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Abstract

Network Creation Games are an important frame-
work for understanding the formation of real-world
networks. These games usually assume a set of in-
distinguishable agents strategically buying edges at
a uniform price leading to a network among them.
However, in real life, agents are heterogeneous and
their relationships often display a bias towards sim-
ilar agents, say of the same ethnic group. This
homophilic behavior on the agent level can then
lead to the emergent global phenomenon of social
segregation. We study Network Creation Games
with multiple types of homophilic agents and non-
uniform edge cost, introducing two models focus-
ing on the perception of same-type and different-
type neighboring agents, respectively. Despite their
different initial conditions, both our theoretical and
experimental analysis show that both the composi-
tion and segregation strength of the resulting stable
networks are almost identical, indicating a robust
structure of social networks under homophily.

1 Introduction

Networks play an eminent role in today’s world. They are
crucial for our energy supply (power grid networks), our in-
formation exchange (the Internet and the World Wide Web),
and our social relationships (friendship networks, email ex-
change, or co-author networks). There exists an abundance of
approaches to provide formal frameworks for modeling net-
works, see, for example, the books by Jackson [2010] and
Newman [2018]. In many of these models, the nodes of the
network correspond to agents that strategically create con-
nections which is particularly suitable for our main focus of
modeling social networks. One such stream of research con-
siders variants of the Network Creation Game (NCG) as pro-
posed by Fabrikant et al. [2003]. There, selfish agents create
edges to form a network among themselves. Forming edges
is costly and hence agents try to create only the most useful
edges. On the other hand, the force that causes agents to form
edges at all is well-connectivity within the network, captured
by a desire to occupy a central position.

The NCG is a stylized model of social interaction, provid-
ing valuable insight to agents’ decision processes when in-
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teracting with each other. However, it is important to refine
the basic model to spotlight specific details of this decision
making. In this sense, we study network creation under the
additional assumption that agents are separated into various
types that model ethnic groups or affiliations.

Our goal is to contribute a new perspective on the sim-
ple causes that lead to the segregation of a society, simi-
lar to Schelling’s checkerboard model for residential segre-
gation [Schelling, 1969; Schelling, 1971]. Therefore, our
agents’ cost functions have a bias towards the creation of
relationships with agents of the same type. Specifically,
we study two models based on two seemingly orthogonal
treatments of other agents. In the first model, agents in-
cur a fixed cost for every created edge and a variable cost
that only depends on the number of edges towards same-
type agents. In the second model, edges towards different-
type agents are initially more expensive but their cost drops
with an inverse linear decay. Both models give a different
point-of-view on the same underlying principle, namely ho-
mophily of agents, i.e., the tendency to form connections
with like-minded people. This is often summarized with
the proverb “birds of a feather flock together”, a dominant
intrinsic force repeatedly observed in the creation of social
networks, see McPherson ef al. [2001] for a survey on the
extensive sociological research on homophily in social net-
works. While our first model expresses homophily explicitly
by an increasing comfort among friends, the second model
incorporates homophily indirectly by accounting for a de-
creasing effort of integration once first contact is established.
The latter paradigm is closely related to the well-known ef-
fect in social sciences called the “contact hypothesis” which
states that stereotypes and prejudices between ethnic groups
can be weakened by intensified contact [Allport ef al., 1954;
Amir, 1969; Dovidio et al., 2003].

We measure the desirability of networks by means of sta-
bility. Since we consider social networks, we assume a bi-
lateral model where two agents have to cooperate to connect.
Consequently, we use pairwise stability [Jackson and Wolin-
sky, 1996] as solution concept, rather than, for instance, Nash
stability which is more appropriate for unilateral models.

Interestingly, we find an almost identical structure of sta-
ble networks for both models. This hints at a robust structure
of networks created under homophily incentives. Naturally,
a very small edge cost causes extremely high connectivity.
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For moderately small edge cost, we provide characterizations
of stable networks which are all highly segregated. We in-
terpret this as identifying a sweet spot of high sensitivity to-
wards agent types. For larger edge cost, stability causes a
large spectrum of networks to form with respect to segrega-
tion strength. We accompany this theoretical limitation with
an average-case analysis by detailed simulations of a simple
distributed dynamics, where agents perform improvements
towards stable networks. It would be plausible if a generally
high edge cost causes less distinction of agent types. While
this is sometimes confirmed, we also identify contrasting ten-
dencies towards extreme segregation. An important driver for
the different behavior is the initial segregation level, indicat-
ing that segregation can be avoided by a high initial effort
without constant further interaction.

2 Related Work

In the original NCG the cost of every edge is alpha, where «
is a parameter of the game that allows adjusting the tradeoff
between the agents’ cost for creating edges and their cost for
the centrality in the network, e.g., the sum of distances to all
other nodes. Stable networks always exist, in particular, for
a < 1, only cliques are stable, whereas for 1 < o < n stars,
other trees and also non-tree networks can be stable [Mam-
ageishvili et al., 2015]. Bilateral NCGs with uniform edge
price have been introduced by [Corbo and Parkes, 2005].
Also variants of the NCG with non-uniform edge cost have
been studied: a version where edges of differing quality can
be bought [Cord-Landwehr et al., 2014], and NCGs where the
edge cost depends on the node degrees [Chauhan et al., 20171,
on the length of the edges in a geometric setting [Bild et al.,
2019], or on the hop-distance of the endpoints [Bilo et al.,
2021]. The latter is motivated by social networks, and bilat-
eral edge formation with pairwise stability as a solution con-
cept is considered. The NCG variant by Meirom et al. [2014]
features different types of agents and different but fixed edge
costs for each agent type.

Closest to our work is the model proposed by Marti and
Zenou [2017] that is a variant of the connections model [Jack-
son and Wolinsky, 1996] with different types of agents. Sim-
ilar to our model, the cost for maintaining an other-type con-
nection depends on the homogeneity of the neighborhoods of
the involved agents. In contrast to us, the cost for same-type
edges is fixed and the distance cost is defined differently. The
authors study the existence and structure of equilibria but do
not investigate segregation quantitatively. The latter has been
done by Henry er al. [2011] using a stochastic process that
starts with a randomly drawn network with nodes of different
types. Then edges are randomly rewired with a built-in bias
toward favoring same-type edges. As the main result, the au-
thors show that the network strongly segregates over time,
even if the built-in bias is very low.

Residential segregation has recently received a lot of
attention by a stream of research developing a game-
theoretic framework based on Schelling’s checkerboard
model [Chauhan et al., 2018; Agarwal et al., 2021; Echzell
et al., 2019; Bilo et al., 2020; Kanellopoulos et al., 2021;
Bullinger ef al., 2021]. There, agents of several types strate-
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gically select positions on a given fixed network and they in-
dividually aim for having at least a T-fraction of same-type
neighbors, for some 0 < 7 < 1. Also hedonic diversity
games [Bredereck et al., 2019; Boehmer and Elkind, 2020]
are similar. These are coalition formation games where an
agent’s utility depends on the type distribution of her coali-
tion.

3 Preliminaries and Model

We consider a set V = {1,...,n} of n agents partitioned
into £k > 2 disjoint types. The set of types is denoted by
T, and for every type T € T, let Vi be the set of agents of
type T, ie., V=Upcy Vrand Ve NV =P for T,7" € T,
with T # T’. For an agent u € V, we denote by 7 (u) her
type, ie., u € V(). Givenatype T' € T, then np = |Vr|
denotes the number of agents of type 7. We identify types
with colors and we assume that there are specific types B and
R of blue and red agents, respectively, which are associated
with an agent type having the smallest and largest number of
agents, respectively. Thus, for every type T° € T, we have
np < ny < ng. In particular, with exactly two agent types
we have precisely a blue minority and a red majority type.

In a network creation game, agents will buy edges to even-
tually form a network, which is an undirected graph G =
(V,E). Therefore, it is useful to introduce some common
concepts and notation from graph theory. Consider an undi-
rected graph G = (V, E) together with vertices u,v € V. We
denote the (potential) edge between v and v by uv (whether
it is present or not). For two agents u,v € V, the edge uv
is called monochromatic if u and v are of the same type,
and bichromatic, otherwise. If uv € FE, we use the nota-
tion G — uv = (V, E \ {uv}), otherwise we use G + uv =
(V,E U {uv}). Further, let Ng(u) = {v € V:uv € E}
denote the neighborhood of u in G, let degq(u) = |Ng(u)|
be the degree of u in G, i.e., the size of its neighborhood,
and let dg(u,v) be the distance from u to v in G, i.e., the
length of a shortest path from u to v in G. The diameter of G
is defined as diam(G) = max,, yevdg(u,v), i.e., the maxi-
mum length of any shortest path in G. Finally, a useful mea-
sure for the centrality of a vertex in a network is its distance
to a set of vertices. Given a subset V' C V of vertices, let
dg(u, V') = >, ey dg(u,v) denote the sum of distances

from u to all vertices in V', Also, given a subset of agents
C C V, we denote by G[C] the subgraph of G induced by C,
ie., G[C] = (C,F), where F = {uv € E: u,v,€ C}.
Before formally defining our network creation model, we
introduce some relevant special types of graphs. The graph
K, = (V,E) is called complete if E = {uv: u,v,€ V},
i.e., all possible edges are present. Further, S,, = (V, E) is
called star if there exists v € Vsuch that E = {uv: v €
V\ {u}}. We also define networks for the special case of two
types. Given two agents v € Vp and v € Vg, the network
DS,, = (V, E) is called double star if E = uv U {uw: w €
Vel U{vw: w € Vg} and DSX,, = (V, E) is called double
star with switched centers if E = uv U {uw: w € Vg} U
{vw: w € Vg}. An undirected graph G is called complete,
star, double star, or double star with exchanged centers if it is
isomorphic to K,,, S,,, DS,,, or DSX,,, respectively (where
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isomorphisms have to preserve agent types).

Network Creation Games with Homophilic Agents. We
study network creation within a cost-oriented bilateral model
a la Corbo and Parkes [2005], where the agent cost is sep-
arated into a neighborhood cost encompassing the cost of
sponsoring edges and a distance cost encompassing the cost
of the agents’ centrality. In both of our models, a created net-
work G has a distance cost for agent u of dg(u) := dg(u, V),
i.e., the sum of agent u’s distances to all other agents. The
neighborhood cost is different in our two models and will be
specified in the definition of our network creation games.

To model the cost dependency on the types of neighbors,
we define the set of same-type agents in the neighborhood of
agent u as Fg(u) = Vpr N Ng(u), if u € V. The set of
other-type neighbors is defined as Eg(u) = Ng(u) \ Fa(u).

We denote the cardinalities of these sets by fg(u) = |Fg(u)]
and e¢(u) = |Eg(u)], respectively.
Now we define our network creation games. A network

creation game with increasing comfort among friends (ICF-
NCG) with cost parameter o > 0 is a network creation game
where the neighborhood cost is given by

ai" (u) = degg(u) - o (1 + fg(ul)—kl) ;

i.e., there is a fixed cost of « for every edge and an additional
cost that decreases with an increasing number of friends.
A network creation game with decreasing effort of inte-

gration (DEI-NCG) with cost parameter o > 0 is a network
creation game where the neighborhood cost ist given by

ea(u)
aBP (u) = a(degg(u) + Z ]1€>

k=1

Hence, there is a fixed edge cost of « for every edge to an
agent in the neighborhood together with a harmonically de-
creasing additional cost for edges towards other-type agents.
Note that the sum is empty for eg(u) = 0, and therefore, the
game is identical to the single-type bilateral network creation
game by Corbo and Parkes [2005] if & = 1.

For the neighborhood cost, we omit the superscript indicat-
ing the type of network creation game, whenever this is clear
from the context. Also, for both of our models, we define the
cost of an agent u as cg(u) = ag(u) + dg(u).

The cost functions mimic the two effects that we want to
model, namely a general homophilic behavior via the ICF-
NCG and diminishing prejudices with intensified contact via
the DEI-NCG. In both models, edge costs have a similar de-
cay structure and identical range of [a, 2] In the ICF-NCG,
the cost of edges is 2a for each edge if an agent has no friends,
and the edge cost is approaching o when the number of neigh-
boring friends is growing. In the DEI-NCG, the cost of edges
to friends is always « and the variable cost only affects other-
type agents, where we approach o with a harmonic decay
starting at a cost of 2« for the first other-type agent.

Measures for Desirable Networks. We analyze networks
by the incentives of agents to maintain the network in terms
of stability and by the diversity of their neighborhood with

respect to other agent types. Following Jackson and Wolin-
sky [1996], a network G = (V, E) is called pairwise stable if
the following two properties hold:

(i) for all agents v € V and neighbors v € Ng(u), it holds
that cq(u) < cg—uv(u), i.e., no agent can benefit from
unilaterally severing an edge, and

(ii) for all agents v € V and non-neighbors v ¢ Ng(u), it
holds that cg(u) < cgiun(u) or cg(v) < capun(v),
i.e., no pair of agents can bilaterally create an edge such

that the individual cost for both agents decreases.
Connectivity is an important aspect in network analysis.
With multiple agent types, the internal connectivity per type
deserves special consideration. Formally, a network G =
(V, E) is called fully intra-connected if, for every pair u,v €
V of same-type agents, it holds that uv € E. Further, G is

fully connected if G is complete.

For the evaluation of diversity, we consider two segrega-
tion measures. Given a network G = (V. E), its local segre-
gation, denoted by LS(G), is defined as the average fraction

of agents of the same type, i.e., LS (G

fc(’u.
) - |V\ EuEV degg(u)”
The global segregation, called GS(G), is the proportion of

Zu \% fo(u)
€2|7E|‘ Note that

3 > uevic(u) is the number of monochromatic edges.!
Finally, the minimum willingness to integrate of an agent
can be evaluated by checking if she entertains any bichro-
matic edge. Therefore, we call an agent curious if she is part
of a bichromatic edge. Similarly, a type of agents is called
curious if it solely consists of curious agents. Note that this
concept is related to the degree of integration, which is iden-
tical to the number of curious agents and has been studied in
game-theoretic segregation models [Agarwal er al., 2021].

monochromatic edges, i.e., GS(G) =

4 Increasing Comfort among Friends

In this section we perform our theoretical analysis of the ICF-
NCG. Unless explicitly stated otherwise, all statements hold
for an arbitrary number of types. All missing proofs can be
found in the full version of the paper [Bullinger er al., 2022].

We start by gathering some statements concerning struc-
tural properties and simple pairwise stable networks. Their
proof follows by a careful analysis of the cost difference after
the creation and deletion of edges.

Proposition 4.1. For the ICF-NCG the following hold:

1 Ifa < g, then every pairwise stable network is fully
intra-connected.

2. Ifa < %, then diam(G) < 2 for every pairwise stable
network G. In particular, G contains a curious type.

3. Let « < 1, G a pairwise stable network, and C C 'V
such that every agent in C' is curious and C C Vr for
some type T € T. Then, G|C] is a clique. In particular,
every curious type of agents is fully intra-connected.

4. If a < B4, then the complete network K, is pairwise

B+1’
stable. Moreover Jfor a < mln{7, i1 K, is the

np+

'LS and GS are (related to) standard measures in social sciences
to capture the agents’ exposure [Massey and Denton, 1988]. LS is
used by [Paolillo and Lorenz, 2018] and G'S is used in the simulation
framework Netlogo [Wilensky, 1997] and by [Zhang, 2011].
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P < a < 7 (left) and

Figure 1: Pairwise stable networks for
7 < a < 1 (right).

unique pairwise stable network.
5. If a > 1, then the star S, is pairwise stable.

The uniqueness in Proposition 4.1(4) excludes the param-
eter range g <a< ngil , which can only happen for suffi-
ciently many blue agents. In fact, there the uniqueness ceases
to hold, as we show in the full version [Bullinger et al., 2022].

For the existence of stable networks, we still have to con-
sider the intermediate parameter range n';il < o<1l We
provide the construction for two agent types. The general
case is covered in the full version [Bullinger ef al., 2022].

Proposition 4.2. In the ICF NCG, there exists a pairwise sta-

ble network for every — +1 <a<l

Construction for two agent types. Consider an instance of
the ICF-NCG and let ngil < o < 1. We will define a stable

network for o dependent on the threshold 7 = e+l

nB(nB+1)+1'
Note that ngil <7<l,asng(ng+1)>ng.

We assume Vp = {b1,..., by, and Vg = {r1,..., 70}
and define the edge set of the graph G = (V| E) as follows:
o {z;,x;} € E,forx € {b,r},i,5 €{l,...,np},
A {’I"i,bi} S E, fori € {1, PN ,’ILB},
e {ri,r;} € E, fori € {1,...,ng} and j € {np +
1, ce ,TLR},
o if « < 7, then {r;,r;} € E, fori,j € {np +
1,...,ng}, and no further edges are in F;
otherwise, no further edges are in F.
The two cases for the network G are illustrated in Figure 1.
They can be shown to be pairwise stable for their respective
parameter range. O

Interestingly, the stable networks constructed in the previ-
ous proof give an almost full characterization of stable net-
works for the considered range of edge costs when k£ = 2.

Theorem 4.3. Consider the ICF-NCG with parameter o and
k = 2 agent types. Let "I < « < 1 and assume that
G is pairwise stable. Then the blue agents are fully intra-
connected, the bichromatic edges form a matching of size npg,
and curious red agents are connected to all other red agents.

Proof sketch. Let -~ < « < 1 and assume that G'is pair-
wise stable network in the ICF-NCG with cost parameter «.
By Proposition 4.1(2), the diameter of G is bounded by 2 and
there exists a curious type of agents. By Proposition 4.1(3),
the curious type of agents forms a clique C' and the curious
agents of the other type form a clique as well.

Now, it can be shown that the bichromatic edges form
a matching by proving that any agent incident to two such
edges can sever one of them. Therefore, only a minority type
can be a curious type and we can conclude that the blue agents
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"R

Figure 2: Pairwise stable network for — < .
nr+1

are fully intra-connected and that the matching of bichromatic
edges is of size ng. Showing that curious red agents main-
tain edges with non-curious red agents follows from another
application of Proposition 4.1(2). O

Example 4.4. The characterization encountered in Theo-
rem 4.3 does not cover the whole range of Proposition 4.2.
In fact, it does not hold for n"il <a< +1 Hence, fur-
ther pairwise stable networks exist. Assume that ng > 2 and
let 7* € Vg. Consider the network G = (V, E), where E =
{{v,w}: v,w € Vg}U{{v,w}: v,w € Vg}u{{v,r*}: v €
VB}, i.e., the network is fully intra-connected and there is a
special agent 7* to which all blue agents are connected. The
structure of this network is depicted in Figure 2. It is straight-
forward to check that the network is pairwise stable. <

Until now, we set our focus on the existence of pairwise
stable networks. In the remainder of the section, we want
to consider the segregation of pairwise stable networks. First,
Theorem 4.3 yields very high segregation for nZil <a<l

Corollary 4.5. Consider the ICF-NCG with parameter o and
k = 2 agent types. Let nﬁil < «a < 1 and assume that G is

pairwise stable. Then, GS(G) > 1— Land LS(G) > 1- 2.

We know that segregation is low for sufficiently low param-
eter o, where cliques are (uniquely) pairwise stable. Then,
there is a transition at o = —fo, where segregation is prov-

. R+1 . . .
ably high regardless of further parameters like the distribu-
tion of agents into types. Once, the cost parameter increases
to o > 1, the picture becomes less clear. Stars can have very

high and very low segregation.

Proposition 4.6. Consider the ICF-NCG with parameter
a > 1. Then, for every n > 2, there exist pairwise stable net-
works G and G’ on n nodes such that GS(G) = LS(G) =1
and GS(G') = LS(G') =

The networks in the previous proposition have the draw-
back that we need to fix the exact numbers of agents of each
type to obtain the desired segregation. By contrast, for o > %,
the double star is always highly segregated.

Proposition 4.7. Consider the ICF-NCG with o« >
Then, the double star DS, is a pairwise stable network with
GS(DS,) =1- 1= and LS(DS,,) > 1 — 2.

n— 1

4

5 Decreasing Effort of Integration

We consider the DEI-NCG. See the full version [Bullinger
et al., 2022] for all omitted details. We start by collecting
some results determining simple stable networks for suffi-
ciently small and large values of «, respectively. Note that
we implicitly assume the restriction to two agent types when
considering the networks DS,, and DSX,,. All other state-
ments hold for an arbitrary number of agent types.
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b*

Figure 3: Pairwise stable network for % <a< A
rT1

Proposition 5.1. For the DEI-NCG the following holds:
1. Ifa< %, then K, is the unique pairwise stable network.
2. If a < 1, then every pairwise stable network is fully
intra-connected.
If a < 1, then every pairwise stable network G satisfies
diam(G) < 2.
The network K, is pairwise stable if o < nﬁ;gil
If a > 1, then S,, and DS,, are pairwise stable net-
works.
6. Ifa >

Proposition 5.1(2) and Proposition 5.1(3) imply that, for
a < 1, every pairwise stable network consists of two
monochromatic cliques and one type of agents is curious.
Still, there are highly segregated pairwise stable networks.
Also, note that the highly integrated clique investigated in
Proposition 5.1(4) is not the unique stable network for o > L
as the next example shows for the case k = 2.

Example 5.2. Assume k£ = 2 and % < a< . Recall
that n  is the size of the majority type of agents. In partlcular
this covers the case o < n”il nﬁ;"il. Assume that
B R
np > 2 and let b* be some fixed blue agent, i.e., an agent
from the minority type. Consider the network G = (V, E)
with E = {vw: v,w € R} U{vw: v,w € B} U{vb*: v €
R}, i.e., the network is fully intra-connected and there is a
special blue agent b* to which all red agents are connected.
There are no further bichromatic edges. For an illustration of
the network, see Figure 3. Pairwise stability of this network
follows from straightforward computations. <

3.

4
5.

%, then DSX,, is a pairwise stable network.

nR

In the previous example, it was still possible to simulta-
neously have full intra-connectivity while there are agents
entertaining several bichromatic edges. This is not possible
anymore if we further increase «. In fact, we can even char-
acterize all pairwise stable networks for "R < a < land
k=2.

Theorem 53. Let k 2 in the DEI-NCG. Assume that

—~ < « < 1 and consider a network G. Then, G is pair-
R+1

wise stable if and only if it is fully intra-connected and its
bichromatic edges form a matching covering Vp.

Proof sketch. Clearly, if k = 2 and np = 1, then the unique
stable network consists of a neighboring blue and red agent
and the assertion is true. Thus, we may assume that np > 2.
We show that the given conditions imply pairwise stability.
Therefore, assume that G is a fully intra-connected net-
work such that the bichromatic edges form a matching cov-
ering one type of agents. Then, no edge can be severed be-
cause monochromatic edges only decrease the neighborhood
cost by o < 1 while increasing the distance cost by 1. Also,
bichromatic edges decrease the neighborhood cost by 2a < 2
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while increasing the distance cost by 2. Finally, it is impos-
sible to create another bichromatic edge. This edge would be
the second bichromatic edge incident to its endpoint from the
minority type of agents. This agent would only decrease her
distance cost by 1 while increasing her neighborhood cost by

7a > gn’”j_l > 1, where we use ny > 2 in the last step. [

The second part of the above proof shows that the networks
characterized in the theorem are even stable for % <a<l
Putting together Proposition 5.1, Example 5.2, and Theo-
rem 5.3, we have proved the existence of pairwise stable net-
works for almost every DEI-NCG if k£ = 2 (except a limit
case when np = 1). By generalizing the encountered net-
works, we can show their existence for an arbitrary number
of types. The generalization of the network in Example 5.2
is straightforward, maintaining the property that there exists
one specific agent entertaining all bichromatic edges. How-
ever, the generalization of the network in Theorem 5.3 is a bit
disguised. We define the network by providing an efficient
algorithm. This algorithm initially considers a fully intra-
connected network and adds edges by having agents create
bichromatic edges via specific better responses. In the spe-
cial case of £k = 2, this results precisely in the matchings
encountered in Theorem 5.3 (see the full version for details).

Theorem 5.4. In the DEI-NCG pairwise stable networks al-
ways exist.

Finally, we want to consider the segregation of pairwise
stable networks in the DEI-NCG. Clearly, segregation only
depends on the networks, not on the type of NCG. Hence,
we transfer from the investigation of ICF-NCGs that cliques
provide low segregation for small «, stars provide high or
low segregation for high «, but require a specific distribu-
tion of agents into types. Independently of this distribu-
tion, double stars provide high segregation and it is clear that
GS(DSX,,) = LS(DSX,,) = 0. Finally, for an intermedi-
ate range of ¢, high segregation is inevitable.

Corollary 5.5. Let

pairwise stable network G in the DEI NCG Wlth pammeter «a
satisfies GS(G) > 1 — 2 and LS(G) > 1 — 2.

6 Experimental Analysis

While our theoretical results indicate a clear structure of sta-
ble networks for o < 1, there is a broad range of possibilities
for larger o. Therefore, we support the theoretical findings for
a > 1 by a detailed experimental analysis>. To this end, we
simulate a simple dynamic process based on distributed and
strategic edge creation and deletion over time, incentivized
by optimizing the cost functions of our two models.

The dynamics start with sparse initial networks (spanning
tree or grid) and distribute agents of two equally-sized types
such that the segregation of the initial network is very low or
high. In each step, one agent is activated uniformly at random
and can either create or delete an edge, performing a best re-
sponse with respect to the cost function under consideration.
In particular, we study also an add-only variant of the model,

>The source code for the experiments can be found at
https://github.com/melnan/HomophilicNCG



Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

o o
» ©
T T

local segregation
5
T

local segregation

o
>
T

b3

05 I I I I I I T R R I R RO N
5 25 30 5 30 55 80 105130 155 180 205 230 255
@

segregated grid; random grid; segregated tree; random tree

Figure 4: Local segregation of 1.01-approximate networks in the
DEI-NCG obtained by iterative best response moves for n = 1000
over 50 runs starting from a random or segregated tree and grid.
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Figure 5: Local segregation of pairwise stable networks in the DEI-
NCG obtained by iterative best add-only moves for n = 1000 over
50 runs starting from a random or segregated tree and grid.

where agents can only create edges. This dynamics is partic-
ularly natural when modeling social networks, as confirmed
by the observation that many real-world social networks get
denser over time [Leskovec et al., 2005]. The dynamics pro-
ceed until the consideration of no agent changes the network.

See [Bullinger et al., 2022] for a detailed discussion of our
experimental setup and further results. An exemplary con-
sideration of the dynamics based on the cost function of the
DEI-NCG can be found in Figure 4 and Figure 5 for the gen-
eral and add-only version, respectively.® Interestingly, the re-
sults for the ICF-NCG are qualitatively the same, regardless
of measuring segregation with the local or global segrega-
tion measure. The experiments indicate that the segregation
strength is proportional to «, with low segregation for low
«, despite the theoretical necessity of high segregation for o
close to 1.* Moreover, except for high «, the initial agent
distribution influences the segregation, with more observed
segregation for segregated initial states. The structure of the
initial network seems less important for the qualitative be-
havior. Interestingly, the add-only version displays a similar

3As discussed in the full version, for computational efficiency,
we consider convergence to 1.01-approximate pairwise stable states
which is qualitatively similar to pairwise stability. Also, note that
“random” means that the initial agent distribution is chosen uni-
formly at random, which implies low initial segregation.

“The provably high segregation for o < 1 close to 1 is not con-
tradicting the experimental results. Just before we reach a cost pa-
rameter of «, we hit the sweet spot where buying monochromatic
edges is desirable while buying bichromatic edges is not.
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Figure 6: Overview of our theoretical results. We display struc-
tural properties of pairwise stable networks, explicit pairwise stable
networks and findings about the segregation of pairwise stable net-
works. The two models behave surprisingly similar.

behavior for low «, but the behavior changes drastically for
moderately high «. Instead of high segregation, we find that
initially integrated networks converge to only moderately seg-
regated states, whereas this is not true for initially segregated
networks, suggesting an escape route from segregation.

7 Conclusion

We have investigated two network creation games that con-
sider heterogeneous edge creation of agents acting accord-
ing to homophily. Our main goal was to analyze segregation
within reasonable networks measured by pairwise stability.
Our results are summarized in Figure 6. Even though our two
game models feature two seemingly orthogonal perspectives
based on a direct and an indirect consideration of homophily,
their qualitative behavior is surprisingly similar.

Clearly, stable networks are highly integrated for a very
small edge cost, when agents can afford to buy all available
edges. Once our cost parameter reaches the sweet spot where
agents need to balance neighborhood and distance cost, there
is provably high segregation, following from characteriza-
tions of stable networks. For slightly larger edge cost, our
theoretical results cannot give a clear tendency of the segre-
gation strength. In principle, both low and high segregation
can be achieved by stable networks. Therefore, we performed
an average-case analysis by running extensive simulation ex-
periments. These experiments provide general tendencies
about segregation contrasting the large theoretical spectrum
for « > 1. Most importantly, we observe low segregation
under integrated initial conditions if edges cannot be deleted.
This yields an escape route from segregation by a high initial
investment establishing permanent integration.
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