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Abstract

Abductive explanations take a central place in eX-
plainable Artificial Intelligence (XAI) by clarify-
ing with few features the way data instances are
classified. However, instances may have exponen-
tially many minimum-size abductive explanations,
and this source of complexity holds even for “in-
telligible” classifiers, such as decision trees. When
the number of such abductive explanations is huge,
computing one of them, only, is often not informa-
tive enough. Especially, better explanations than
the one that is derived may exist. As a way to cir-
cumvent this issue, we propose to leverage a model
of the explainee, making precise her / his prefer-
ences about explanations, and to compute only pre-
ferred explanations. In this paper, several models
are pointed out and discussed. For each model,
we present and evaluate an algorithm for comput-
ing preferred majoritary reasons, where majoritary
reasons are specific abductive explanations suited
to random forests. We show that in practice the pre-
ferred majoritary reasons for an instance can be far
less numerous than its majoritary reasons.

1 Introduction
Understanding predictions made by Machine Learning (ML)
models is an important issue that has stimulated much re-
search in AI for the past couple of years (see e.g., [Ribeiro
et al., 2016; Ribeiro et al., 2018; Adadi and Berrada, 2018;
Xu et al., 2019; Miller, 2019; Samek et al., 2019; Guidotti et
al., 2019; Molnar, 2020]). In this paper, we focus on the gen-
eration of abductive explanations for two popular families of
classifiers, namely decision trees and random forests. Abduc-
tive explanations [Ignatiev et al., 2019], also known as rea-
sons, aim to make precise why a predictor classifies an input
instance as positive or negative. Several types of abductive
explanations exist depending on the classifier at hand. These
include prime-implicant explanations [Shih et al., 2018], also
referred to as sufficient reasons [Darwiche and Hirth, 2020],
and majoritary reasons [Audemard et al., 2022]. Sufficient
reasons and majoritary reasons coincide in the case of deci-
sion trees, but not (in general) in the case of random forests.

Especially, majoritary reasons may contain redundant char-
acteristics, while sufficient reasons are irredundant. As a
counterpart, sufficient reasons are also more difficult to gener-
ate than majoritary reasons when random forests are consid-
ered [Audemard et al., 2022]. Indeed, computing a sufficient
reason for an instance given a random forest is intractable,
while there exists a polynomial-time algorithm for generating
a majoritary reason for an instance given a random forest. A
computational gap can also be observed when comparing the
complexity of computing a minimum-size sufficient reason to
the the complexity of computing a minimum-size majoritary
reason.

Abductive explanations have received much attention in
the XAI literature. However, the issue of explaining why a
data instance is classified as positive or negative is not en-
tirely solved by inferring a single reason. Indeed, as shown
in the following, an instance may have exponentially many
reasons and even exponentially many minimum-size reasons.
And this holds even if one focuses on specific reasons, such
as the sufficient reasons or the majoritary reasons, and even if
one considers only “intelligible” classifiers, such as decision
trees. Clearly enough, when an instance has thousands of suf-
ficient reasons, deriving their full set can be very difficult in
practice. Furthermore, it does not really make sense to report
a huge number of explanations to the explainee (the user who
asked for an explanation [Miller, 2019]), since she / he will
not have the cognitive capacity to consider them as a whole
when too numerous.

In that case, designing alternative approaches is required.
The present paper explores one of them, which is based on
two research assumptions: first, not all reasons are equal,
some are better than others; second, the quality of a reason
does not solely rest on the reason itself, but it often depends
on the explainee. Accordingly, our approach consists in ex-
ploiting a model of the explainee, making precise her / his
preferences about reasons, to derive only preferred reasons.
Focusing on preferred reasons has two advantages: the ex-
planations pointed out are better (since, in essence, they are
intended to match as much as possible the preferences of the
explainee), and empirically their number can be drastically
reduced in some cases, so that the enumeration of all pre-
ferred reasons can make sense in situations when enumerat-
ing all possible reasons would be out of reach.

In our study, several models are proposed. We start with
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a simple model leading to dichotomous preferences over rea-
sons, where “good” ones are expected to be based only on a
specific subset of features. This is enough to prevent from
deriving explanations based on features which are not intelli-
gible or actionable, or those containing protected characteris-
tics, possibly reflecting a biased decision. We also present a
model where “good” reasons are those satisfying a predefined
constraint. The next step is to consider more elaborated pref-
erences, which are not dichotomous in essence but are more
gradual. This is achieved first by considering an ordinal pref-
erence relation, having the form of a prioritization of the fea-
tures. Such a preference relation is suited to scenarios where
some features are considered as more expected than others in
explanations, while any compensation between features from
distinct strata is forbidden. Finally, a last model is presented,
based on a linear (dis)utility / cost function over the features;
here, every feature has a weight, and weights are aggregated
in an additive way. This leads to a cardinal preference relation
over reasons.

For all those models, deriving a preferred sufficient reason
given a random forest is intractable (simply because this is
already the case when no preference model is considered).
Contrastingly, for each of the four preference models consid-
ered in the paper, but the last one, we present a polynomial-
time algorithm that infers a preferred majoritary reason for an
input data instance given a random forest. Though the prob-
lem of deriving a preferred majoritary reason for an instance
given a random forest and a weight mapping is NP-hard in
general, we show how one can leverage a WEIGHTED PAR-
TIAL MAXSAT solver to compute it. Finally, we present the
results of an empirical evaluation illustrating the benefits that
can be achieved in practice by leveraging a model of the user
preferences in the computation of majoritary reasons.

The rest of the paper is organized as follows. We start
with some preliminaries (Section 2) where the notions of de-
cision tree and of random forest are recalled. Abductive ex-
planations, including sufficient reasons and majoritary rea-
sons for random forests, are presented in Section 3. Pref-
erence models and algorithms for deriving preferred majori-
tary reasons are provided in Section 4. Empirical results are
reported in Section 5, before the concluding section (Sec-
tion 6). A full-proof version of the paper is available at
www.cril.univ-artois.fr/expekctation/papers.html.

2 Decision Trees and Random Forests
For an integer n, let [n] = {1, · · · , n}. By Fn we denote the
class of all Boolean functions from {0, 1}n to {0, 1}, and we
use Xn = {x1, · · · , xn} to denote the set of input Boolean
variables. Any Boolean vector x ∈ {0, 1}n is called an in-
stance. For any function f ∈ Fn, an instance x ∈ {0, 1}n
is called a positive example of f if f(x) = 1, and a negative
example if f(x) = 0.

We refer to f as a propositional formula when it is de-
scribed using the Boolean connectives ∧ (conjunction), ∨
(disjunction) and ¬ (negation), together with the variables
from Xn, and the constants 1 (true) and 0 (false). The set
of variables occurring in a formula f is denoted Var(f). As
usual, a literal `i is a variable xi or its negation ¬xi, also

denoted xi. For the literals xi and ¬xi, we note var(xi) =
var(¬xi) = xi. A term t is a conjunction of literals, and
a clause c is a disjunction of literals. A DNF formula is a
disjunction of terms and a CNF formula is a conjunction of
clauses. In the following, we shall often treat instances as
terms, and terms or clauses as sets of literals. For an assign-
ment z ∈ {0, 1}n, the corresponding term is

tz =
n∧

i=1

xzi
i where x0

i = xi and x1
i = xi

For a subset of variables S and a term t, we use t[S] to denote
{` ∈ t : var(`) ∈ S}. For an assignment x and a clause
c, we denote by c[x] the clause c ∩ tx. A term t covers an
assignment x if t ⊆ tx. An implicant of a Boolean function
f is a term t such that f(x) = 1 for every assignment x
covered by t. A prime implicant of f is an implicant t of f
such that no proper subset of t is an implicant of f .

With these basic notions in hand, a (Boolean) decision tree
[Breiman et al., 1984; Quinlan, 1986] on Xn is a binary tree
T , each of whose internal nodes is labeled with one of n in-
put variables, and whose leaves are labeled 0 or 1. Without
loss of generality, every variable is supposed to occur at most
once on any root-to-leaf path. The value T (x) of T on an
input instance x is given by the label of the leaf reached from
the root as follows: at each node go to the left or right child
depending on whether the input value of the corresponding
variable is 0 or 1, respectively. It is well-known that a deci-
sion tree T can be encoded in linear time into an equivalent
CNF formula CNF(T ), where the clauses in CNF(T ) are pre-
cisely the negations of the terms describing the 0-paths of T
(i.e., the root-to-leaf paths of T ending with 0-leaves).

A (Boolean) random forest [Breiman, 2001] on Xn is an
ensemble F = {T1, · · · , Tm}, where each Ti (i ∈ [m]) is a
decision tree on Xn, and such that the value F (x) is given by

F (x) =

{
1 if 1

m

∑m
i=1 Ti(x) > 1

2

0 otherwise.

The size of F is given by |F | =
∑m

i=1 |Ti|, where |Ti| is the
number of nodes occurring in Ti. The class of decision trees
on Xn is denoted DTn, and the class of random forests with
at most m decision trees (with m ≥ 1) over DTn is denoted
RFn,m. Finally, RFn is the union of all RFn,m for m ≥ 1.
Obviously enough, whenever F = {T}, we have F (x) =
T (x) for every x ∈ {0, 1}n.

3 On Abductive Explanations
An important issue in XAI is to develop approaches to explain
why a predictor classifies some data instance as positive or
negative. This calls for a notion of abductive explanation for
an instance [Ignatiev et al., 2019].1 Specifically, an abductive
explanation (also known as a reason) for an instance x ∈
{0, 1}n given a Boolean function f ∈ Fn is a term t that

1Unlike [Ignatiev et al., 2020], we do not require abductive ex-
planations to be minimal w.r.t. set inclusion. Our abductive explana-
tions correspond to so-called weak abductive explanations in [Huang
et al., 2021].
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covers x and is an implicant of f (resp. ¬f ) when f(x) = 1
(resp. f(x) = 0).

Since the predictor itself f (and not a proxy for it) is con-
sidered in this definition, the abductive explanations t for x
given f are guaranteed to be correct in the sense that ev-
ery instance x′ covered by t is provably classified by f in
the same way as x. This property enables the explainee to
reason from the abductive explanations that are reported. Ac-
cordingly, abductive explanations heavily differ from expla-
nations computed using model-agnostic approaches (see [Ig-
natiev, 2020]), for which the previous correctness condition
does not hold in general.

Clearly enough, an abductive explanation for x given f
always exists, since t = tx is such a (trivial) explanation.
However, it may contain many features ` that are useless, in
the sense that the instance that coincides with x except on ` is
classified in the same way as x. In such a case, tx \ {`} must
be preferred to tx for explaining the way x has been classified
by f . Pushing this idea a step further, one gets the notion of
sufficient reason for x given f [Darwiche and Hirth, 2020].

Definition 1 Let f ∈ Fn be a Boolean function and x ∈
{0, 1}n be an instance. A sufficient reason for x given f is a
term t that covers x and is a prime implicant2 of f (resp. ¬f )
if f(x) = 1 (resp. f(x) = 0).

The complexity of identifying sufficient reasons and of de-
riving one of them differs with the representation of f . Thus,
the problem of deciding whether a given term is a sufficient
reason t for an input instance x ∈ {0, 1}n given a decision
tree T can be solved in polynomial time since it amounts to
testing whether t is an implicant of T , and for all ` ∈ t, t\{`}
is no longer an implicant of T . Contrastingly, this problem
becomes intractable when the classifier under consideration
is a random forest F ∈ RFn (it has been shown DP-complete
in this case [Izza and Marques-Silva, 2021]).

Introduced in [Audemard et al., 2022], majoritary reasons
are abductive explanations that are specific to random forests.

Definition 2 Let F = {T1, . . . , Tm} be a random forest in
RFn,m and x ∈ {0, 1}n be an instance. A majoritary reason
for x given F is a term t covering x, such that t is an im-
plicant of at least bm2 c + 1 decision trees Ti (resp. ¬Ti) if
F (x) = 1 (resp. F (x) = 0), and for every ` ∈ t, t \ {`} does
not satisfy this last condition.

Majoritary reasons are abductive explanations since if a
term t implies a majority of decision trees in F , then it is
an implicant of F . However, the converse implication does
not hold and majoritary reasons and sufficient reasons do not
coincide in general (majoritary reasons may contain redun-
dant literals). However, in the restricted case when F = {T},
the majoritary reasons of any x given F coincide with its suf-
ficient reasons.

What makes majoritary reasons valuable is that they can be
generated in linear time using the following greedy algorithm.
For the case when F (x) = 1, start with t = tx, and iterate
over the literals ` of t by checking whether t deprived of `
is an implicant of at least bm2 c + 1 decision trees of F . If

2This explains why sufficient reasons are also known as prime-
implicant explanations [Shih et al., 2018].

so, remove ` from t and proceed to the next literal. Once
all literals in tx have been examined, the final term t is by
construction an implicant of a majority of decision trees in
F , such that removing any literal from it would lead to a term
that is no longer an implicant of this majority. So, t is by
construction a majoritary reason. The case where F (x) = 0
is similar, by simply replacing in F each Ti with its negation
(which can be easily obtained by replacing the 0-leaves of
Ti by 1-leaves, and vice-versa). Indeed, the resulting forest
is equivalent to ¬F , thus it classifies x as a positive instance
precisely when F (x) = 0 (see Proposition 1 from [Audemard
et al., 2022] for details). This simple greedy algorithm runs in
O(n|F |) time, using the fact that, on each iteration, checking
whether t is an implicant of Ti (for each i ∈ [m]) can be done
in O(n|Ti|) time. Thus, the generation of a single majoritary
reason for x given F is tractable.

Unfortunately, this tractability result cannot be extended
to the case when all majoritary reasons are looked for, sim-
ply because majoritary reasons can be too numerous. Thus,
an instance may have exponentially many majoritary reasons
given a random forest. Notably, this issue does not come from
the specific nature of majoritary reasons, that may contain
redundant literals. Indeed, an instance may also have expo-
nentially many sufficient reasons given a random forest. To
be more precise, even in the restricted case when the forest
reduces to a single tree, an instance may have exponentially
many minimum-size majoritary reasons (or, equivalently, ex-
ponentially many minimum-size sufficient reasons since the
two notions coincide for decision trees).
Proposition 1 For every n ∈ N such that n is odd, there is
a decision tree T ∈ DTn of depth n+1

2 such that T contains
2n + 1 nodes and there is an instance x ∈ {0, 1}n such that
the number of minimum-size sufficient reasons for x given T

is equal to 2
√
n−1.

Experiments have shown that such worst-case results are
not rare in practice. When thousands of reasons or much more
exist, computing each of them can be out of reach, and even
when this computation is feasible, the user who asks for ex-
planations (aka the explainee) cannot handle them as a whole
due to their cognitive limitations. In such a situation, comput-
ing a single reason (or only a few reasons) is not a panacea
since reasons may differ a lot one another (reasons can be
pairwise disjoint). Thus, it can easily be the case that the rea-
son that is computed is not good enough for the explainee,
and that a much better reason actually exists but is not the
one that has been reported.

4 On Preferred Abductive Explanations
A rational way to deal with this issue consists in focusing on a
subset of reasons, the so-called preferred ones. Defining what
is a ”preferred” or ”sufficiently good” explanation is a diffi-
cult task in general. There is no consensus about it [Doshi-
Velez and Kim, 2017; Lipton, 2018; Narayanan et al., 2018;
Srinivasan and Chander, 2020], because in the general case
several criteria must be taken into account to assess the qual-
ity of an explanation. Furthermore, some of these criteria are
intrinsic to explanations (e.g., considering minimum-size ex-
planations), but others heavily depend on the explainee. To
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focus only on ”preferred” or at least on ”sufficiently good”
explanations, a formal model of the explainee must be de-
signed and leveraged. Such a model of the explainee can be
more or less sophisticated and take various forms.

We present several models in the following, and we define
notions of preferred reasons based on them. Those preferred
reasons can be considered w.r.t. the full set of abductive ex-
planations, or to subsets of it, especially those containing only
sufficient reasons, or those containing only majoritary rea-
sons. Though the notions of preferred reasons make sense for
any Boolean classifier, our results are mainly about random
forests since they concern majoritary reasons.

4.1 Dichotomous Preferences over Explanations
We start with two models where the preferences of the ex-
plainee are dichotomous, i.e., reasons can be partitioned into
two sets: the one containing reasons that are ”sufficiently
good” and the other one containing reasons judged as “not
good enough”.

Focusing on specific features. A very simple explainee
model consists of a subset S ⊆ Xn of features. This model
is enough to handle a couple of situations of interest where
the explainee wants to discard explanations that refer to non-
understandable concepts (modeled as features outside S).
Such explanations to be discarded may contain features cor-
responding to quite technical notions, that are not understood
by the explainee (e.g., a medical term for a patient who is not
a physician), possibly because they are not documented or are
quite vague in essence (consider for instance, feature Other
(O) in the compas dataset).

Definition 3 Let f ∈ Fn, S ⊆ Xn, and x ∈ {0, 1}n. A
reason built upon S for x given f is a reason t for x given f
such that Var(t) ⊆ S.

Ensuring that only explanations built upon features in S are
generated is also helpful for ensuring other objectives. Thus,
the presence of some protected features should be avoided in
explanations whenever this is possible, since the impossibil-
ity to let such features aside precisely reflects the fact that the
decision made was biased [Darwiche and Hirth, 2020]. For
instance, in a college admission problem, consider an appli-
cant for which the decision made by the classifier is positive:
if every abductive explanation of this decision mentions the
fact that the applicant comes from a rich hometown (a pro-
tected feature), the decision is biased. Hence ”coming from
a rich hometown” should not belong to S. Beyond under-
standability or bias issues, the absence of features that are not
actionable must be avoided in explanations. Being not action-
able simply means that one cannot (or one can hardly) change
their values. For instance, in a loan classification problem, if
an abductive explanation that a loan has not been granted to
an applicant mentions that he/she is over fifty years old, an-
other explanation should be looked for. Indeed, the applicant
cannot change it. In this scenario, the fact that the applicant
is over fifty years old should not belong to S.

Interestingly, deciding whether explanations built solely
upon such a pre-specified set S of features exist can be easily
achieved when considering sufficient reasons given decision

trees, and more generally majoritary reasons given random
forests.
Proposition 2 Let F ∈ RFn and x ∈ {0, 1}n. For any set
S ⊆ Xn, deciding whether a majoritary reason built upon S
for x given F exists, and deriving such a reason when this is
the case, can be done in O(n|F |) time using a greedy algo-
rithm.
Requiring constraints to be satisfied. A slightly more
complex model of the explainee takes the form of a formula C
(a constraint over Xn) that every explanation must satisfy in
order to be acceptable by the explainee. For instance, such a
constraint C may reflect some regulation statement that must
be obeyed.
Definition 4 Let f ∈ Fn, C a formula over Xn, and x ∈
{0, 1}n. A reason satisfying C for x given f is a reason t for
x given f such that t |= C.

This time again, under some assumptions on C, deciding
whether explanations satisfying C exist is computationally
easy when considering sufficient reasons given decision trees,
and more generally majoritary reasons given random forests.
Proposition 3 Let F ∈ RFn and x ∈ {0, 1}n. Let C be a
formula over Xn. Deciding whether a majoritary reason for
x given F that implies C exists can be done in O(n + |F |)
time, and deriving such a reason when this is the case, can
be done in O(n|F |) time using a greedy algorithm when C
belongs to propositional fragment offering a polynomial-time
implicant test (e.g., C is a CNF formula).

4.2 More Gradual Preferences over Explanations
The two previous models induce dichotomous preferences
over explanations. While such a separation in two classes is
convenient in some cases, one would expect more graduality
in other cases, in order (for instance) to avoid the presence of
some features in explanations without forbidding it.
Inclusion-preferred explanations. Here is an approach to
define preference relations that are typically not dichotomous.
Consider a total preorder ≤ over Xn, such that xi ≤ xj

means that feature xi is considered as at most as important or
as at most as expected as feature xj . ≤ can be represented by
a prioritization (or stratification) of Xn, i.e., an ordered par-
tition S1, . . . , Sp of the features from Xn such that xi and xj

belongs to the same set of the partition if and only if xi ≤ xj

and xj ≤ xi, and Si precedes Sj in the partition (i.e., i < j)
whenever every element of Si is before every element of Sj

w.r.t. <.
Based on the prioritization S1, . . . , Sp of Xn induced by
≤, one can define a preference relation @ on the terms over
Xn by stating that t @ t′ if and only if ∃i ∈ {1, . . . , p}∀j ∈
{1, . . . , i − 1}, t[Sj ] = t′[Sj ] and t[Si] ⊂ t′[Si].3 It can
be checked that @ is a strict, partial order (i.e., an irreflexive
and transitive relation). Given a set of terms, the minimal
ones w.r.t. @ correspond intuitively to those that contain as
few unexpected literals as possible (where the comparison is
based on set inclusion). On this ground, we are now ready to
define the notion of inclusion-preferred reason:

3The construction is reminiscent to the one used for characteriz-
ing preferred subtheories in [Brewka, 1989].
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Definition 5 Let f ∈ Fn, ≤ a total preorder over Xn, and
x ∈ {0, 1}n. An inclusion-preferred reason for x given f is
a reason t for x given f such that there is no reason t′ for x
given f satisfying t′ @ t.

The greedy algorithm presented above for generating ma-
joritary reasons can be cast in such a way that it generates
inclusion-preferred majoritary reasons:

Proposition 4 Let F ∈ RFn, ≤ be a total preorder over Xn,
and x ∈ {0, 1}n. Deriving an inclusion-preferred majoritary
reason for x given F and ≤ can be done in O(|G| + n|F |)
time where G is the graph (Xn,≤).

Prioritizations as those considered here are available in a
number of contexts. For instance, features can be ordered
by aggregating the frequencies of the words used in their de-
scriptions. Assuming that for most of the explainees rare
words are less understood than frequent words, it makes sense
to order the features by comparing the less frequent words
used in their descriptions. Some resources can be exploited
to this end, for instance the wordfreq library (pypi.org/project/
wordfreq/). In wordfreq’s wordlists, meaningless precision is
avoided by packing the words into frequency bins (i.e., build-
ing a prioritization of the words). Thus, all words having the
same Zipf frequency4 rounded to the nearest hundredth are
considered to have the same frequency.

Minimum-weight explanations. Another very standard
way to model a preference relation over a combinatorial do-
main is to take advantage of a (dis)utility function (or a
cost function). In our context, this amounts to associating a
(dis)utility value (a weight) with every feature. Such a weight
indicates how much the corresponding feature is not expected
to occur in an explanation (so the lower the better). Then the
(dis)utility (cost) of an explanation is calculated as the sum
of the weights of the features in it. This time, the resulting
preference relation is a total preorder over the explanations,
the best explanations being those of minimal cost. Note that
the presence of many “cheap” features in an explanation can
be balanced by the presence of a a single “expensive” feature.

Definition 6 Let f ∈ Fn. Let w : Xn → N∗ be a weight
mapping associating with every feature a positive integer. A
minimum-weight reason for x given f and w is a reason t for
x given f that minimizes Σx∈Var(t)w(x).

In order to compute a minimum-weight majoritary reason,
unlike what was done before, one cannot take advantage of
any polynomial-time variant of the greedy algorithm for de-
riving majoritary reasons. Indeed, in the general case, the
computation of a minimum-weight majoritary reason is NP-
hard in the broad sense. This comes from the facts that (1)
a minimum-size majoritary reason t for an instance given a
random forest is a minimum-weight majoritary reason t for
an instance given a random forest and a weight mapping w1

such that for every i ∈ [n], w1(xi) = 1, and (2) that deriving
a minimum-size majoritary reason t for an instance given a
random forest is NP-hard [Audemard et al., 2022].

4The Zipf frequency of a word is the base-10 logarithm of the
number of times it appears per billion words.

Nevertheless, one can generalize the approach presented in
[Audemard et al., 2022] for computing minimum-size ma-
joritary reasons to the case of minimum-weight majoritary
reasons. Basically, this amounts to solving an instance of the
WEIGHTED PARTIAL MAXSAT problem. Such an instance
consists of a pair (Csoft, Chard) where Csoft and Chard are
(finite) sets of weighted clauses. A weighted clause is an or-
dered pair (c, w) where w is a natural number or∞. w gives
the cost of falsifying c. If w is infinite, the clause is hard,
otherwise it is soft. The goal is to find a Boolean assignment
that maximizes the sum of the weights of the clauses c in
Csoft that are satisfied, while satisfying all clauses c such that
(c,∞) ∈ Chard.

Proposition 5 Let F = {T1, . . . , Tm} be a random forest in
RFn,m and x ∈ {0, 1}n be an instance such that F (x) = 1.
Let w : Xn → N∗ be a weight mapping. A minimum-weight
majoritary reason for x given F and w is given by tx ∩ tv∗ ,
where v∗ is a solution of the instance (Csoft, Chard) of the
WEIGHTED PARTIAL MAXSAT problem such that:

Csoft = {(xi, w(xi)) : xi ∈ tx} ∪ {(xi, w(xi)) : xi ∈ tx}
Chard = {(yj ∨ c[x],∞) : i ∈ [m], c ∈ CNF(Ti)}

∪ CNF

(
m∑
i=1

yi >
m

2

)
where {y1, . . . , ym} are fresh variables, and CNF(

∑m
i=1 yi >

m
2 ) is a CNF encoding of the constraint

∑m
i=1 yi >

m
2 .

In the case when F (x) = 0, it is enough to consider the same
instance of WEIGHTED PARTIAL MAXSAT as above, except
that each Ti (i ∈ [m]) is replaced by ¬Ti.

Thanks to Proposition 5, one can leverage solvers that have
been designed so far for solving instances of WEIGHTED
PARTIAL MAXSAT (see e.g. [Martins et al., 2014; Ansótegui
and Gabàs, 2017]) in order to compute minimum-weight ma-
joritary reasons. Interestingly, one can also easily ensure that
the minimum-weight majoritary reasons that are computed
are (A) built upon a specific set S of features and / or (B)
satisfy a given CNF constraint C. To do so, it is enough to
add some weighted clauses to Chard before computing v∗,
namely (A) (`,∞) for every ` ∈ tx such that var(`) 6∈ S
and (B) (c,∞) for every c ∈ C. Note however that there is
no guarantee that the minimum-weight majoritary reason that
is computed is a minimum-size minimum-weight majoritary
reason. In addition, because of (B), we can easily leverage
the WEIGHTED PARTIAL MAXSAT solver used to compute
a single minimum-weight majoritary reason to enumerate the
minimum-weight majoritary reasons (each time such a rea-
son t has been computed, it is enough to add the hard clause
(¬t,∞) to Chard in order to block the further generation of
t).

Finally, whenever computing a single minimum-weight
majoritary reason proves hard, we can take advantage of
an anytime WEIGHTED PARTIAL MAXSAT solver (like
openwbo [Martins et al., 2014]) to derive an approximation of
such a reason. Using an anytime solver, solutions v1,v2, . . .
are successively generated. All those solutions satisfy Chard,
their respective weights do not increase, and the sequence
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converges towards an optimal solution v∗. Thus, the last el-
ement vk of the sequence that has been derived at the time
when the solver is stopped can be used to generate a ma-
joritary reason that can be viewed as an approximation of a
minimum-weight majoritary reason. To do so, tvk

just needs
to be post-processed using the greedy algorithm so as to re-
move redundant literals from it, thus ensuring that the result-
ing term is a majoritary reason for x given F . Note that there
is no guarantee that the weight of this term is close to the
weight of v∗.

5 Experiments
Experimental setup. We have considered 22 datasets for
binary classification, which are standard benchmarks from
the repositories Kaggle (www.kaggle.com), OpenML (www.
openml.org), and UCI (archive.ics.uci.edu/ml/), and we have
learned random forests from them. Some of these datasets are
listed in Table 1. “name” is the name of the dataset. “short de-
scription” indicates in a few words the goal of the prediction.
“#instance” is the number of instances in the dataset, “#fea-
ture” is the number of features used to describe the instances,
and “#class” is the number of classes. Finally, “source”
makes precise the repository the dataset comes from.

In the computation of random forests, categorical features
have been treated as arbitrary numbers. Numeric features
have been binarized on-the-fly by the random forest learning
algorithm we used, namely version 0.23.2 of the Scikit-Learn
library [Pedregosa et al., 2011]. All hyper-parameters of the
learning algorithm have been set to their default value, ex-
cept the number of trees. This parameter has been tuned to
ensure that the accuracy of the forest is good enough. For
each dataset b, a 10-fold cross validation process has been
achieved. For each dataset b and each random forest F for b
among the 10 that have been learned, 25 instances have been
picked up in the dataset, leading to a pool of 250 instances per
dataset (unless the dataset contains less than 250 instances, in
which case the pool consists of the entire dataset).

In our experiments, we have focused on the computation
of minimum-weight majoritary reasons. Indeed, minimum-
weight majoritary reasons is the only type of preferred rea-
sons (among those considered in the paper) which is not guar-
anteed to be practical (for each of the other types of preferred
majoritary reasons described here, a polynomial-time greedy
algorithm exists). For each dataset b, we generated all the
minimum-weight majoritary reasons for the instances x in
the pool associated with b, up to exhaustion or a time limit
of 60s per instance. Each time a minimum-weight majoritary
reason for the instance x at hand has been generated, this rea-
son has been blocked for not being computed twice, and the
computation resumed.

Since no weight functions are primarily associated with
the datasets used in our experiments (remember that user
preferences are not intrinsic to the datasets), we have con-
sidered as a second best for each dataset (1) the uniform
weight function, where each feature has weight 1 (in that
case, the minimum-weight majoritary reasons are precisely
the minimum-size ones), (2) for each random forest F ,
the opposite of the SHAP score [Lundberg and Lee, 2017;

Lundberg et al., 2020] of each feature of the instance x at
hand given F computed using SHAP (shap.readthedocs.io/
en/latest/api.html), (3) the opposite of the f -importance of
each feature in F as computed by Scikit-Learn [Pedregosa
et al., 2011], and (4) the opposite of the Zipf frequency of
each feature viewed as a word in the wordfreq library. In case
(2) the weights that are computed are local ones, i.e., they
depend on the instance x that is considered. This contrasts
with the weights computed in cases (3) (measuring the global
importance of features) and (4). While (2) and (3) aim to fa-
vor majoritary reasons involving the most important features
from the explainability side, (4) emphasizes intelligibility.

Most of the time, the available feature weights are not
guaranteed to be positive integers (as for the weights above,
except in case (1)). When negative weights must be taken
into account, the weight mapping w is first updated into
w−minxi∈Xnw(xi)+1; doing so, the weight of every feature
is made positive but the induced ordering over explanations is
preserved so that the minimum-weight majoritary reasons do
not change. When fractional (yet positive) weights are con-
sidered, one changes w into 10k ·w where k is the maximum
number of digits after the decimal point in the representations
of the current weights; that way, all weights are turned into
integers; again, the the induced ordering over explanations is
preserved so that the minimum-weight majoritary reasons are
kept. Indeed, it is well-known that a (dis)utility (or cost) func-
tion that can be subjected to a positive affine transformation
without altering the implied preference order.

Since the weight functions are intended to be part of the
input, we did not count the computation time required to gen-
erate them within the 60s. We took advantage of the any-
time WEIGHTED PARTIAL MAXSAT openwbo [Martins et
al., 2014] to derive minimum-weight majoritary reasons. All
the experiments have been conducted on a computer equipped
with Intel(R) Core(TM) i9-9900 CPU @ 3.10GHz - 16 cores
and 64 GB of memory.

Experimental results. Table 2 reports an excerpt of the re-
sults, based on 14 datasets. For each dataset and the random
forests learned from it, the table gives the name of the dataset
(name), the mean accuracy (%A) of the forests, the mean
number of binary features (#B) in them, and the number of
instances in the pool (#I). Then for each dataset b and each
weight function type used, it gives the number of instances
x in the pool for which at least one (1) or all (A) minimum-
weight majoritary reasons for x have been derived in less than
60s; column (nb) gives the mean number (and the standard
deviation) of minimum-weight majoritary reasons that have
been obtained for the instances for which every minimum-
weight majoritary reason has been computed.

The empirical results clearly show that computing pre-
ferred majoritary reasons is feasible in practice. Indeed, for
many datasets and instances, all minimum-weight majoritary
reasons have been computed within 60s whatever the weight
function type used. We can also observe that the number of
instances for which all minimum-weight majoritary reasons
have been computed is often close to the number of instances
for which at least one minimum-weight majoritary reason has
been derived within the allocated time period. Furthermore,
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name short description (#instance #feature #class) source

divorce predict whether couples will divorce or not (170, 54, 2) Kaggle
compas determine whether defendants will re-offend or not over a two-year period (5278, 14, 2) OpenML

employee determine whether employees will leave or not in the 2-next years (4653, 8, 2) UCI
student mat predict whether students will succeed or failin mathematics (395, 32, 2) UCI
student por predict whether students will succeed or fail in Portuguese (649, 32, 2) UCI

anneal 2 predict about annealing, a heat treatment used in metallurgy (898, 38, 2) UCI
placement predict about student placement (215, 13, 2) Kaggle

heart predict the presence or the absence of heart disease (303, 13, 2) OpenML
diabetes predict whether patients are diabetic or not (768, 8, 2) Kaggle

horse predict whether horses can survive or not (299, 27, 2) UCI
indian liver patient classify patients with liver disease or no disease (583, 10, 2) UCI

banknote determine whether banknotes are genuine or not (1372, 4, 2) Kaggle
startup predict whether startups will succeed or fail (923, 45, 2) Kaggle

farm-ads decide whether owners will approve advertisements or not (1543, 54877, 2) UCI

Table 1: Some of the datasets used in our experiments.

dataset / random forest minimum-size SHAP f-importance wordfreq

name %A #B #I 1 A nb 1 A nb 1 A nb 1 A nb

divorce 97.65 50 170 170 161 41.6 (±77.4) 169 169 1.2 (±0.4) 170 170 1.1 (±0.3) 170 170 1.0 (±0.1)
compas 66.51 65 250 250 250 6.0 (±9.9) 249 249 1.9 (±1.8) 247 243 2.7 (±3.9) 250 250 2.4 (±2.7)

employee 83.17 72 250 243 174 8.9 (±12.6) 243 235 2.0 (±2.1) 249 245 2.1 (±3.5) 239 204 4.4 (±7.6)
student mat 90.63 144 250 250 217 44.7 (±60.4) 250 250 1.1 (±0.2) 250 250 1.1 (±0.3) 250 250 1.2 (±0.4)
student por 91.99 171 250 19 10 43.0 (±38.4) 16 16 1.1 (±0.3) 14 14 1.4 (±0.8) 25 24 1.4 (±0.7)

anneal 2 99.11 203 250 250 200 26.8 (±39.0) 240 240 1.1 (±0.3) 241 240 1.1 (±0.3) 248 248 1.1 (±0.4)
placement 93.55 262 215 215 145 50.7 (±61.0) 215 215 1.4 (±1.3) 215 213 1.3 (±0.7) 215 212 1.2 (±0.6)

heart 78.3 263 250 250 236 41.7 (±59.5) 250 250 1.3 (±0.6) 250 250 1.3 (±0.6) 250 250 1.4 (±0.9)
diabetes 72.28 433 250 250 248 18.2 (±37.7) 250 250 1.3 (±1.1) 250 250 1.3 (±0.7) 250 250 1.1 (±0.4)

horse 87.31 540 250 62 6 72.7 (±46.0) 50 50 1.4 (±0.8) 55 55 1.4 (±0.8) 42 41 1.4 (±0.6)
ind. l. pat. 69.61 613 250 250 187 54.1 (±54.3) 250 250 1.6 (±1.7) 250 250 1.5 (±0.9) 250 250 2.3 (±2.8)
banknote 99.42 652 250 190 37 11.1 (±7.1) 215 207 2.0 (±2.7) 237 231 1.8 (±1.8) 160 150 1.2 (±0.5)

startup 80.18 3517 250 57 0 - (-) 40 38 1.4 (±0.7) 43 42 1.5 (±0.9) 43 38 1.8 (±1.1)
farm-ads 87.3 5389 250 25 0 - (-) 250 250 1.0 (±0.0) 11 11 1.0 (±0.0) 25 25 1.2 (±0.4)

Table 2: Some statistics about the computation of minimum-weight majoritary reasons for instances from some datasets.

it turns out that the use of weight function types (2), (3), and
(4) had a drastic effect on the number of reasons, and has thus
favored the computation of all minimum-weight majoritary
reasons by reducing their number. Finally, it is worth not-
ing that for each dataset b (including the ”harder ones”, e.g.,
farm-ads), each instance in the pool of b, and each weight
function type (1) to (4), one has been able to compute in less
than 60s an approximation of a minimum-weight majoritary
reason. More detailed statistics about the computation time,
the number of reasons that have been generated and their
size have been drawn for each dataset; they are available at
www.cril.univ-artois.fr/expekctation/.

6 Conclusion
In this paper, we have considered the problem of generat-
ing abductive explanations (alias reasons), where an abduc-
tive explanation for an input instance given a predictor aims
to make precise why the predictor classifies the instance as
positive or negative. It turns out that an instance may have
exponentially many reasons and even exponentially many
minimum-size reasons, even for “intelligible” ML models
such as decision trees. An exponential number of minimum-
size reasons can also be obtained for specific classes of rea-
sons, especially the sufficient reasons or the majoritary rea-
sons, where majoritary reasons are abductive explanations
suited to random forests that, unlike sufficient reasons, are
not guaranteed to be irredundant but can be generated in a

tractable way. Because the enumeration of all the reasons is
out of reach (and not desirable), it is important to be able to
focus on some reasons, those that are considered as “good
enough” by the explainee. This calls for defining preference
models and leveraging them to derive only preferred reasons.

To this purpose, we have presented four preference models,
analyzed the complexity of computing a preferred majoritary
reason for each of them, and explained how to do so. Beyond
leading to reasons that better fit the user expectations, exper-
iments have shown that the exploitation of user preferences
may drastically reduce the number of reasons, rendering their
enumeration possible in situations where computing all ma-
joritary reasons would be infeasible.

Taking advantage of user preferences, as done in the pa-
per, is a first step in the direction of characterizing the ex-
planations that the explainee expects. To go a step fur-
ther and achieve an evaluation of explanations that is not
just functionally-grounded, but also human-grounded or even
application-grounded (to borrow the words used in [Doshi-
Velez and Kim, 2017]), one would need a human expert to
be available (or, alternatively, much more sophisticated user
models but as far as we know, there are no such models nowa-
days). Assessing preferred reasons in the context of a specific
application is a perspective for further work. We have an ap-
plication in mind (a problem of sale prediction) where we
could benefit from the help of an expert to evaluate the expla-
nations that are generated.
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