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Abstract
We consider opinion diffusion for undirected net-
works with sequential updates when the opinions of
the agents are single-peaked preference rankings.
Our starting point is the study of preserving single-
peakedness. We identify voting rules that, when
given a single-peaked profile, output at least one
ranking that is single peaked w.r.t. a single-peaked
axis of the input. For such voting rules we show
convergence to a stable state of the diffusion pro-
cess that uses the voting rule as the agents’ update
rule. Further, we establish an efficient algorithm
that maximises the spread of extreme opinions.

1 Introduction
Ahead of elections, but also for competing products on a mar-
ket, finding a way to maximally spread one particular opin-
ion through exposure of contents to targeted agents has be-
come of increasing interest. Advances in understanding the
diffusion of opinions help to grasp the extent to which opin-
ions can be manipulated and spread in networks. We study
opinion diffusion [Grandi, 2017] in a setting where agents’
opinions are modelled as single-peaked rankings over a set of
candidates. In each update step one agent observes the prefer-
ences of all their neighbours in the network, aggregates these
by a given voting rule and changes their opinion accordingly.
For issues where preferences are naturally single-peaked, it
seems reasonable to assume that also the updated preferences
of an agent in a diffusion process remain single-peaked. We
investigate which voting rules are applicable in this sense,
which lead to converging diffusion dynamics, and whether
it is tractable to find update sequences that maximally spread
an extreme opinion.

Research has found that computing an optimal sequence of
updates to spread a specific opinion is easy for two competing
opinions [Bredereck and Elkind, 2017] but it turns out to be
hard in most cases involving multiple independent opinions
[Auletta et al., 2019; Auletta et al., 2020]. However, for other
scenarios, notably elections, the agents’ opinions are better
modeled by rankings over some candidates than by indepen-
dent opinions. In this paper, we explore this additional struc-
ture on opinions which allows us to consider various known

voting rules (such as Kemeny, (weak) Dodgson, and Minimax
Condorcet) as update rules. Since different opinions are not
necessarily treated equally under some voting rules, our work
significantly differs from work studying opinion diffusion of
multiple independent opinions which often use some simple
threshold function for the updating process. For example, un-
der some voting rule one opinion (i.e. ranking) might only be
adopted if and only if the majority of the agent’s neighbours
bares this opinion, whereas the same might not be true for
other opinions under the same rule.

Originally motivated by preference aggregation in context
of economic phenomena such as prices or quantities [Black,
1948], single-peakedness is probably the most prominent re-
stricted preference domain in social choice [Brandt et al.,
2015; Faliszewski et al., 2014; Faliszewski et al., 2011]. This
domain restriction solves many computational and conceptual
issues of preference aggregation: among other inviting prop-
erties, the aggregation of rankings becomes tractable (e.g. for
Kemeny), Condorcet cycles cannot exist, and Arrow’s im-
possibility theorem does not apply anymore. While political
elections are often not (perfectly) single-peaked, preferences
in other settings often depend on some one-dimensional cri-
terion, such as when voting on the temperature in a room,
choosing the starting time of some event, fixing the voting
age for an election, or considering an adequate price for a
product. For Kemeny’s rule (and thus the many other rules
that coincide with Kemeny in the single-peaked domain), it is
easy to see that, given single-peaked preferences, also at least
one Kemeny outcome ranking is single-peaked. We investi-
gate whether the same can be said for other ranking rules.

The paper first provides basic definitions in Section 2. The
main part revolves around the following key questions which
are discussed in Sections 3 to 5 and for each of which we
briefly discuss related work here. We conclude in Section 6.

Which rules preserve single-peakedness? As we consider
opinion diffusion of single-peaked preferences, we want to
identify ranking rules that allow agents’ preferences to re-
main single-peaked after updates. Under the single-peaked
domain, it is known that Condorcet winners exist such that
ranking adaptions of Slater’s rule [Slater, 1961], Ranked
Pairs/Tideman [Tideman, 1987], Beat Path/Schulze [Schulze,
2011], and Split Cycle [Holliday and Pacuit, 2020] – which
repeatedly pick Condorcet winners – coincide with Ke-
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Rule CWC CLC SPP EMC

Kemeny 3 3 3 3
Minimax Condorcet 3 7 3 3
Weak Dodgson 3 7 3 3
Dodgson 3 7 7 7
Copeland 3 3 7 7
Single Transferable Vote 7 7 7 7
Borda 7 7 7 7

Table 1: An overview which ranking rules are weak Condorcet
winner (CWC) and loser (CLC) consistent, single-peaked preserv-
ing (SPP), and extremist majority consistent (EMC). See Sections 2
and 5.1 for definitions of the properties.

meny’s rule. Furthermore, Kemeny’s rule preserves single-
peakedness [Truchon, 1998]. We show that the same is true
for some rules that do not coincide with Kemeny (in par-
ticular Minimax Condorcet and weak Dodgson, as well as
Borda’s and Copeland’s rule when restricted to three candi-
dates). Furthermore, we identify that, in general, Dodgson’s
rule, Copeland’s rule, Borda’s rule, and Single Transferable
Vote do not preserve single-peakedness. Table 1 gives an
overview over the properties of the listed rules.

Which rules converge to a stable state? While some
works consider convergence of diffusion processes under si-
multaneous updates of the agents [Frischknecht et al., 2013;
Zhuang et al., 2020; Chistikov et al., 2020], we focus on se-
quential updates. For the case of only two opinions a stan-
dard update rule is to follow the (strict) majority of the neigh-
bours’ opinions. Here, the diffusion can be shown to always
converge within a bounded number of steps [Frischknecht
et al., 2013]. Considering more than two opinions al-
lows to consider thresholds and in particular majority update
rules or even averaging operators in the case of continuous
numbers as opinions [Noorazar, 2020; Auletta et al., 2019;
Auletta et al., 2020]. Bredereck et al. [2020] show that any
sequence of majority updates is finite when given k ∈ N
opinions. Faliszewski et al. [2018] consider rankings as opin-
ions and establish among other results that following major-
ity updates converges. In their model however every vertex
corresponds to a cluster of exactly those voters that have the
same ranking preference and two such clusters are connected
when the rankings are the same up to one swap. Most sim-
ilarly to our work, Hassanzadeh et al. [2013] and Brill et
al. [2016] also consider rankings as opinions of individual
agents in a network. Both consider random update sequences
and allow opinion updates in form of single swaps of adjacent
candidates within a voter’s ranking. We show that these types
of updates can replicate any Kemeny update sequence in the
single-peaked domain when replacing one Kemeny update by
repeated updates of single swaps by one user. However, Has-
sanzadeh et al. consider only complete networks and Brill
et al. consider acyclic directed networks and simple directed
cycles; hence their convergence results are not transferable to
our setting. We show that for single-peaked opinions Kemeny
and Minimax Condorcet updates converge, i.e., any update
sequence is finite.

Is it tractable to find a sequence of updates that pro-
motes the maximal spread of an (extreme) opinion? In
line with many works on opinion diffusion we study the max-
imal spread of one particular opinion. While for the case of
two opinions a simple greedy approach guarantees a stable
state with a maximal spread of one opinion [Frischknecht et
al., 2013], the problem of finding such a sequence when three
or more opinions are present becomes NP-hard for strict ma-
jority updates even on very restricted graph structures [Bred-
ereck et al., 2020]. In addition, Auletta et al. [2019] show that
this problem is hard for three opinions when using weak ma-
jority updates but identify some tractable graph structures. As
we consider single-peaked preference rankings as opinions,
we focus on the spread of extreme opinions, i.e., the opin-
ions that rank the left- or rightmost candidates on the single-
peaked axis the highest. Here we show that under voting rules
for which an extreme ranking can only be adopted if and only
if a (weak) majority of neighbours hold this opinion, a greedy
approach similar to the approach for two opinions and ma-
jority updates can guarantee a maximum number of stable
agents with the extreme opinion (but the remaining agents do
not necessarily become stable). This case applies to Kemeny
and Minimax Condorcet updates as well as updates based on
weak Dodgson (as defined in [Fishburn, 1977]). Note that
these results only hold since only updates to extreme opin-
ions must follow the weak majority of their neighbours, in
contrast to the general hardness results for majority updates
on more than two opinions for converging sequences estab-
lished by Auletta et al. [2019] and Auletta et al. [2020].

2 Preliminaries
A preference profileP = (C, V ) consists of a setC ofm can-
didates and a set V of n voters. Each voter v is associated
with a preference list (or ranking) �v over the candidates. If,
for instance, C = {a, b, c}, the order c �v b �v a means
that voter v prefers c the most and a the least. We omit the
subscript from � if it is clear from context. We omit the set
of rankings from the profile P for convenience.

Restricted Preferences. Central to our work is the concept
of single-peakedness, a domain restriction that assumes that
voters’ preferences are mainly influenced by the position of
the candidates on a one-dimensional axis.

Definition 1. We call a preference profileP = (C, V ) single-
peaked if there is some ordering B of the candidates C, the
so called single-peaked axis, such that for all ci, cj , ck ∈ C
with ci B cj B ck or ck B cj B ci each voter v ∈ V satisfies
cj �v ck if ci �v cj . We call the most preferred candidate of
voter v’s preference its peak >(v).

In the remainder of the paper, when talking about a single-
peaked preference profile P = (C, V ) without further speci-
fication, we assume |C| = m and thatP is single-peaked with
respect to the axis c1B · · ·Bcm. We denote by L the set of all
rankings over candidates C and by LB

sp(C) the set of single-
peaked rankings over C w.r.t. the single-peaked axis B. The
extreme opinion (c1 � · · · � cm) ∈ LB

sp(C) is denoted by r↑

and the opposite extreme (cm � · · · � c1) ∈ LB
sp(C) by r↓.
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Condorcet Winners and Losers. For a preference profile
P = (C, V ), a (weak) Condorcet winner c is a candidate that
is not defeated by another candidate in a pairwise compar-
ison, i.e., for all c′ ∈ C \ {c} we have |{v ∈ V | c �v

c′}| ≥ |{v ∈ V | c′ �v c}|. A strict Condorcet winner
is a candidate c that strictly defeats all other candidates in
a pairwise comparison, i.e., for all c′ ∈ C \ {c} we have
|{v ∈ V | c �v c

′}| > |{v ∈ V | c′ �v c}|. The notions
of (weak) Condorcet loser and strict Condorcet loser are de-
fined analogously. While this is not true for general profiles,
for single-peaked profiles a weak Condorcet winner and loser
always exist and the set of weak Condorcet winners can be
determined as indicated by the Median Voter Theorem.

Lemma 1 ([Black, 1948]). Let P be a single-peaked pref-
erence profile. Consider the order of the voters’ top-ranked
candidates along the single-peaked axis. Then the set of me-
dian peaks of the voters’ preferences and any candidate be-
tween median peaks is the set of (weak) Condorcet winners.

Ranking Rules. A ranking rule is an aggregator function
R : Ln → P(L) (where P denotes the power set) that ag-
gregates the preference rankings of voters into an output set of
preference rankings. If ranking rule R always outputs rank-
ings that rank a (weak) Condorcet winner highest whenever
such a candidate exists, we call R (weak) Condorcet winner
consistent. Similarly, a ranking rule R is called (weak) Con-
dorcet loser consistent, ifR always outputs rankings that rank
a (weak) Condorcet loser lowest whenever one exists. Note
that while it is usually desired to aggregate the preference
rankings of voters into a single output ranking, a property
often called resoluteness, most ranking rules fail to achieve
this. In this case, one often uses tie-breaking rules to resolve
irresoluteness. Specific ranking rules that we consider more
closely and a general tie-breaking rule that is applied through-
out this paper are defined at the end of this section.

Diffusion Process. For a subset of voters V ′ ⊆ V of a pref-
erence profile P = (C, V ) we define the preference profile
induced by V ′ as P[V ′] = (C, V ′). A preference network
is a graph G = (V,E) with some profile (C, V ) where the
voters coincide with the vertices.

Given a preference network G = (V,E) with preference
profile P = (C, V ), we consider the following opinion diffu-
sion process. At each update step, a voter v (also called the
active voter) applies a ranking rule R on the preference pro-
file induced by their neighbourhood N(v) in the preference
network and takes the aggregated ranking as their new opin-
ion. Formally, we replace the preference ranking of v by a
ranking in R(P[N(v)]). We speak of update rules instead of
ranking rules when considering opinion diffusion processes.

If an active voter v does not change their opinion, i.e., a
ranking inR(P[N(v)]) coincides with v’s current preference
ranking, then we call the voter v stable. A preference network
G = (V,E) with preference profile P = (C, V ) is in a sta-
ble state if all the voters in V are stable. We call a sequence
of voters (v1, . . . , vk) an update cycle in preference network
G with preference profile P and ranking rule R, when up-
dating voters’ opinions along the voter sequence leads to the
same preference profile P for G. A ranking rule R is said to
converge if any sequence of voter updates in any preference

networkGwith profileP is finite, i.e., results in a stable state.
That is, ifR converges there cannot exist any update cycles.
Kemeny’s rule. Kemeny’s rule returns those rankings that
minimise Kendall’s tau distance to all voters’ preference
rankings. For a pair of rankings �,�′, Kendall’s tau
distance between � and �′ is defined as dKt(�,�′) =∑
{c,c′}⊆C d�,�′(c, c

′), where d�,�′(c, c′) is set to 0 if �
and �′ rank c and c′ consistently, and is set to 1 otherwise.

The Kemeny score of a ranking r with respect to a pro-
file P = (C, V ) is defined as dKt(r,P) :=

∑
v∈V dKt(r,�v).

A ranking r with a minimal Kemeny score is called a Kemeny
ranking of P and its score is the Kemeny score of the profile.

Brill et al. [2016] propose an update procedure by which
voters swap the positions of two adjacent candidates in their
ranking whenever the (strict) majority of their neighbours or-
ders the two candidates in this way. When all voters’ pref-
erences are single-peaked, their update rule can replicate Ke-
meny’s rule by making every voter execute such updates re-
peatedly until they reach a fixed preference. However, as
the work of Brill et al. concerns opinion diffusion in directed
graphs (that are acyclic or simple cycles), their results are not
transferable to our setting. Further details on this relation are
deferred to the full version of this paper.1

Minimax Condorcet. Minimax Condorcet (MMC), also
known as Simpson’s rule, ranks candidates by their worst
defeat in pair-wise comparisons. Let dpm(c

′, c) := |{v ∈
V | c′ �v c}| − |{v ∈ V | c �v c′}| be the popular-
ity margin between c, c′ ∈ C. Then MMC ranks candi-
dates c ∈ C in non-decreasing order by their MMC score
MMC(c) := maxc′∈C dpm(c

′, c). MMC differs from Ke-
meny’s rule even in the single-peaked domain, e.g., by vio-
lating Condorcet loser consistency.
Observation 1 (F1). MMC is not Condorcet loser consistent
even in the single-peaked domain.

Tie-Breaking. Since the active voter in the opinion diffu-
sion process can change only to a single new opinion we in-
troduce a tie-breaking rule for irresolute ranking rules. First,
since the focus of this paper is single-peaked preferences, we
always restrict the set of winning rankings to those that are
single-peaked w.r.t. the given single-peak axis, if existent.
Further, we envision the active voter to tend to the single-
peaked ranking closest to their own, i.e., we break possible
further ties by minimising Kendall’s tau distance to the cur-
rent opinion of the active voter. This assumption models a
reluctance of agents to change their opinions and is needed
in the proofs of the presented results. Any remaining ties
are broken arbitrarily (deterministic). Note that a random tie-
breaking rule would hinder our analysis of convergence, as
stability cannot be guaranteed.

3 Preserving Single-Peakedness
In this section, we consider the question of whether a rank-
ing rule preserves single-peakedness, i.e., outputs at least one
single-peaked ranking when given a single peaked profile.

1Available at https://arxiv.org/abs/2204.14094. Proofs of results
marked with F are deferred to the full version.
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This is not only relevant for our later analysis of diffusion of
single-peaked opinions, but also extends the existing research
on this domain restriction.
Definition 2. A ranking rule R preserves single-peakedness
if, given a single-peaked preference profile P = (C, V ) ∈
LB
sp(C) with axis B, it always outputs at least one single-

peaked ranking w.r.t. B, i.e.,R(P) ∩ LB
sp(C) 6= ∅.

We next investigate which ranking rules preserve single-
peakedness. Intriguingly, our results show that preserv-
ing single-peakedness is independent of being (weak) Con-
dorcet winner or loser consistent: Copeland’s rule is weak
Condorcet winner and loser consistent but does not pre-
serve single-peakedness. Conversely, Minimax Condorcet
preserves single-peakedness but is not Condorcet loser con-
sistent. It is easy to construct rules that preserve single-
peakedness but are not Condorcet winner consistent. One
such example is the rule that always returns the ranking r↓.

3.1 Kemeny’s Rule and its Equivalents on the
Single-Peaked Domain

Kemeny’s rule preserves single-peakedness [Cornaz et al.,
2013; Truchon, 1998; Betzler et al., 2014]. For self contain-
ment we provide an induction-based proof in the full version.
Observation 2 (F). Kemeny’s rule preserves single-peaked-
ness.

Many social choice functions can be defined by specify-
ing their selection process on (weighted) majority graphs. By
the Median Voter Theorem (Lemma 1), a majority graph un-
der single-peaked preferences is acyclic. Thus, if two social
choice functions that are defined over such graphs only dif-
fer in the way they handle cycles, then they output the same
winning set under single-peaked preferences. Further, we can
adapt any social choice function into a ranking rule by repeat-
edly deleting one of the (possibly multiple) winners from the
profile and appending it to the ranking. It is easy to see that,
in the single-peaked domain, the ranking adaptions of Slater’s
rule [Slater, 1961], Ranked Pairs/Tideman [Tideman, 1987],
Beat Path/Schulze [Schulze, 2011] and Split Cycle [Holliday
and Pacuit, 2020] coincide with Kemeny’s rule.

3.2 Minimax Condorcet
To prove that MMC preserves single-peakedness we use the
following two lemmas. The first shows that when computing
the MMC score of a candidate we only need to consider the
candidate’s direct neighbours on the single-peaked axis. The
second provides us with a structure on the set of all rankings
that are single-peaked with respect to the same axis.
Lemma 2 (F). Let P be a single-peaked profile on the axis
c1B· · ·Bcm. Then any ci, i ∈ [m], experiences a worst defeat
in P against ci−1 or ci+1 (if they exist), i.e., dpm(c`, ci) ≥
dpm(cj , ci) for all j ∈ [m] \ {i} and some ` ∈ {i− 1, i+ 1}.
Lemma 3 (F). For an axis c1 B · · ·B cm there exists an or-
dering of all single-peaked rankings r1, . . . , r2m−1 ∈ LB

sp(C)
such that for all ci, ci+1 ∈ C, i ∈ [m − 1], there exists a
threshold h ∈ [2m−1] with

ci �r ci+1 for all rankings r ∈ {r1, . . . , rh} and
ci+1 �r ci for all rankings r ∈ {rh+1, . . . , r2m−1}.

Further, r1, . . . , rh are exactly those single-peaked rankings
where the candidates c1, . . . , ci are the peaks.

Proof sketch. We construct the ordering iteratively. For m =
3 choose (c1 � c2 � c3, c2 � c1 � c3, c2 � c3 � c1, c3 �
c2 � c1). We then iteratively include candidates at the end
of the single-peaked axis. For this we take the rankings of
the previous ordering (over m − 1 candidates) and replace
them with an ordering of rankings where the new candidate
cm is included in every possible position (not violating single-
peakedness, starting with the highest position possible. Lastly
we append the sequence with cm � cm−1 � · · · � c1.

We can now prove that MMC always outputs at least one
single-peaked ranking if the input profile is single-peaked.
Assuming that this is not the case, we reach a contradiction by
analysing the MMC scores of three neighbouring candidates
that are creating a dip with the help of the order of single-
peaked rankings constructed in Lemma 3.
Theorem 1 (F). MMC preserves single-peakedness.

3.3 Other Rules
We show that many other ranking rules that do not coin-
cide with the above-mentioned rules fail to preserve single-
peakedness; see the full version for details. We identify coun-
terexamples for Dodgson’s and Copeland’s rule (with 5 can-
didates), Single Transferable Vote (with 3 candidates), and
Borda’s rule (with 4 candidates), which all can be easily ex-
tended to examples with more candidates.
Proposition 1 (F). Dodgson’s, Copeland’s and Borda’s
rule and Single Transferable Vote do not preserve single-
peakedness.

However, we can show that on 3-candidate profiles Borda’s
rule preserves single-peakedness. Copeland’s rule with 3
candidates coincides with Kemeny’s rule due to weak Con-
dorcet loser and winner consistency. It thus preserves single-
peakedness on these profiles. Note that any ranking on 2 can-
didates is single-peaked; thus under the here discussed rules
the only open cases are for Copeland’s rule on profiles with 4
candidates and for Dodgson’s rule with 3 or 4 candidates.

We remark that weak Dodgson [Fishburn, 1977], in which
one ranks candidates by the number of pairwise swaps needed
to make a candidate a weak Condorcet winner, does preserve
single-peakedness; see the full version for details.

4 Convergence of Single-Peaked Updates
We identified in Section 3 that Kemeny’s rule (or its equiva-
lents on the single-peaked domain) and MMC preserve single
peakedness. In this section, we show first for Kemeny updates
and then for MMC updates (with tie-breaking as described in
Section 2) that any sequence of updates is finite, i.e., ends in
a stable state after finitely many updates. Note that conver-
gence of weak Dodgson remains an open problem.

4.1 Convergence of Kemeny Updates
In the following, we outline how a stable state can be found
in any network with single-peaked voter preferences that use
Kemeny’s rule as an update rule (while maintaining single-
peakedness and using the above mentioned tie-breaking rule).
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Theorem 2. LetG = (V,E) be a network with single-peaked
preference profile P = (C, V ). Then any update sequence
using Kemeny’s rule is of length at most |E| ·

(|C|
2

)
. That is,

Kemeny’s rule converges.

Proof. We show that any update to G decreases the
sum

∑
{u,v}∈E dKt(�u,�v) of the distances by at least 1.

Consider an update by Kemeny’s rule for a voter v ∈ V
with opinion �v and let r be the newly obtained opinion
of v, i.e., the Kemeny ranking of the profile P[N(v)] of
v’s neighbours in G. Let κ :=

∑
u∈N(v) dKt(�u,�v) and

let κ∗ :=
∑

u∈N(v) dKt(�u, r). As r is an opinion minimi-
sing Kendall’s tau distance to the opinions of N(v), we
have κ∗ ≤ κ. Further, only v changes its opinion, so the
sum of Kendall’s tau distances cannot increase. But if it does
not change, then the opinion �v is used as a tie breaker,
and we have r = �v , that is, v does not update its opin-
ion. Lastly, no update sequence under Kemeny can have
more than |E| ·

(|C|
2

)
updates as for any two rankings r, r′

we have dKt(r, r
′) ≤

(|C|
2

)
.

For a general complexity result, we show that we can effi-
ciently compute an update based on Kemeny’s rule. For this,
note that one of the ends of the single-peaked axis is always
among the Condorcet losers.

Lemma 4 (F). Computing an update step with Kemeny’s
rule takes O(|V | · |C|2) time.

4.2 Convergence of MMC Updates
Recall that >(v) is the peak in voter v’s single-peaked pref-
erence ranking. Further, denote by dsp(ci, cj) = |i − j| the
distance between candidates ci and cj according to the single-
peaked axis c1 B · · · B cm. We show that if voters update
their opinion by applying MMC, the total distance between
the peaks of the opinions of neighbours can never increase.

Lemma 5 (F). Let G = (V,E) be a network with single-
peaked preference profile P . Under MMC updates the sum of
distances

∑
{v,v′}∈E dsp(>(v),>(v′)) cannot increase.

Note that while a single MMC update can be computed in
polynomial time, Lemma 5 does not give us a distance mea-
sure that constantly decreases. Thus we cannot estimate how
long an update sequence can be. Nevertheless, we now show
the convergence of MMC as an update rule.

Theorem 3 (F). Let G = (V,E) be a network with single-
peaked preference profile P . Then any update sequence using
MMC is finite. That is, MMC converges.

Proof sketch. We prove the statement by induction over the
number of candidates m. By Lemma 5, the sum of dis-
tances

∑
{v,v′}∈E dsp(>(v),>(v′)) cannot increase with any

update. In particular, in an update cycle the distances must
stay equal for every update. The top choice of a voter after
that voter updated must always be a weak Condorcet winner
and, because of the tie breaking rule, must remain the same
Condorcet winner throughout all updates. Furthermore, be-
cause of the tie breaking rule, and because the only single-
peaked rankings with c1, respectively cm, on the top are the

extreme opinions, Lemma 5 implies that there can be no up-
date cycle for which opinions are switched from or to an ex-
treme opinion. The base case of the induction, m = 2, is thus
settled. For the induction step assume there exist no cycles
of voter updates in any network with single-peaked opinions
over m candidates, but that there exists an update cycle K
inG with single-peaked preference profile P overm+1 can-
didates. We show that by eliminating the last candidate of the
single-peaked axis of P , the relative ranks of the candidates
remain the same for every voter update inK and thusK must
be an update cycle on G with a single-peaked preference pro-
file over m candidates – a contradiction.

5 Maximally Spreading Extreme Opinions
Especially in the political context, studying extreme opinions
and their spread on social networks is often seen as more im-
portant than the spread of more centralist views. Platforms
such as Facebook, Youtube or Instagram invest vast resources
to combat the spread of hateful and extreme opinions.

Recall that for single-peaked axis c1 B · · · B cm the rank-
ings r↑ = c1 � · · · � cm and r↓ = cm � · · · � c1 are
called the extreme opinions, as they rank the extreme can-
didates on the single-peaked axis highest. In the following,
we consider under which conditions an extreme opinion can
be maximally spread in a single-peaked preference network.
For this purpose we define the notion of extremist majority
consistency for ranking rules that preserve single-peakedness
– a property that holds for both Kemeny’s rule and MMC.
We then formulate a general algorithm for extremist majority
consistent rules that maximally spreads extreme opinions.

5.1 Extremist Majority Consistency
Informally, extremist majority consistency states that an ex-
treme opinion can only be adopted by an agent when a ma-
jority of the agent’s neighbours hold this opinion.

Definition 3. Let P = (C, V ) ∈ LB
sp(C). We call a ranking

rule R that preserves single-peakedness extremist majority
consistent if for any extreme opinion r∗ ∈ {r↑, r↓} we have

r∗ ∈ R(P) ⇐⇒ a (weak) majority in V has opinion r∗.

One might think that for extremist majority consistency it
is sufficient that a rankingR preserves single-peakedness and
is weak Condorcet winner consistent. However, this is not the
case since these two properties alone do not enforce that there
exists an output ranking that is single-peaked and ranks the
desired weak Condorcet winner (c1 or cm) highest.

We proceed by showing that Kemeny’s update rule and
MMC are extremist majority consistent.

Theorem 4. Kemeny’s rule is extremist majority consistent.

Proof. Due to symmetry we need to prove the statement only
for the extreme opinion r↑. Assume that at least half of the
voters in P = (C, V ) have opinion r↑. By definition of Ke-
meny’s rule, r↑ is among the output of the rule. For the other
direction assume that r↑ is a Kemeny ranking and consider
the ranking r′ = c2 � c1 � c3 � · · · � cm, which is
the only single-peaked ranking with dKt(r

↑, r′) = 1. Then
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dKt(r
↑, r) ≥ dKt(r

′, r) + 1 for all single-peaked rankings
r ∈ LB

sp(C) \ {r↑}. Also:

dKt(r
′,P) =

∑
v∈V

dKt(r
′,�v)

= |{v ∈ V |�v= r↑}|+
∑

v∈V :�v 6=r↑
dKt(r

′,�v)

≤ |{v ∈ V |�v= r↑}|+
∑

v∈V :�v 6=r↑
dKt(r

↑,�v)− 1

≤ |{v ∈ V |�v= r↑}|+ dKt(r
↑,P)− |{v ∈ V |�v 6= r↑}|

≤ |{v ∈ V |�v= r↑}|+ dKt(r
′,P)− |{v ∈ V |�v 6= r↑}|

and hence, |{v ∈ V |�v= r↑}| ≥ |{v ∈ V |�v 6= r↑}|.

Note that for non-extreme opinions this equivalence need
not hold, i.e., a Kemeny ranking need not be supported by a
majority of the voters. However, if the majority of voters has
opinion r, then r is a Kemeny ranking; see the full version of
this paper for details.

MMC, just like Kemeny’s rule, outputs an extreme opinion
if and only if a (weak) majority of voters has this opinion.
Theorem 5 (F). MMC is extremist majority consistent.

5.2 Maximally Spreading Extreme Opinions for
Extremist Majority Consistent Update Rules

We will next prove that for an extremist majority consis-
tent ranking rule R and an extreme opinion r∗ the following
greedy update sequence σ∗ reaches a stable state that max-
imises the number of voters with opinion r∗. Note that due to
step (3) below this sequence is only well defined if there ex-
ists a finite sequence of updates w.r.t. R that leads to a stable
state for any network.
GREEDY SEQUENCE σ∗ FOR EXTREME OPINION r∗

(1) Update every non-stable voter with opinion r′ 6= r∗ to
opinion r∗ if possible.

(2) Update every non-stable voter with opinion r∗.
(3) Stabilize network: update non-stable voters with opin-

ions r′ 6= r∗.
A similar algorithm was used before in the setting with two

competing opinions in [Auletta et al., 2015; Bredereck and
Elkind, 2017] and in the setting of discrete preference games
in [Chierichetti et al., 2013]. In particular, Bredereck and
Elkind [2017, Proposition 1] show that in the binary model
with only two possible opinions, first updating every non-
stable voter with the second opinion to the first opinion, and
then updating every non-stable voter with the first opinion to
the second opinion yields a stable outcome with a maximum
number of voters having the first opinion. Similarly, we de-
rive the following result.
Lemma 6 (F). LetG = (V,E) be a preference network with
single-peaked preference profile P and let R be an extremist
majority consistent ranking rule. The subsequence σ of up-
dates in σ∗ that only runs steps (1) and (2) satisfies:

(i) The length of σ is at most 2|V |.
(ii) Each voter changes their opinion at most twice on σ.

(iii) Computing σ requires O(|V |2) executions ofR.

(iv) After σ, the set V ∗ of voters that still have opinion r∗ is
stable.

(v) For every sequence σ′ that maximises the number of vot-
ers with opinion r∗ such that every such voter is stable,
the set of voters with opinion r∗ is equal to V ∗.

If the ranking rule in use converges, then we are guaranteed
that step (3) has a finite number of updates. What remains to
show is that, in this case, running step (3) does not affect the
stability of the voters with opinion r∗ and that the set V ∗ of
voters with opinion r∗ after completing σ∗ is the same as for
any other sequence that reaches a stable state and maximises
the spread of opinion r∗.

Proposition 2 (F). LetG = (V,E) be a network with single-
peaked preference profile P and an extremist majority consis-
tent and converging ranking ruleR, and let r∗ be an extreme
opinion. Let V ∗ be the set of voters with opinion r∗ after
completing steps (1) and (2) of σ∗. The sequence σ∗ satisfies:

(i) After completing σ∗, every voter is stable.

(ii) During step (3) of σ∗, V ∗ remains unchanged.

(iii) For every sequence σ′ that maximises the number of vot-
ers with opinion r∗ such that every voter (independent of
its opinion) becomes stable, the set of voters with opin-
ion r∗ is equal to V ∗.

Corollary 1. Let G = (V,E) be a network with preference
profile P = (C, V ) ∈ LB

sp(C). Then one can compute a
sequence of Kemeny updates that maximises the number of
voters with opinion r∗ ∈ {r↑, r↓} in O(|V |3 · |C|4) time.

Corollary 2. Let G = (V,E) be a network with preference
profile P = (C, V ) ∈ LB

sp(C). Then there exists a finite se-
quence of MMC updates that maximises the number of voters
with opinion r∗ ∈ {r↑, r↓} and ends in a stable state.

6 Conclusion
Motivated by the question of how single-peaked opinions
propagate in social networks we studied opinion diffusion
processes in this domain. We investigated which rules admit a
single-peaked outcome given single-peaked preferences. For
these rules we then established convergence for arbitrary up-
date sequences and provided an algorithm that outputs an up-
date sequence to optimally spread an extreme opinion in any
preference network.

We conclude by suggesting future research directions.
While single-peakedness is a well-established domain restric-
tion, the study of opinion diffusion under single-crossing or
single-caved domains is also well motivated. Further, our ini-
tial study on opinion diffusion may be extended: can we ef-
ficiently compute update sequences to optimally spread non-
extreme opinions? Lastly, while many ranking rules coin-
cide with Kemeny’s rule in the single-peaked domain, this
is not necessarily true for preference profiles with bounded
single-peaked width [Cornaz et al., 2012]. In terms of opin-
ion diffusion, while a Kemeny ranking can be computed effi-
ciently whenever the single-peaked width is small [Cornaz et
al., 2013], it is not clear whether, e.g., our greedy sequence is
applicable in this scenario.
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