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Abstract
Facial micro-expressions (MEs) are involuntary fa-
cial motions revealing people’s real feelings and
play an important role in the early intervention
of mental illness, the national security, and many
human-computer interaction systems. However,
existing micro-expression datasets are limited and
usually pose some challenges for training good
classifiers. To model the subtle facial muscle mo-
tions, we propose a robust micro-expression recog-
nition (MER) framework, namely muscle motion-
guided network (MMNet). Specifically, a contin-
uous attention (CA) block is introduced to focus
on modeling local subtle muscle motion patterns
with little identity information, which is different
from most previous methods that directly extract
features from complete video frames with much
identity information. Besides, we design a posi-
tion calibration (PC) module based on the vision
transformer. By adding the position embeddings
of the face generated by the PC module at the end
of the two branches, the PC module can help to
add position information to facial muscle motion-
pattern features for the MER. Extensive experi-
ments on three public micro-expression datasets
demonstrate that our approach outperforms state-
of-the-art methods by a large margin. Code is avail-
able at https://github.com/muse1998/MMNet.

1 Introduction
Facial expressions are an essential carrier for spreading hu-
man emotional information and coordinating interpersonal
relationships. Most of the expressions that we see in our daily
life are macro-expressions. However, spontaneous, brief, and
subtle micro-expressions (MEs) can reveal people’s true feel-
ings when people try to hide their real emotions under cer-
tain conditions [Ekman, 2009], which makes MEs applica-
ble to many areas such as criminal interrogation, clinical di-
agnosis, and human-computer interaction. Different from
macro-expressions, MEs are usually accompanied by tiny fa-
cial muscle motions and last less than half a second (usually
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1/25 to 1/3 second), which makes micro-expression recog-
nition (MER) task very difficult for humans, and even more
difficult for computers.

According to the features extraction methods, MER tech-
niques can be roughly divided into two categories: hand-
crafted approaches and deep network-based approaches. For
the former, histogram of oriented gradient (HOG), histogram
of optical flow (HOOF), and local binary pattern-three or-
thogonal planes (LBP-TOP) are often used to extract ME fea-
tures. Le Ngo et al. learnt temporal and spectral structures
with sparsity constraints by processing the LBP-TOP [Le Ngo
et al., 2016]. Li et al. adopted the histogram of image gradi-
ent orientation-TOP (HIGO-TOP) for MER [Li et al., 2017].
Happy et al. proposed a fuzzy-based HOOF (FHOOF) feature
extraction technique that only considers the muscle motion
direction for MER [Happy and Routray, 2017]. However, due
to the short duration and the inconspicuous motion of MEs,
handcrafted features are often unable to robustly represent
the differences between different micro-expressions, which
is detrimental to MER.

In recent years, with the development of deep learn-
ing technology, more and more researchers have achieved
promising results by designing deep neural networks (DNNs)
to handle MER tasks. For example, Gan et al. introduced a
feature extractor that incorporates both the handcrafted (i.e.,
optical flow) and data-driven (i.e., convolutional neural net-
works, CNNs) features [Gan et al., 2019]. Song et al. pro-
posed a three-stream convolutional neural network (TSCNN)
to recognize MEs by learning ME-discriminative features in
three key frames of ME videos [Song et al., 2019]. Xie et
al. developed a MER approach by combining action units
(AUs) and emotion category labels [Xie et al., 2020], mean-
while Lei et al. designed a graph temporal convolutional net-
work (Graph-TCN) to extract the local muscle motion fea-
tures of MEs. Xia et al. devised a framework that leverages
macro-expression samples as guidance for MER [Xia et al.,
2020]. Among the latest results, Xia et al. designed a macro-
to-micro transformation framework by two auxiliary tasks
from the spatial and temporal domains, respectively [Xia and
Wang, 2021].

Although the above methods have gradually improved the
performance of automated MER algorithms in recent years.
Nevertheless, most of them directly input the original video
frames or the handcrafted features of the video frames into
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Figure 1: The proposed two-branch MER paradigm.

DNNs to extract features of MEs, which makes DNNs easy
to lead into the identity information of the samples. Obvi-
ously, identity information that has nothing to do with expres-
sion is harmful to facial expression recognition (FER) task.
This problem may have little impact on the macro-expression
recognition task with abundant training data [Li and Deng,
2020]. However, due to the extremely cost-consuming of col-
lecting and labeling micro-expression data, we still do not
have a large-scale micro-expression dataset comparable to the
macro-expression datasets (e.g., AffectNet [Mollahosseini et
al., 2017]). MEs are mainly determined by the position of
facial muscle motion and the muscle motion pattern (e.g., the
slight upturn of the lips corner on both sides is likely to indi-
cate happiness). So, the key of MER is to learn the position
and pattern of facial muscle motion rather than directly learn
from the entire video frames.

As shown in Figure 1, we propose a new two-branch MER
paradigm to deal with the two key factors mentioned above,
which extracts muscle motion-pattern features from the dif-
ference between the onset frame and the apex frame through
the main branch, and generates facial position embeddings
from the onset frame only through the subbranch. We also
give a specific realization of the proposed two-branch MER
paradigm, namely muscle motion-guided network (MMNet),
which mainly focuses on learning the position (e.g., lips cor-
ner and upper eyebrow) and motion patterns (e.g., raising and
lowering) of facial muscle motions. Specifically, we learn
the features of micro-expression video sequences by a two-
branch framework. First, we introduce a new continuous at-
tention (CA) block to learn the patterns of facial muscle mo-
tions. CA block can pay attention to the location of the mo-
tion and extract features related to motion patterns. Second,
we devise a position calibration (PC) module based on vision
transformer (ViT) [Dosovitskiy et al., 2020] to add robust fa-
cial position information to the learned motion-pattern fea-
tures. It is worth noting that the main branch of our MMNet
only models the difference between the onset frame and the
apex frame, which reflects the muscle motion on the face and
makes the model less affected by the identity information.

The contributions of our work are summarized as follows:
• We propose a novel two-branch MER paradigm, which

extracts the muscle motion-pattern features and facial
position embeddings through the main branch and sub-
branch, respectively. Then, the two kinds of features are
fused at the end of the network for classification.

• We devise a muscle motion-guided network (MMNet) to
implement the above two-branch MER paradigm. The
main branch for extracting the motion-pattern features
is composed of the proposed continuous attention (CA)
block, and the subbranch for generating the position em-
beddings is realized through the designed position cali-
bration (PC) module.

• Our MMNet outperforms the state-of-the-art approaches
by a large margin on three popular micro-expression
datasets (i.e., CASME II, SAMM, and MMEW). Ex-
tensive experiments demonstrate the effectiveness of the
proposed MMNet.

2 Method
In this section, we detail the two branches of our proposed
MMNet for MER.

2.1 Problem Formulation and Overview
Existing MER methods often focus on designing the struc-
tures of deep networks to improve the recognition accuracy,
but usually neglect to find better ways to utilize the video
frames of MEs. Most approaches input the original video
frames with identity information into a single-branch network
[Li et al., 2020; Lei et al., 2020], or extract handcrafted fea-
tures (e.g., optical flow or LBP) from the frames and then
fuse them by a multi-branch network [Liong et al., 2019].
Since the input for the main branch contains the identity in-
formation of the sample to varying degrees, the network is
likely to learn identity related features that have nothing to
do with the MER tasks, especially when ME data are insuf-
ficient. To tackle this problem, we raise a novel two-branch
MER paradigm. The main branch is designed to deal with the
motion pattern, and the light-weight subbranch extracts facial
position embeddings from the low-resolution onset frame that
mainly contains the facial position information without any
expression related information. In this way, even if the low-
resolution onset frame contains certain identity information,
since it is only fed into the light-weight subbranch, the whole
network can still focus on learning the motion pattern rather
than identity.

As seen in Figure 2, our proposed MMNet mainly consists
of two branches. The main branch extracts the motion-pattern
features with the difference between the apex frame and the
onset frame as the input, and the subbranch is used to gener-
ate the facial position embeddings with low-resolution onset
frame as the input. Finally, the facial position embeddings are
added to the motion-pattern features for mapping the motion
pattern to specific face areas.

2.2 Continuous Attention Block
Compared with macro expressions, MEs tend to have smaller
muscle motions and more local active areas, which make it
difficult for the traditional attention modules to accurately fo-
cus on the subtle facial muscle motions. To alleviate this,
some existing works try to model the relationship between
muscle motions and MEs [Xie et al., 2020] with the help of
action unit (AU) labels [Ekman and Friesen, 1978]. However,
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Figure 2: The pipeline of our MMNet. It contains two branches: the continuous attention block for extracting motion-pattern features and the
position calibration module for locating the specific position of muscle motion. LCE stands for the cross-entropy loss function.

it is still a huge challenge to obtain precise attention maps
without introducing extra supervision.

To address the above issue, we devise a continuous atten-
tion block by introducing the attention maps of the previous
layer as the prior knowledge to generate the attention maps of
the current layer. Inspired by the spatial attention module of
convolutional block attention module (CBAM) [Woo et al.,
2018] depicted in Figure 3(a), we utilize both max-pooling
outputs and average-pooling outputs to calculate the spatial
attention maps. As shown in Figure 3(b), we make the atten-
tion maps of the previous layer as the prior knowledge to ob-
tain the attention maps of the current layer, and use a smaller
convolution kernel (i.e., 1×1) to obtain more local attention
maps. Formally, the CA module can be defined as,

Attni = Mi(F i
conv, Attni−1)

= σ(f i
1×1([PMc(F

i
conv); PAc(F

i
conv)]))

⊗
PM(Attni−1),

(1)

with
F i
conv = f i

1×1(f
i
3×3(F

i)) + f i
1×1(F

i), (2)

where Mi is the CA module of the ith CA block that expects
to pay attention to the muscle motion areas and Attni−1 is
the attention maps of the (i − 1)th layer. F i

conv∈R2C×H×W

denotes the features extracted by the first two convolutional
layers of the ith layer as the input of CA module. σ char-
acterizes the sigmoid function. f i

1×1 and f i
3×3 represent

a convolution operation with the kernel size of 1 and 3
from the ith layer, respectively. PMc(F

i
conv)∈R1×H×W and

PAc(F
i
conv)∈R1×H×W separately describe the max-pooled

features and average-pooled features across the channel. PM

indicates the max-pooling operation on the attention maps of
(i − 1)th layer to match the size of current layer attention
maps, while

⊗
means the element-wise product for intro-

ducing the attention maps from last layer as prior knowledge.
F i∈RC×2H×2W stands for the input of the ith CA block.

By associating the attention mechanism between adjacent
layers, the CA block can gradually and robustly focus on the
areas that have subtle motions, instead of focusing on differ-
ent areas of the face in different layers, which may make net-
works learn both ME related areas and unrelated areas. We
use four CA blocks to constitute the main branch of MMNet
to learn the subtle muscle motion-pattern features FM with
the size of 512×14×14. The CA block which consists of the
CA module and two convolutional layers can be formulated
as,

CA(F i, Attni−1) = F i
conv ⊛Mi(F i

conv, Attni−1), (3)

where CA represents the proposed continuous attention
block and ⊛ stands for broadcast element-wise multipli-
cation, which means each channel of F i

conv∈R2C×H×W

will be multiplied by the spatial attention maps
Mi(F i

conv, Attni−1)∈R1×H×W to pay attention to the
region of interest. The ablation experiments and visualization
results in Figure 4 demonstrate that our CA block can help
to concentrate on accurate ME related areas. As shown in
Figure 2, we take the difference between the apex frame and
the onset frame as the input of the main branch to learn the
motion-pattern features.
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Figure 3: Diagram of the CBAM and CA modules. (a) Spatial atten-
tion module of CBAM module and (b) our CA module.

2.3 Position Calibration Module
Due to the diverse appearances of different people in the
micro-expression datasets, it is hard to strictly align all the
faces because of various interpupillary distances, dissimilar
nose sizes, etc. Therefore, the same face areas may corre-
spond to different pixel positions of the image, which make
it hard for the network to learn exactly where the subtle mo-
tion occurs. In order to accurately add position information
to the motion-pattern features extracted by the main branch,
we propose a position calibration module as the subbranch of
MMNet to generate the facial position embeddings for map-
ping motion-pattern features to specific areas of the face.

Since the relative positions of the facial features are phys-
ically determined (e.g., the nose is usually located below the
middle of the two eyes), modeling long-distance dependen-
cies can effectively help locate the positions of various parts
of the face and generate robust position embeddings. Re-
cently, ViT applies self-attention mechanism to model long-
distance dependencies and has achieved promising results on
image classification tasks, while the convolutional neural net-
works (CNNs) often need many convolutional layers to ob-
tain a global receptive field, which is not conducive to mod-
eling facial position information. So, we introduce the PC
module based on a shallow ViT. As shown in Figure 2, we
utilize the difference between the apex frame and the onset
frame to learn the motion-pattern features FM and the low-
resolution onset frame to learn the facial position embeddings
Epos. Since we only need to learn the locations of salient ar-
eas (e.g., eyes, mouth, and nose), instead of the detailed tex-
ture related to the identity of samples (e.g., wrinkles and skin
tone), we scale the onset frame to the same size of 14×14 as
the input of subbranch matching the size of FM . Then, we
reshape the scaled onset frame into a sequence of 196 flat-
tened 2D patches Ip with the size of 1×1×3, and map them
through a trainable linear projection to get patch embeddings
Ep with 512 dimensions, which matches the channel dimen-
sion of FM . After adding the position embeddings of ViT
to retain the position information as done in [Dosovitskiy et

Label
Dataset SAMM CASME II MMEW

Happiness 26 32 36
Anger 57 – –

Contempt 12 – –
Disgust – 63 72

Repression – 27 –
Surprise 15 28 89
Others 26 99 66
Total 136 249 263

Table 1: Summary of the data distributions for CASME II (five
classes), SAMM (five classes), and MMEW (four classes).

Label
Dataset SAMM CASME II

Positive 26 32
Negative 92 96
Surprise 15 28

Total 133 156

Table 2: Summary of the data distributions for CASME II (three
classes) and SAMM (three classes).

al., 2020], these patch embeddings are sent to the transformer
encoder to learn the relationship between patches. Finally,
the output of ViT with the size of 196×512 is reshaped into
512×14×14 to get Epos for position calibration. The posi-
tion embeddings Epos are then added to the motion-pattern
features FM for mapping the motion pattern to specific face
areas for MER.

3 Experiments
To verify the effectiveness of our MMNet, we conduct exten-
sive experiments on three popular micro-expression datasets
including CASME II [Yan et al., 2014], SAMM [Davison et
al., 2016], and MMEW [Ben et al., 2021]. In this section,
we first introduce these three datasets and the implementa-
tion details. Then, we explore the performance of the two
branches of MMNet, respectively. Finally, we compare our
method with several state-of-the-arts.

3.1 Datasets
CASME II [Yan et al., 2014] contains 256 micro-expression
videos from 26 subjects with a cropped size of 280×340 at
200 fps. Consistent with most of previous methods, only sam-
ples of five prototypical expressions, i.e., happiness, disgust,
repression, surprise, and others, are used. SAMM [Davison
et al., 2016] has 159 micro-expression clips from 32 partici-
pants of 13 different ethnicities at 200 fps. Five expressions
(happiness, anger, contempt, surprise, and others) are utilized
for experiments. MMEW [Ben et al., 2021] includes both
macro- and micro-expressions sampled from the same sub-
jects for researchers to explore the relationship between them.
It contains 300 MEs and 900 macro-expression samples with
a larger resolution (1920×1080) at 90 fps. We use four ex-
pressions (happiness, surprise, disgust, and others) for abla-
tion studies. Table 1 shows the data distributions for each
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Method CASME II (5 classes) SAMM (5 classes) MMEW (4 classes)

Accuracy (%) F1-Score Accuracy (%) F1-Score Accuracy (%) F1-Score

Baseline (ResNet) 81.12 0.7582 73.53 0.6345 81.75 0.7921
CA block 83.13 0.7891 76.47 0.6593 84.03 0.8206

PC module 85.14 0.8362 77.21 0.6734 85.55 0.8402

PC module + CA block 88.35 0.8676 80.14 0.7291 87.45 0.8635

Table 3: Evaluation of the continuous attention block and the position calibration module. The best results are highlighted in bold.

Method CASME II (5 classes) SAMM (5 classes) MMEW (4 classes)

Accuracy (%) F1-Score Accuracy (%) F1-Score Accuracy (%) F1-Score

Independent attention 84.74 0.8216 77.21 0.7000 80.99 0.7941
Continuous attention 88.35 0.8676 80.14 0.7291 87.45 0.8635

Table 4: Comparison of continuous attention module and independent attention module. The best results are highlighted in bold.

class of CASME II (five classes), SAMM (five classes), and
MMEW (four classes), while Table 2 gives the data distribu-
tions for each class of CASME II (three classes) and SAMM
(three classes). First, we conduct ablation studies on these
three datasets separately to verify the effectiveness of the CA
block and PC module. Second, since the MMEW dataset
was just released in 2021, there are currently few methods for
comparison on this benchmark. So, we mainly compare MM-
Net with other state-of-the-art approaches on CASME II and
SAMM datasets. Consistent with most of previous works,
leave-one-subject-out (LOSO) cross-validation is employed
in all the experiments, which means every subject is taken as
a testing set in turn and the rest subjects as the training data.
For all the experiments, the accuracy and F1-score are used
for performance evaluation.

3.2 Implementation Details
In our experiments, we use Dlib to detect the landmark points
on the face and crop the images according to these landmark
points. The cropped images on all the datasets are resized to
224 × 224. To avoid overfitting, we randomly pick a frame
from four frames around the labeled onset and apex frames
as the onset frame and apex frame for training. The hori-
zontal flipping, random cropping, and color jittering are also
employed. We use four CA blocks to constitute the main
branch and a shallow ViT to build the subbranch. At the train-
ing stage, we adopt AdamW to optimize the MMNet with a
batch size of 32. The learning rate is initialized to 0.0008, de-
creased at an exponential rate in 70 epochs for cross-entropy
loss function. All the experiments are conducted on a single
NVIDIA RTX 3070 card with PyTorch toolbox.

3.3 Ablation Studies
Effectiveness of the Two Branches in MMNet. To verify
our CA block and PC module, we set a ResNet consisting of
four building blocks which is used in ResNet18 as the base-
line model for ablation studies. Then, we separately replace
the building blocks of ResNet18 with the CA block and add
the PC module to compare the proposed model with the base-

Setting NL NH CASME II (%) SAMM (%)

i 2 2 86.35 79.41
ii 2 4 88.35 80.14
iii 2 8 85.94 78.68
iv 3 2 84.74 80.88
v 3 4 85.94 80.14
vi 3 8 84.34 76.47

Table 5: Ablation study w.r.t. number of heads and number of layers,
performed on CASME II (5 classes) and SAMM (5 classes). NL

represents the number of ViT encoder and NH stands for number of
heads. Bold values correspond to the best performance.

line. As shown in Table 3, the CA block and PC module both
can significantly improve the performance. Finally, when
we use both the modules to build our MMNet, the results
exceed the baseline by 7.23%/10.94%, 6.61%/9.46%, and
5.70%/7.14% on CASME II, SAMM, and MMEW datasets
in terms of accuracy/F1-score.

Comparisons between Continuous Attention and Inde-
pendent Attention. To illustrate the effectiveness of intro-
ducing attention maps of the previous layers as prior knowl-
edge on generating precise attention maps for MER task, we
compare the proposed continuous attention module with tra-
ditional independent attention module (i.e., spatial attention
module of CBAM shown in Figure 3(a)), which generates the
spatial attention maps independently in each layer. It is wor-
thy to note that both settings add the PC module to generate
the position embeddings. As shown in Table 4, the perfor-
mance of CA module on the three datasets are significantly
better than the independent attention module.

Impact of the number of layers and heads of PC mod-
ule. Vision transformer encoder consists of NL identical
layers. The multi-head self-attention in each layer enables
the model to decompose the information into NH representa-
tion subspaces and jointly capture discriminative information
at different positions. We explore the effects of different layer
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Method Cate Acc (%) F1-Score

OFF-ApexNet [2019] 3 88.28 0.8697
STSTNet [2019] 3 86.86 0.8382

AU-GACN [2020] 3 71.20 0.3550
MTMNet [2020] 3 75.60 0.7010

MiNet&MaNet [2021] 3 79.90 0.7590
GACNN [2021] 3 89.66 0.8695

MMNet (Ours) 3 95.51 0.9494
DSSN [2019] 5 71.19 0.7297

TSCNN [2019] 5 80.97 0.8070
Dynamic [2020] 5 72.61 0.6700

Graph-TCN [2020] 5 73.98 0.7246
SMA-STN [2020] 5 82.59 0.7946
AU-GCN [2021] 5 74.27 0.7047
GEME [2021] 5 75.20 0.7354

MERSiamC3D [2021] 5 81.89 0.8300

MMNet (Ours) 5 88.35 0.8676

Table 6: Comparison results on CASME II dataset.“Cate” stands for
the number of classes. The best accuracies are highlighted in bold.

L4 (OT) 4+R7+R10 (DI)

L12 (HA) 12 (HA) R12 (HA)

4 (OT)

25 (SU)

5 (SU)

Figure 4: Visualization of the attention maps of several samples
from MMEW dataset. The labels outside brackets represent the ac-
tion unit label of the samples (e.g., L12 stands for the left corner of
the lips, R12 represents the right corner of the lips, and 12 means
both corners of the lips.), while the label inside the brackets is the
expression type (e.g., SU, HA, DI, and OT represents surprise, hap-
piness, disgust, and others, respectively).

values NL and the number of heads NH on CASME II and
SAMM datasets. Table 5 shows the performance compari-
son of different hyper-parameter settings of our method. We
observe that smaller NH and NL tend to achieve better re-
sults. We think this is because larger models are more prone
to overfitting. Therefore, we set the number of self-attention
heads NH and the number of transformer encoder layers NL

to 2 and 4 by default.

3.4 Comparison with State-of-the-arts
We also compare our MMNet with several state-of-the-art
methods. From Tables 6 and 7, we can see that our MM-
Net outperforms the best results of previous methods on ev-
ery evaluation indicators. Specifically for three-class MER

Method Cate Acc (%) F1-Score

OFF-ApexNet [2019] 3 68.18 0.5423
STSTNet [2019] 3 68.10 0.6588

AU-GACN [2020] 3 70.2 0.4330
MTMNet [2020] 3 74.10 0.7360

MiNet&MaNet [2021] 3 76.70 0.7640
GACNN [2021] 3 88.72 0.8118

MMNet (Ours) 3 90.22 0.8391
DSSN [2019] 5 57.35 0.4644

Graph-TCN [2020] 5 75.00 0.6985
SMA-STN [2020] 5 77.20 0.7033
AU-GCN [2021] 5 74.26 0.7045
GEME [2021] 5 55.38 0.4538

MERSiamC3D [2021] 5 68.75 0.6400

MMNet (Ours) 5 80.14 0.7291

Table 7: Comparison results on SAMM dataset. “Cate” indicates the
number of classes. The best accuracies are highlighted in bold.

tasks, our method outperforms GACNN [Kumar and Bhanu,
2021] by 1.5%/2.73% and 5.85%/7.99% on SAMM and
CASME II with respect to accuracy/F1-score. As for five
classes, our MMNet exceeds SMA-STN [Liu et al., 2020]
by 2.94%/2.58% and 5.76%/7.3% on SAMM and CASME II
in terms of accuracy/F1-score.

3.5 Visualization

In order to prove that our proposed continuous attention mod-
ule can pay attention to the movements of tiny facial muscles,
we visualize some attention maps of the first CA block in
Figure 4. It can be easily seen that CA module can gener-
ate attention maps to help the network focus on where the
facial muscle moves accurately. Specifically, the CA module
concentrates on the upper end of the eyebrows for surprise
samples and the corner of the mouth for happiness samples.

4 Conclusion

In this paper, we develop a new two-branch MER paradigm
and make a realization of the new paradigm, called MMNet.
Specifically, the main branch based on the proposed CA block
focuses on learning motion-pattern features from the differ-
ence between the onset and apex frames, while the subbranch
based on the PC module concentrates on generating facial po-
sition embeddings for position calibration. Extensive experi-
ments illustrate that our MMNet outperforms state-of-the-arts
by a large margin on CASME II and SAMM datasets.
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