selecting a model for a given new task without
requiring any labels.

At large, automating outlier model selection, especially for
unsupervised settings, remains to be a vastly understudied,
yet extremely important area.

1.4 Fairness-aware Outlier Detection
Fair data mining and OD are close cousins, as it is exactly the
goal of OD to spot rare, minority samples in the data. How-
ever statistical minorities, including those associated with
certain societal minorities (e.g. Hispanic), do not always re-
flect positive-class membership (e.g. fraud). Therefore, if

care is not taken when employing OD on data involving hu-
man subjects, OD can produce unjust outcomes.

The outlier mining community has recently routed atten-
tion to fairness-aware detection. One of the earliest work
[Davidson and Ravi, 2020] focused on quantifying the fair-
ness of any OD model’s output post hoc (i.e., proceeding de-
tection). FairLOF [Deepak and Abraham, 2020] aimed to in-
corporate fairness specifically to the LOF algorithm. Deep-
FairSVDD [Zhang and Davidson, 2021] employed adversar-
ial training, besides the SVDD objective, to obfuscate pro-
tected group memberships. All of these aim to achieve statis-
tical (a.k.a. group or demographic) parity (SP) as the notion
of fairness. In our recent work [Shekhar et al., 2021], we
discussed potential sources and implications of bias in OD
outcomes, and designed FairOD targeting additional fairness
criteria for OD besides SP, such as treatment parity and equal-
ity of opportunity.

One of the key challenges in fair OD is the absence of
any ground-truth outlier labels. Moreover, which notions and
measures of fairness are suitable for OD, or the compatibility
thereof, is not well understood.

2 Graph-based Anomaly Mining
Graphs are powerful representations of relational data in
which entities (nodes) are linked through relationships
(edges). They may exhibit various properties; nodes can be
associated with labels or (multi-) attributes, edges can be di-
rected, weighted, and have multiplicities, types, timestamps,
etc. For example, consider an accounting graph database
in which each graph depicts an itemized transaction; where
nodes correspond to accounts, node labels depict account
types (cash, revenue, etc.), edge multiplicities and weights
respectively reflect the number of items and dollar amount
involved, edge directions depict debit/credit flow, and finally
graph-level attributes denote auxiliary information about the
entire graph, such as the time, approver, etc. Alternately, con-
sider a single bipartite graph depicting user–product review
relations, in which both users and products exhibit multi-
attributes (resp., e.g. username, location, etc. and brand,
price, etc.), and edges have timestamps and are associated
with a rating, and review text. These examples are to suggest
that graphs in the real world can be quite complex.

The representational complexity (or expressiveness) of
real world graphs has driven two key challenges for graph
anomaly detection (GAD): (1) defining what constitutes a
graph anomaly, and (2) designing general-purpose GAD so-
lutions that can seamlessly handle graphs with any (subset of)
properties without much/any modification. In the following,
I discuss prevalent trends on graph anomaly detection prob-
lems, as well as graph neural network based techniques to-
ward automated representation learning for complex graphs.

2.1 Defining Graph Anomalies
Graph anomalies can be organized into three main classes of
problems: (i) node/edge-level, (ii) subgraph-level, and (iii)
graph-level anomaly detection. Within each class, the defi-
nition of anomaly varies, mainly driven by two factors; the
application and the available graph properties. I refer to our
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survey [Akoglu et al., 2015] for an outline of detection prob-
lems for static and dynamic, as well as plain and attributed
graphs. I aim to give an overview of prevalent definitions and
key approaches as follows.

Node/edge-level anomaly detection aims to identify rare
or unusual nodes in a single input graph. Feature-based ap-
proaches [Akoglu et al., 2010] “flatten” the graph into in-
dividual node vectors, effectively defining anomalous nodes
as point-cloud outliers in this feature space. Proximity-
based approaches define anomalies in relation to others,
where the assumption is that anomalous nodes are associ-
ated with/close-by to other anomalous nodes. This is typ-
ically applied to fraud detection problems, where fraudu-
lent users/accounts/etc. can be found nearby in the graph
[Rayana and Akoglu, 2015]. Note that in this case, the def-
inition is motivated by the application. Another category of
approaches is community-based, which define anomalies as
“misfits” with respect to the community structure. Those
could be anomalous (bridge) edges between communities
[Tong and Lin, 2011], or community outliers that are within
well-structured communities and yet, do not exhibit similar
node attributes to others in the community [Gao et al., 2010;
Perozzi et al., 2014] (akin to contextual outliers in point-
cloud OD). Note that in the latter case, the definition is in-
formed by the availability of node attributes.

Subgraph-level anomaly detection aims to identify un-
usual groups of nodes in a single input graph. These are
akin to collective outliers in point-cloud OD. Density-based
approaches define subgraph anomalies as those with signif-
icantly higher density than the overall graph [Hooi et al.,
2016]. Provided edge timestamps, definition is also extended
to those with high-density and also temporally-synchronized
edges [Beutel et al., 2013]. Community-based approaches
leverage node attributes to define anomalous subgraphs as
those communities with poor structural connectivity and/or
incoherent attribute values [Perozzi and Akoglu, 2016].

Finally, graph-level anomaly detection aims to identify un-
usual graphs within a (unordered) set or a (often temporal)
sequence of graphs. Most dominant category of approaches
is feature/similarity-based, which either “flatten” the en-
tire graph into a single feature vector, or quantify pairwise
similarity between graphs through an appropriately designed
graph kernel [Manzoor et al., 2016]. These effectively treat
anomalous graphs as point-cloud outliers in an explicit or im-
plicit feature space. Subgraph-based approaches specifically
define anomalous graphs as those with (the (dis)appearance
of) dense subgraphs [Eswaran et al., 2018] or with (the
emergence of) “hotspots” [Hooi et al., 2018], depending on
whether anomalies are sought within a static set of graphs or
time-evolving series of graphs. While the former is defined
solely topologically based on edge density, the latter defini-
tion is driven by node-level signals (i.e. continuous attributes)
where hotspots are defined as those groups of close-by nodes
in the graph whose signal values are or have become abnor-
mal. Another classic type of approaches is compression-
based, which define anomalous graphs as those that cannot
be compressed efficiently based on a data-driven graph en-
coding mechanism [Noble and Cook, 2003]. One such mech-
anism is graph cover by motifs (or graphlets, substructures),

wherein graphs that consist of frequent motifs can be en-
coded using relatively fewer bits, which is considered as the
anomaly score. Note that motif-based encoding can be seen
as a subgraph-based approach, discussed previously. The key
distinction is that subgraph-based approaches define anoma-
lies in terms of specific subgraphs (e.g. hotspots), whereas
compression-based approaches quantify anomalies implicitly
in a data-driven fashion; a graph is deemed more anomalous
the less it exhibits frequent motifs (here, rare motifs can be
any complement, rather than specifically defined).

A key distinction of GAD from point-cloud OD is the
abundance of anomaly definitions. I tried to overview these in
a two-level “catalog” here (e.g. node-level, feature-based). It
would be interesting to identify other novel definitions and
extend this existing catalog, ideally either based on a key
driving application or otherwise with a strong justification for
real-world applicability. A key challenge in this area appears
to be a general-purpose, unified GAD framework that can ad-
mit graphs with any (subset of) properties. Existing methods
often tend to be strongly tied to graphs with certain properties,
perhaps mainly because the anomalies they aim to detect are
also defined based on the type of input graph they admit. For
example, an approach based on identifying dense-subgraphs
in plain graphs [Beutel et al., 2013] does not trivially apply
to multi-attributed nodes.

2.2 Representation Learning and Deep Graph
Anomaly Detection

As mentioned earlier, feature/similarity-based approaches to
GAD is one of the most prevalent. To this end, a large body of
work exists on graph feature extraction, graph similarity, and
graph kernels. However, these are often confined to certain
types of graphs they can admit and do not apply broadly (See
e.g. Table 1 in [Kriege et al., 2020]).

The most recent trend is graph representation learning or
embedding through graph neural networks (GNNs). GNNs
are appealing for GAD since they automatically learn vector
representations at node- and graph-level, can be trained end-
to-end provided suitable objective functions, and can readily
handle graphs with various properties such as labeled/multi-
attributed nodes and directed, weighted edges. As such, un-
supervised embedding techniques provide a simple way for
mapping a GAD problem to a point-cloud OD one.

In addition, there have been recent work on purposing
GNNs specifically for GAD. The main directions include
end-to-end representation learning guided by auto-encoding
[Ding et al., 2019] or one-class classification [Wang et al.,
2021], as well as defining new loss functions suitable for
GAD [Zhao et al., 2020a].

I have listed several advantages of GNNs above. On the
other hand, there are several challenges with effectively us-
ing GNNs for GAD. First, end-to-end training necessitates
suitable loss functions, which limits the solution to a few ex-
isting loss function families for GAD. Second, learned repre-
sentations are hard to interpret, compared to e.g. hand-crafted
features or motifs which may be more intuitive. Third, GNNs
may be more complicated and slow to train. Last and per-
haps most importantly, like their NN counterparts, they have
a long list of (hyper)parameters. A big question is how to
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tune them in the absence of labels. There is recent work on
using meta-learning for effective graph anomaly detection as-
suming a few labels exist [Ding et al., 2021]. Future work on
automating model selection could unlock the true potential of
GNNs for GAD.

3 Conclusions and Discussion
In this article, I aimed to present a broad overview of the past,
recently trending topics and potential future directions for
both point-cloud outlier detection (OD) and graph anomaly
detection (GAD). In the next couple of paragraphs, I give a
short summary, followed by a discussion on open problems
in anomaly mining at large.

Outlier definitions seem to have settled for point-cloud OD;
as global, local/contextual, and collective outliers. Great
progress has also been made in terms of designing detec-
tion models, for data that is streaming, high-dimensional,
distributed, etc. Recent trends include different detection
paradigms, such as fairness-aware, explainable, and human-
in-the-loop detection. Recent advances in deep neural net-
works (NNs) have also been carried over to this area for
deep OD. Specifically these recent deep NN models that are
heavily (hyper)parameter (HP) laden, and more broadly the
plethora of available detection models, have motivated au-
tomating OD, that is, both algorithm (i.e. detector) as well as
HP selection using only a few labels or no labels at all.

On the other hand, and in contrast to point-cloud OD,
anomaly definitions for GAD vary widely. This is partly
driven by the abundant different real-world applications to
which GAD is relevant, as well as the variety of additional
properties a graph can be decorated with, such as edge mul-
tiplicities, node attributes, etc. Moreover, while some def-
initions directly reflect the known types of anomalies (e.g.,
emergence or existence of dense subgraphs), others look for
unknown anomalies as those outside the observed patterns
(e.g. frequent motifs). This implies that the way graph pat-
terns are defined has direct implications for GAD. Moreover,
the better pattern mining would imply better anomaly detec-
tion. Deep learning, and specifically (G)NNs, is also a recent
trend for GAD, for which suitable loss functions and effective
model selection –esp. using no labels– are key problems.

I conclude with discussing a couple of overarching open
problems for anomaly mining. The first is on evaluation
and benchmark datasets. It is most common practice for
the community to re-purpose (point or graph) classification
datasets, by down/sub-sampling one or more of the classes to
depict the “ground-truth” outliers [Emmott et al., 2015]. This
avoids having to inject synthetic anomalies, whose genera-
tion may be prone to internal biases of how certain detection
models work. On the other hand, this procedure raises other
concerns such as whether it creates suitable settings that align
with what is being evaluated as well as human intuition, and
whether it truly represents the nature of anomalies that arise
in real world applications [Campos et al., 2016]. Certainly,
rigorous attention to designing better benchmark datasets for
evaluation would help reveal the strengths and limitations of
various detection models, and ultimately keep a fair and ac-
curate record of progress [Wu and Keogh, 2020]. A promis-

ing way here is the industry putting out real world detec-
tion tasks, perhaps in the form of competitions with a leader-
board, where the data may contain some identified (but per-
haps not all) true anomalies. Understandably such data may
be sensitive for public domain, where privacy-preserving data
release practices could be employed. Specifically for OD,
distance-preserving data sketches or a pairwise-distance ora-
cle (instead of explicit feature representations) could enable
ground for data exchange.

Another overarching open challenge is adaptive detection
under adversarial settings. Anomaly mining is used more
often than not for applications involving fraud (e.g. health-
care, advertisement, tax), intrusion, etc. where intelligent at-
tackers continuously adapt their behavior to evade detection.
There exist some work on detecting specific type of (dense
subgraph injection) small-scale (called “stealth”) and camou-
flaged anomalies [Shah et al., 2014; Hooi et al., 2016], al-
though these do not model the dynamic behavior of attack-
ers. In domains such as banking and cybersecurity, models in
place are observed to stop detecting any anomalies soon after
(within hours) of being deployed. This calls for fast-adaptive
or otherwise adversarially-robust detection algorithms.
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