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Abstract
Scientists and engineers in diverse domains need to
perform expensive experiments to optimize combi-
natorial spaces, where each candidate input is a dis-
crete structure (e.g., sequence, tree, graph) or a hy-
brid structure (mixture of discrete and continuous
design variables). For example, in hardware design
optimization over locations of processing cores
and communication links for data transfer, design
evaluation involves performing a computationally-
expensive simulation. These experiments are of-
ten performed in a heuristic manner by humans and
without any formal reasoning. In this paper, we
first describe the key challenges in solving these
problems in the framework of Bayesian optimiza-
tion (BO) and our progress over the last five years
in addressing these challenges. We also discuss ex-
citing sustainability applications in domains such
as electronic design automation, nanoporous mate-
rials science, biological sequence design, and elec-
tric transportation systems.

1 Introduction
Many design optimization problems in engineering and sci-
entific domains are instantiations of the following general
problem: optimize the design of discrete (e.g., sequence and
graph) and hybrid (mixture of discrete and continuous vari-
ables) structures guided by expensive experiments, where the
expense is measured by the resources consumed by the ex-
periments. Consider the following examples. 1) In designing
application-specific hardware, we need to search over candi-
date placements of processing cores and communication links
to optimize performance as measured by expensive computa-
tional simulations. 2) To design drugs and vaccines, we need
to search the space of molecules guided by physical lab ex-
periments. 3) In designing microbiomes for human health
and agriculture applications, we need to search over subsets
of microbial species (discrete variables) and environmental
conditions (continuous variables) guided by lab experiments.

These experiments are often performed in a heuristic man-
ner by the humans without formally reasoning about the avail-
able (computational or physical) resource budget and the use-
fulness of potential information that they may provide. There

is a great need for computational tools which will allow sci-
entists and engineers to combine valuable domain knowl-
edge and experimental data for automating adaptive exper-
iment design. These tools will improve their productivity to
achieve scientific discoveries in a resource-efficient manner.
The overarching goals of this research program are to: 1) de-
velop general-purpose learning and reasoning algorithms to
support engineers and scientists to select expensive experi-
ments under a budget, and 2) apply the algorithms to create
high-impact applications via collaboration with domain ex-
perts from these application areas.

Bayesian optimization (BO) [Shahriari et al., 2016] is an
efficient framework for optimizing expensive functions. The
key idea behind BO is to learn a cheap surrogate model, e.g.,
a Gaussian Process [Williams and Rasmussen, 2006] from
past experimental data, which can be used to guide the selec-
tion of future experiments. Despite the huge successes of BO
[Snoek et al., 2012; Thornton et al., 2013], current methods
primarily focus on optimizing continuous spaces and there is
little principled work on discrete and hybrid spaces. The key
challenges behind BO over combinatorial spaces are analo-
gous to those when we move from learning classifiers over
simple outputs to structured outputs [Lafferty et al., 2001;
Taskar et al., 2003; Tsochantaridis et al., 2004; Roth and
Yih, 2005; Daumé III et al., 2009; Doppa et al., 2014a;
Doppa et al., 2014b; Doppa et al., 2014c]. The first chal-
lenge in moving from continuous spaces to discrete/hybrid
spaces is to define an effective surrogate model over com-
binatorial structures. The second challenge is, given such
a surrogate model, search the combinatorial space to se-
lect the most promising next structure for evaluation. Prior
methods either employ simple surrogate models that admit
tractable search or use complex models with heuristic search
methods [Baptista and Poloczek, 2018; Hutter et al., 2010;
Hutter et al., 2011]. To address these challenges, we de-
veloped novel approaches that can work with more com-
plex models while following a more principled and effective
search approach. We also describe our work on BO for opti-
mizing multiple objectives, a relatively under-studied prob-
lem, and algorithms to leverage multi-fidelity experiments
that trade-off accuracy and resource cost.

Finally, we discuss our work on exciting sustainability ap-
plications with high-societal impact in domains including
electronic design automation (design of high-performance
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and energy-efficient hardware), electric transportation sys-
tems (design of safe, low-cost, and efficient systems),
nanoporous materials (design of materials to store, capture,
and sense many different gases), and biological sequence de-
sign (design of DNA and proteins for medical applications).

2 Combinatorial Bayesian Optimization
Problem setup. Let X be a space of combinatorial struc-
tures. We assume the availability of a black-box objective
function f : X 7→ R defined over the combinatorial space
X . Evaluating each candidate structure x ∈ X using func-
tion f (also called an experiment) is expensive in terms of the
resources consumed and produces an output y = f(x). For
example, in the drug design application, each x ∈ X is a
molecule, and f(x) corresponds to running a physical lab ex-
periment. Our overall goal is to find a structure x ∈ X that
approximately optimizes f by minimizing the number of ex-
periments and observing their outcomes. To develop an effec-
tive BO algorithm, we need to instantiate the following three
key elements: 1) Statistical model of the black-box function
f(x), e.g., Gaussian process; 2) Acquisition function to score
the utility of evaluating candidate inputs using the statistical
model, e.g., expected improvement; and 3) Acquisition func-
tion optimizer to select the input with maximum utility.

BO over discrete spaces. In this setting, each input x ∈ X is
a discrete structure (e.g., set, sequence, tree, graph). SMAC
[Hutter et al., 2010; Hutter et al., 2011] is one canonical
baseline which employs random forest as surrogate model
and a hand-designed local search procedure for optimizing
the expected improvement (EI) acquisition function. BOCS
employs a linear Bayesian model over binary variables as
the surrogate model, Thompson sampling (TS) as acquisi-
tion function, and semi-definite programming solution for ac-
quisition function optimization. COMBO [Oh et al., 2019]
employs Gaussian process (GP) model with discrete diffu-
sion kernels [Kondor and Lafferty, 2002] and performs local
search to optimize EI. BO over discrete spaces has been re-
duced to BO over continuous spaces [Gómez-Bombarelli et
al., 2018]. The key idea is to employ an encoder-decoder ar-
chitecture to learn a latent representation from data and per-
form BO in this latent space. Some of the main drawbacks of
prior work include 1) Can work with only limited acquisition
functions; 2) Ineffective search for acquisition function opti-
mization with complex statistical models; and 3) Cannot han-
dle complex constraints, e.g., communication links should be
placed such that all processing cores are connected to handle
data transfer, to select only valid structures for evaluation.

We developed a learning-to-search framework referred to
as L2S-DISCO [Deshwal et al., 2020b] for selecting the se-
quence of combinatorial structures for evaluation. The key
idea behind L2S-DISCO is to employ a combinatorial search
procedure (e.g., local search with multiple restarts) guided by
search control knowledge (e.g., heuristic function to select
good starting states), and continuously improve the control
knowledge using machine learning. L2S-DISCO can work
with any choice of statistical model and acquisition function,
and uses advances in machine learning to tune search-based
optimizers on-the-fly to improve their accuracy in selecting

valid structures for evaluation. L2S-DISCO provides a new
family of BO-style approaches with many instantiations to
explore in future work. We studied a concrete instantiation
of L2S-DISCO for local search procedure by specifying the
form of training data, and a rank learning formulation to up-
date the search heuristic to guide the selection of high-utility
starting states.

We also designed a novel approach referred as MerCBO
[Deshwal et al., 2021c], which improves over COMBO to be
able to perform tractable acquisition function optimization.
COMBO employs a combinatorial graph representation of the
input space X that allows using diffusion kernels to define
smooth functions over X [Oh et al., 2019]. MercBO com-
putes a closed-form expression of this class of smooth func-
tions in terms of explicit feature maps of diffusion kernels,
which are referred as Mercer features. The key insight is to
exploit the structure of the graph representation in COMBO
to extract powerful low-dimensional features. Mercer fea-
tures can be seen as a bridge between BO over discrete spaces
and BO over continuous spaces. They allow us to leverage a
large number of acquisition functions and algorithms from
prior work on BO over continuous spaces to improve the BO
performance for combinatorial spaces. In MerCBO, we em-
ploy Thompson sampling (TS) as the acquisition function by
sampling parametric functions from GP posterior via Mercer
features. We showed that the acquisition function optimiza-
tion problem with TS is a Binary Quadratic Program (BQP).
Inspired by the success of submodular relaxation in the struc-
tured prediction literature [Gorelick et al., 2014], we studied
a fast and scalable submdular relaxation method [Deshwal et
al., 2020a] to solve BQPs for selecting structures. One inter-
esting future direction is to extend the construction of Mercer
features to non-binary variables.

BO over hybrid spaces. In this setting, each input x ∈ X
is a hybrid structure (mixture of discrete and continuous vari-
ables). There is very limited work on BO methods to opti-
mize hybrid spaces [Hutter et al., 2010; Hutter et al., 2011;
Daxberger et al., 2020]. Most of them employ non-GP based
surrogate models as it is challenging to define a generic kernel
over hybrid spaces that can account for complex interactions
between variables. To address this open challenge, our re-
cent HyBO approach [Deshwal et al., 2021b] builds GP based
surrogate models using diffusion kernels, which are naturally
defined over continuous and discrete spaces [Kondor and Laf-
ferty, 2002]. We provide a principled approach that employs
the general formulation of additive Gaussian process kernels
[Duvenaud et al., 2011] to define additive hybrid diffusion
kernels. The key idea is to assign a base kernel for each dis-
crete/continuous variable and construct an overall kernel by
summing over all possible orders of interaction between these
kernels. This construction procedure has two advantages: 1)
Allows to leverage existing kernels for continuous and dis-
crete spaces; and 2) Can automatically identify the strength
of different orders of interaction in a data-driven manner for
a given application. We also proved that the proposed hy-
brid diffusion kernel has universal approximation property,
i.e., given sufficient data, it allows us to approximate any
black-box function defined over hybrid spaces. One inter-

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Early Career Track

4941



esting future direction is to use random Fourier features for
continuous diffusion kernels and Mercer features for discrete
diffusion kernels to devise a variant of HyBO with tractable
acquisition function optimization.

3 Multi-Objective Bayesian Optimization

Problem setup. In many real-world applications, we need to
optimize multiple objectives. For example, hardware design
to optimize performance, power, and area. The key challenge
is that objectives are conflicting in nature and they cannot be
optimized simultaneously. Thus, we need to find the Pareto
optimal set of solutions X ∗ ⊂ X and the corresponding set
of function values referred as the optimal Pareto front. A
solution is called Pareto optimal if it cannot be improved in
any of the objectives without compromising some other ob-
jective. The goal of multi-objective BO is to approximate X ∗

by minimizing the number of expensive function evaluations.
The most common setting is that each selected input x ∈ X
is evaluated to measure all objective values.

Single-fidelity algorithms. In this setting, we assume that
all objective function evaluations are accurate and expen-
sive. There is relatively limited prior work on multi-objective
BO. Many algorithms reduce the problem to single-objective
optimization by designing appropriate acquisition functions,
e.g., expected improvement in Pareto hypervolume [Knowles,
2006; Emmerich and Klinkenberg, 2008]. This can poten-
tially lead to aggressive exploitation behavior. Additionally,
algorithms to optimize Pareto hypervolume based acquisition
functions scale poorly as the number of objectives and the di-
mensionality of input space grows. PESMO relies on input
space entropy based acquisition function [Hernández-Lobato
et al., 2016] to select the candidate inputs for evaluation.
However, it is computationally expensive to approximate and
optimize this acquisition function.

We developed a simple and highly-effective approach re-
ferred to as USeMO [Belakaria et al., 2020e]. The key in-
sight behind USeMO is a two-stage search procedure to im-
prove the accuracy and computational-efficiency of the rea-
soning process for selecting inputs for evaluation. First, it
solves a cheap MOO problem defined in terms of the acqui-
sition functions (one for each black-box objective) to identify
a list of promising candidate inputs. Second, it selects the
candidate from this list with maximum uncertainty. USeMO
has several advantages: a) Does not reduce to single objective
optimization problem; b) Allows to leverage acquisition func-
tions designed for single objective BO and can be seen as a
wrapper approach; and c) Computationally-efficient to solve
problems with many objectives. We also proved asymptotic
regret bounds for USeMO.

We studied another efficient approach referred as MESMO
[Belakaria et al., 2019] based on the principle of output space
entropy (OSE) search [Wang and Jegelka, 2017; Hoffman and
Ghahramani, 2015]. MESMO is inspired by the prior suc-
cess of the OSE principle for solving single-objective BO
problems and is an extension of [Wang and Jegelka, 2017]
for multi-objective optimization setting. The key idea is to
select the input that maximizes the information gain about
the optimal Pareto front in each iteration. Output space en-

tropy search has many advantages over algorithms based on
input space entropy search [Belakaria et al., 2019]: a) it al-
lows much tighter approximation; b) it is cheaper to compute;
and c) it naturally lends itself to robust optimization with re-
spect to the number of Monte Carlo (MC) samples used for
acquisition function computation. In fact, MESMO obtained
excellent results even with a single MC sample!

Multi-fidelity algorithms. In the multi-fidelity setting, we
assume the availability of function evaluations that vary in
the amount of resources consumed and their accuracy. The
overall goal is to approximate the optimal Pareto set of so-
lutions by minimizing the resources consumed for experi-
ments. For example, in power system design optimization,
we need to find designs that trade-off cost, size, efficiency,
and thermal tolerance using multi-fidelity simulators for de-
sign evaluations. This setting is challenging and hasn’t been
studied for multi-objective optimization problems. We ex-
tended our MESMO algorithm to both discrete-fidelity (small
number of function approximations) [Belakaria et al., 2020c]
and continuous-fidelity (continuous function approximations
which can even be infinite) [Belakaria et al., 2020a] settings.
The key idea is to select the candidate input and fidelity-
vector (one for each objective) pair that maximizes the in-
formation gained about the true Pareto front per unit resource
cost. We also provide multiple approximations to efficiently
compute the entropy, which is a key step for these algorithms.

Constrained BO algorithms. In this setting, the solutions
may need to satisfy black-box constraints, which cannot be
evaluated without performing experiments. For example, in
aviation power system design applications, we need to find
the designs that trade-off total energy and mass while satis-
fying specific thresholds for motor temperature and voltage
of cells (safety constraints). This setting is challenging and
hasn’t been studied for multi-objective optimization prob-
lems. We extended our USeMO and MESMO algorithms to
handle constraints. The key idea is to build statistical models
for each black-box constraint and use it as additional source
of information to guide the selection of inputs for evalua-
tion. For example, in USeMOC [Belakaria et al., 2020d;
Zhou et al., 2020], we solve a cheap constrained MOO prob-
lem using these learned constraints to select promising candi-
dates. Similarly, in MESMOC [Belakaria et al., 2020b], we
maximize the information gain between the next candidate
input for evaluation and the constrained optimal Pareto front.

4 Sustainability Applications
In this section, we list some exciting and high-impact appli-
cations from diverse domains based on our BO algorithms.

Electronic design automation. Advanced computing sys-
tems have long been enablers for breakthroughs in science,
engineering, and new technologies. However, with the slow-
ing down of Moore’s law and the relentless needs of Big-Data
applications, e.g., deep learning and graph analytics, current
solutions are not adequate. There is a need for innovative
computer architectures and computationally efficient meth-
ods to design application-specific hardware systems ranging
from IoT and mobile to manycores and datacenters to opti-
mize performance, power consumption, and reliability [Ceze
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et al., 2016; Doppa et al., 2019].
Our research has addressed three out of five grand

challenges posed by leading computer architects in the
ARCH2030 vision paper [Ceze et al., 2016; Hennessy and
Patterson, 2018]. First, hardware design should be democ-
ratized so that developing specialized hardware for emerg-
ing applications is easy and fast. Second, 3D integration
provides a new dimension of scalability in chip design to
overcome the end of Moore’s law. Third, machine learn-
ing for diverse applications has emerged as a key work-
load. We explored novel manycore architecture spaces en-
abled by heterogeneous integration of cores (e.g., CPUs,
GPUs, TPUs, and ASICs) [Choi et al., 2018]; 3D inte-
gration (Through-Silicon-Via and Monolithic 3D) for im-
proved communication backbone [Musavvir et al., 2020;
Joardar et al., 2021a; Joardar et al., 2018a; Lee et al., 2018;
Lee et al., 2019]; and Processing-in-memory to reduce the
data movement by breaking the memory wall [Joardar et al.,
2021c; Arka et al., 2021a]. We have applied our BO al-
gorithms and domain-specific methods [Das et al., 2017a;
Joardar et al., 2018b; Deshwal et al., 2019] by leveraging
prior knowledge for efficient design optimization [Das et al.,
2017b; Arka et al., 2021b; Joardar et al., 2021b]. We also
developed machine learning algorithms for on-chip resource
management to improve performance and energy-efficiency
[Deshwal et al., 2021a; Kim et al., 2017; Mandal et al., 2019;
Mandal et al., 2020].

Nanoporous materials design. Metal-organic frameworks
(MOFs) are a class of crystalline materials that consist of co-
ordination bonds between transition-metal cations and multi-
dentate organic linkers. The structure of MOFs is character-
ized by an open framework that can be porous (porous ma-
terials) [Deshwal et al., 2021d]. Currently, we are exploring
the design of MOF materials for three applications: (i) sens-
ing gases to construct an electronic nose to diagnose disease,
and monitor pollution; (ii) separating gases cheaply and more
energy-efficiently to reduce carbon dioxide emissions; (iii)
storing gases; for example, storing hydrogen gas onboard ve-
hicles for a clean, sustainable fuel source. We applied our BO
algorithms to accelerate the search of optimized MOF mate-
rials using computationally-expensive molecular simulations
[Deshwal et al., 2021d]. Future challenges include construct-
ing accurate MOF representations; exploring multi-fidelity
algorithms using molecular simulations and real physical ex-
periments; and AI algorithms for synthesis of MOF materials.

Biological sequence design. Design of optimized biological
sequences such as DNA and proteins is a fundamental prob-
lem with many medical applications [Yang et al., 2019]. The
most popular design method in bio-molecular engineering is
directed evolution, which explores sequence space by making
small mutations to existing sequences. These design prob-
lems have some unique requirements: uncover a diverse set
of sequences (diversity); select a large batch of sequences in
each round to perform parallel evaluations (large-scale par-
allel experiments); and use parallel experimental resources to
accelerate optimization (real-time accelerated design). Our
MerCBO approach produced good results to address these
challenges [Deshwal et al., 2021c]. There is room for in-

novative batch selection methods to further improve diversity
of high-performing sequences which scale to long sequences.

Electric transportation power systems. Electrification of
vehicles introduces significant complexity to electrical sys-
tem design. Electric transportation power systems design
involves multiple inter-dependent subsystems and compo-
nents. Hence, a large amount of engineering time and effort
is needed to find optimized designs from a large search space.
Multiphysics-based domain models and simulations are used
to evaluate designs, which are computationally expensive
(taking hours to days depending on the system complexity).
We have applied our BO algorithms for multi-objective opti-
mization to reduce the time and cost [Belakaria et al., 2020f].
These advances have the potential to accelerate research and
development throughout the transportation sector.

5 Conclusions and Future Work
Selecting expensive experiments to efficiently optimize com-
binatorial structures is an important and challenging problem
with many real-world applications in science and engineer-
ing. This paper described the key challenges and our progress
over the last five years focusing on Bayesian optimization
based algorithms. We also listed several sustainability ap-
plications from diverse application domains where these BO
algorithms have been applied and found to be effective.

There are many important directions for future work.
First, creating effective representations by combining domain
knowledge and data is the key to solve applications in do-
mains such as catalysis and material science. Second, there
are many open problems in the development of algorithms
for batch BO, scalability to high-dimensional combinatorial
spaces, and incorporating resource constraints [Dolatnia et
al., 2016]. Third, there are little to no theoretical studies
to characterize the efficacy of BO algorithms for discrete
and hybrid spaces. Fourth, availability of challenging bench-
marks that are easy to use will allow the AI community to
understand the strengths and weaknesses of existing methods
to drive future research. Fifth, development of declarative
languages to specify combinatorial spaces and domain con-
straints is both useful and necessary for adoption of this tech-
nology by engineers and scientists from application domains.
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[Daumé III et al., 2009] Hal Daumé III, John Langford, and Daniel
Marcu. Search-based Structured Prediction. MLJ, 75(3), 2009.

[Daxberger et al., 2020] Erik Daxberger, Anastasia Makarova,
Matteo Turchetta, and Andreas Krause. Mixed-variable bayesian
optimization. In IJCAI, pages 2633–2639, 2020.

[Deshwal et al., 2019] Aryan Deshwal, Nitthilan Kannappan
Jayakodi, Biresh Kumar Joardar, Janardhan Rao Doppa, and
Partha Pratim Pande. MOOS: A multi-objective design space
exploration and optimization framework for NoC enabled
manycore systems. ACM TECS, 2019.

[Deshwal et al., 2020a] Aryan Deshwal, Syrine Belakaria, and Ja-
nardhan Rao Doppa. Scalable combinatorial Bayesian optimiza-
tion with tractable statistical models. CoRR, abs/2008.08177,
2020.

[Deshwal et al., 2020b] Aryan Deshwal, Syrine Belakaria, Janard-
han Rao Doppa, and Alan Fern. Optimizing discrete spaces via
expensive evaluations: A learning to search framework. In AAAI
Conference on Artificial Intelligence (AAAI), 2020.

[Deshwal et al., 2021a] Aryan Deshwal, Syrine Belakaria, Ganap-
ati Bhat, Janardhan Rao Doppa, and Partha Pratim Pande. Learn-
ing pareto-frontier resource management policies for heteroge-
neous socs: An information-theoretic approach. In (DAC), 2021.

[Deshwal et al., 2021b] Aryan Deshwal, Syrine Belakaria, and Ja-
nardhan Rao Doppa. Bayesian optimization over hybrid spaces.
In ICML, 2021.

[Deshwal et al., 2021c] Aryan Deshwal, Syrine Belakaria, and Ja-
nardhan Rao Doppa. Mercer features for efficient combinatorial
Bayesian optimization. In AAAI, 2021.

[Deshwal et al., 2021d] Aryan Deshwal, Cory Simon, and Janard-
han Rao Doppa. Bayesian optimization of nanoporous materials.
ChemRxiv, 2021.

[Dolatnia et al., 2016] Nima Dolatnia, Alan Fern, and Xiaoli Z.
Fern. Bayesian optimization with resource constraints and pro-
duction. In ICAPS, pages 115–123, 2016.

[Doppa et al., 2014a] Janardhan Rao Doppa, Alan Fern, and Prasad
Tadepalli. HC-Search: A Learning Framework for Search-based
Structured Prediction. JAIR, 2014.

[Doppa et al., 2014b] Janardhan Rao Doppa, Alan Fern, and Prasad
Tadepalli. Structured prediction via output space search. JMLR,
2014.

[Doppa et al., 2014c] Janardhan Rao Doppa, Jun Yu, Chao Ma,
Alan Fern, and Prasad Tadepalli. HC-Search for Multi-Label Pre-
diction: An Empirical Study. In AAAI, 2014.

[Doppa et al., 2019] Janardhan Rao Doppa, Justinian Rosca, and
Paul Bogdan. Autonomous design space exploration of com-
puting systems for sustainability: Opportunities and challenges.
IEEE Design and Test, 36(5):35–43, 2019.

[Duvenaud et al., 2011] David K Duvenaud, Hannes Nickisch, and
Carl E Rasmussen. Additive Gaussian Processes. In NIPS, 2011.

[Emmerich and Klinkenberg, 2008] Michael Emmerich and Jan-
willem Klinkenberg. The computation of the expected improve-
ment in dominated hypervolume of pareto front approximations.
Technical Report, Leiden University, 34, 2008.
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