Spatiality-guided Transformer for 3D Dense Captioning on Point Clouds

Heng Wang, Chaoyi Zhang, Jianhui Yu and Weidong Cai
School of Computer Science, University of Sydney, Australia
{heng.wang, chaoyi.zhang, jianhui.yu, tom.cai}@sydney.edu.au

Abstract
Dense captioning in 3D point clouds is an emerging vision-and-language task involving object-level 3D scene understanding. Apart from coarse semantic class prediction and bounding box regression as in traditional 3D object detection, 3D dense captioning aims at producing a further and finer instance-level label of natural language description on visual appearance and spatial relations for each scene object of interest. To detect and describe objects in a scene, following the spirit of neural machine translation, we propose a transformer-based encoder-decoder architecture, namely SpaCap3D, to transform objects into descriptions, where we especially investigate the relative spatiality of objects in 3D scenes and design a spatiality-guided encoder via a token-to-token spatial relation learning objective and an object-centric decoder for precise and spatiality-enhanced object caption generation. Evaluated on two benchmark datasets, ScanRefer and ReferIt3D, our proposed SpaCap3D outperforms the baseline method Scan2Cap by 4.94% and 9.61% in CIDEr@0.5IoU, respectively. Our project page with source code and supplementary files is available at https://SpaCap3D.github.io/.

1 Introduction
With continuous advance of deep learning in both computer vision and natural language processing, a variety of multimodal studies in these two areas have gained increasingly active attention [Uppal et al., 2022]. Dense captioning, as first introduced in image domain [Johnson et al., 2016], is a representative task among them to describe every salient pixel-formed area with a sequence of words. Just as many other multimodal tasks, the scope of conventional dense captioning research is mainly restricted to 2D space [Yang et al., 2017; Yin et al., 2019; Li et al., 2019b; Kim et al., 2019]. In recent past, with the popularity of 3D point-based scene data collection and application, 3D scene understanding and analysis have become feasible and prominent [Qi et al., 2018; Wald et al., 2020; Zhang et al., 2021; Zhao et al., 2021]. Also, two newly introduced dense annotation datasets tailored for 3D indoor scenes [Dai et al., 2017]. ScanRefer [Chen et al., 2020] and ReferIt3D [Achlioptas et al., 2020], create more opportunities in 3D multimodal research. Facilitated by these datasets and pioneering point cloud processing techniques [Qi et al., 2017; Qi et al., 2019], dense captioning has been recently lifted from 2D to 3D [Chen et al., 2021] to localize and describe each object in a 3D point cloud scene, which is beneficial for applications such as robotics manipulation, augmented reality, and autonomous driving.

In real world, human descriptions of an object or instructions to navigate a robot always involve good understanding and capturing of relative spatiality in 3D space [Landau and Jackendoff, 1993; Skubic et al., 2004]. In 3D dense captioning datasets, spatial language (above, under, left, right, in front of, behind, etc.) could be ubiquitous, taking up 98.7% and 90.5% in ScanRefer and ReferIt3D respectively according to their dataset statistics. However, such critical 3D spatiality has not been well explored in previous work [Chen et al., 2021]. Also, the sequential training strategy in their
adopted RNN-based captioner could make it prohibitively long to reach convergence. In contrast, attention mechanism in prevalent Transformer [Vaswani et al., 2017] is capable of not only long-range relationship learning but also efficient parallel training. However, relation learning in transformer-based architectures depends only on the final task objective and lacks an explicit guidance on the relation, which could make it hard to precisely learn how 3D spatially-related an object is with respect to another one in our task.

To bridge the gap, in this work, we conduct careful relative spatiality modeling to represent 3D spatial relations and propose a spatiality-guided Transformer for 3D dense captioning. Building upon a detection backbone which decomposes the input 3D scene into a set of object candidates (i.e., tokens), we propose SpaCap3D, a transformer-based encoder-decoder architecture, which consists of a spatiality-guided encoder decoder architecture, consisting of a spatiality-guided encoder and an object-centric decoder.

We propose a token-to-token spatial relation learning objective with relative spatiality modeling to guide the encoding of main-axis spatial relations for better representation of 3D scene objects.

An integrated and efficient transformer-based encoder-decoder architecture, SpaCap3D, is proposed for 3D dense captioning, consisting of a spatiality-guided encoder and an object-centric decoder.

We achieve a new state-of-the-art performance on ScanRefer and Nr3D from ReferIt3D [Achlioptas et al., 2020], respectively. To iterate, our contributions are three-fold:

- We propose a token-to-token spatial relation learning objective with relative spatiality modeling to guide the encoding of main-axis spatial relations for better representation of 3D scene objects.
- An integrated and efficient transformer-based encoder-decoder architecture, SpaCap3D, is proposed for 3D dense captioning, consisting of a spatiality-guided encoder and an object-centric decoder.
- We achieve a new state-of-the-art performance on ScanRefer and Nr3D from ReferIt3D over previous work.

2 Related Work

2.1 Dense Captioning: from 2D to 3D

Following [Johnson et al., 2016], current state-of-the-art 2D dense captioning methods use a region proposal network to detect salient regions and extract their CNN-based features as representation where a RNN captioner is applied to generate phrases or sentences. [Yang et al., 2017] attached a late-fusion context feature extractor LSTM with a captioner one to emphasize contextual cues. [Yin et al., 2019] and [Li et al., 2019b] proposed to consider not only the global context but also the neighboring and the target-guided object context, respectively. In [Kim et al., 2019], a sub-pred-obj relationship was learnt via a triple-stream network.

As 2D image is a projection of 3D world without depth dimension, spatial relations expressed in 2D dense captioning are usually implicit and ambiguous. To directly tackle 3D world, Scan2Cap [Chen et al., 2021] proposed 3D dense captioning on point cloud data. In Scan2Cap, relations among object proposals are learnt through a message passing network where only angular deviation relations whose labels [Avetisyan et al., 2019] (i.e., transformation matrices) are hard to collect and incomplete are taken into consideration, while captions are generated by RNN-based decoder following 2D dense captioning methods, which is time-consuming in training. Compared to Scan2Cap, our work focuses on more common spatial relations, and the relation labels are easy to obtain for all objects during training as our label generation process only requires access to the bounding box information (i.e., box center and size). In addition, fast parallel-training in transformer-based architectures guarantees the efficiency of our method.

2.2 Transformers in Image Captioning

Although Transformers in dense captioning have not been explored to the best of our knowledge, there are a string of works in the related image captioning area. To learn better region representations, encoders in existing work were incorporated with learnable prior knowledge [Cornia et al., 2020], geometric weight learnt from geometry features [Herdade et al., 2019], region and attribute representations [Li et al., 2019a], inter- and intra-layer global representations [Li et al., 2021], or proposal- and grid-level features [Luo et al., 2021]. Their decoders focus on how to learn the implicit relationship among region proposals so that a general and overall image-level caption can be generated. Yet, dense captioning in 3D world involves more diversities and degrees of freedom in object arrangements and it emphasizes finer and denser object-level descriptions, which captures more interactions between an object and its surrounding environment.

To tackle these challenges, we use location-aware positional encoding to encode global position and a spatiality-guided encoder with token-to-token spatial relation learning objective to learn relative 3D spatial structures, while our object-centric decoder transforms each spatiality-enhanced object visual representation into a description.

3 Method

We present our spatiality-guided Transformer as SpaCap3D for 3D dense captioning in Figure 2. We first use a detector to decompose input scene into object proposals which we refer to as vision tokens, and then feed them into a spatiality-guided encoder for token-to-token relative 3D spatial learning. Lastly, a shared object-centric decoder is conditioned on each spatiality-enhanced object vision token to describe them individually.

3.1 3D Object Detection

For an input point cloud of size \(N \times (3 + K) \) including a 3-dim coordinate and extra \(K \)-dim features such as colors, normals, and multi-view features for each point, we first apply an object detector to generate \(M \) object candidates which are input tokens to later components. To make fair comparisons with existing work, we deploy the same seminal detector VoteNet [Qi et al., 2019] with PointNet++ [Qi et al., 2017] as feature aggregation backbone to produce initial object features \(\mathcal{X} \in \mathbb{R}^{M \times C} \). We also keep the vote cluster center coor-
coordinates \(P \in \mathbb{R}^{M \times 3} \) from its proposal module as global location information for later positional encoding.

3.2 Token-to-Token Spatial Relationship Learning

To generate spatiality-enhanced captions, we carefully conduct a relative spatiality modeling from which spatial relations among tokens can be formulated and learnt through a token-to-token (T2T) spatial relationship learning objective.

Relative Spatiality Modeling

We first introduce how we model the relative spatiality in 3D scenes. We construct a local 3D coordinate system (right-handed) with an object itself as the origin center, and the relation of a surrounding object with respect to the center object can be represented as a \((\lambda_x, \lambda_y, \lambda_z)\)-triplet where each entry \(\lambda \in \{+1, -1, 0\} \) indicates which half axis the surrounding object sits along different axes (+1 for positive, -1 for negative, and 0 for same position), as illustrated in Figure 3. Note we only consider coarse direction such as positive or negative and ignore the exact displacement along axes to decomplexify the modeling. Specifically, according to the intersection of two objects, the definition of a positive relation can vary. Before discussing it, we introduce the notations we use in the following. \(\square_i \) indicates the bounding box of an object \(o_i \). And \(\square_i^{\alpha, \beta} \) denotes the parameters of the bounding box along \(k\)-axis where \(k \in \{x, y, z\} \), i.e., \(\land \) for minimum value, \(\lor \) for maximum value, and \(| \) for side length. As relations along \(z\)-axis involve different heights while those along \(x\)-/\(y\)-axis are grounded to the same floor level, we discuss the criteria of being positive for them separately.

Same floor. Depending on how two objects overlap with each other, we categorize the criteria of \(o_i \) being positive w.r.t. \(o_j \) along \(x\)-/\(y\)-axis into three cases as illustrated in Figure 4. (a) **Absolute positive:** when the overlapping area does not

![Figure 2: The overview of our proposed method SpaCap3D for spatiality-guided 3D dense captioning. The encoder-decoder framework consists of an object detector to generate object proposals (i.e., tokens), a learnable function \(f \) to project coordinates, a token-to-token spatial relation-guided encoder to incorporate relative 3D spatiality into tokens, and a shared object-centric decoder to generate per-object descriptions.](image)

![Figure 3: An example of our 3D spatiality modeling of main-axis spatial relations. With respect to the couch, chair-2 is in the negative half \(x\)-axis, positive half \(y\)-axis, and on the same floor along \(z\)-axis, hence its spatial relation to couch is represented as \((-1, +1, 0)\). As spatial relation is relative, the relation of couch to chair-2 is expressed reversely as \((+1, -1, 0)\).](image)

![Figure 4: Three cases when an object \(o_i \) is to the positive direction of another object \(o_j \) along \(x\)-/\(y\)-axis. Top view. The arrow points to the positive direction. \(\alpha \) and \(\beta \) are the lower and upper area limits, respectively.](image)
exceed the side length of o_j and both the bottom and up of o_i are above those of o_j: $(\Box_{i:A} \geq \Box_{j:A}) \cap (\Box_{i:B} > \Box_{j:B})$ (b) **Covered positive:** when the overlapping area equals the side length of o_i itself, i.e., o_i is completely covered by o_j, and it resides at the upper area of o_j: $(\Box_{i:A} \geq \Box_{j:A} + \alpha \times \Box_{j:B}) \cap (\Box_{j:B} < \Box_{j:V} < \Box_{i:V})$ (c) **Covering positive:** this is the reverse situation of condition (b) when the overlapping area equals the side length of o_j instead, and o_j lags at o_i’s lower area: $(\Box_{j:A} < \Box_{j:B} < \Box_{j:A} + \alpha \times \Box_{j:B}) \cap (\Box_{j:B} < \Box_{i:V} \leq \Box_{i:V})$. We additionally define two objects are at the same position when the bottom and up of one object are within a certain tolerance ϵ from those of the other one: $(|\Box_{i:V} - \Box_{j:V}| \leq \epsilon)$ and $(|\Box_{i:A} - \Box_{j:A}| \leq \epsilon)$. The lower and upper area limits α, β, and tolerance ϵ are empirically set as 0.3, 0.7, and 0.1 respectively.

Various heights. We define o_i is at positive direction to o_j when o_i is over the lower area of o_j: $(\Box_{i:A} \geq \Box_{j:A} + \alpha \times \Box_{j:B})$.

Positional Encoding
Before spatial relation learning, as shown in Figure 2, we apply a learnable function $f(\cdot)$ to each vote cluster center $p \in \mathcal{P}$ to incorporate the global location information into each token. Specifically, $f(\cdot)$ is defined as:

$$f(p) = (\sigma(BN(pW_1)))W_2,$$

where $W_1 \in \mathbb{R}^{n \times C}$ and $W_2 \in \mathbb{R}^{C \times C}$ are two linear transformations to project 3-dim geometric features into the same high dimensional space as general features X. We use ReLU as the activation function σ and a Batch Normalization (BN) layer to adjust the feature distribution. The input tokens $T = \{t_1, t_2, ..., t_M\} \in \mathbb{R}^{M \times C}$ for our encoder are then created by adding the newly projected C-dim global geometry into X.

Spatial Relation Learning

When learning a token-to-token spatial relationship, we aim to capture the corresponding object-to-object relation. For a target token t_i and its neighboring token t_j, we select their ground truth objects o_i and o_j as the ones with the nearest centers to their predicted centers. We can generate three main-axis spatial relation label maps, \mathcal{R}^x, \mathcal{R}^y, and \mathcal{R}^z, for the M tokens based on their ground truth objects’ relations, as per the criteria defined above. Label entries $\{r^x_{i:j}, r^y_{i:j}, r^z_{i:j}\} \in \{+1, -1, 0\}$ define how the object o_i represented by token t_i is in positive/negative/same direction along x-, y-, and z-axis to another object o_j represented by t_j, respectively. In a standard transformer, the encoder is composed of n repetitions of a multi-head self-attention (MSA) layer and a feed-forward network (FFN). A normalization and residual link (AddNorm) is applied for each layer. The updated token t'_j after attention mechanism is defined as the summation of $\omega_{i,j} t_j$ for $j = 0, 1, ..., M$ where $\omega_{i,j}$ represents the attention coefficient of t_i to t_j. In other words, the updated token is comprised of different contribution of its neighboring tokens. To encode such relation with relative 3D spatially information, we apply our relation prediction head (RPH) to each contribution $\omega_{i,j} t_j$. As illustrated in Figure 5, the relation prediction happens at the last encoder block. We use a standard three-layer MLP with two ReLU activated C-dim hidden layers and a linear output layer. The output of the RPH is a 9-dim vector where each three represents the predicted relation along a main axis. The T2T spatial relation learning is hence guided by our relation loss as:

$$L_{relation} = \sum_{k \in \{x,y,z\}} L_{CE}(\hat{R}^k, R^k),$$

where L_{CE} denotes three-class cross-entropy loss.

3.3 Object-centric Decoder

In image captioning Transformers, the decoder consisting of n stacks of a masked MSA layer, a cross-attention layer with the output of encoder, and a FFN, attends all salient area vision tokens to conclude one sentence describing the whole image. On the other hand, in dense captioning, the target is each object. Therefore, we propose an object-centric decoder with target-aware masked self-attention layer to update each word token by attending both its previous words and the target vision token as depicted in Figure 6. Compared to the standard decoder, our design can fulfill the dense captioning task but in a more concise and efficient manner. More specifically, it would stack a target vision token mask (in pink) on the basis of the existing word token mask (in blue) and feed the target vision token as well as word tokens together into
3.4 Learning Objective

We define our final loss as \(L = \delta \cdot L_{\text{det}} + L_{\text{des}} + \zeta \cdot L_{\text{relation}} \), where \(L_{\text{relation}} \) is our proposed T2T spatial relation learning objective defined in Equation 2. As for the object detection loss \(L_{\text{det}} \) and the description loss \(L_{\text{des}} \), we follow Scan2Cap, and more details can be found in [Chen et al., 2021]. \(\delta \) and \(\zeta \) are set as 10 and 0.1, respectively, to maintain similar magnitude of different losses.

4 Experiments

4.1 Datasets, Metrics, and Implementation Details

Datasets. We evaluate our proposed method on ScanRefer [Chen et al., 2020] and Nr3D from ReferIt3D [Achlioptas et al., 2020], both of which provide free-form human descriptions for objects in ScanNet [Dai et al., 2017]. Same as ScanCap2 [Chen et al., 2021], for ScanRefer/Nr3D, we train on 36,665/32,919 captions for 7,875/4,664 objects from 562/511 scenes and evaluate on 9,508/8,584 descriptions for 2,068/1,214 objects from 141/130 scenes.

Metrics. We benchmark the performances on both detection and captioning perspectives. For detection, we use the mean average precision thresholded by 0.5 IoU score (mAP@0.5). For captioning, we employ \(\text{mIoU} \) where only the prediction whose IoU is larger than 0.5 will be considered [Chen et al., 2021]. The captioning metric \(\text{mIoU} \) can be the one especially designed for image captioning such as CIDER (C) [Vedantam et al., 2015], or those focusing more on machine translation or on text summarization such as BLEU-4 (B-4) [Papineni et al., 2002], METEOR (M) [Banerjee and Lavie, 2005], and ROUGE (R) [Lin, 2004].

Implementation Details. To make fair comparisons, we use the same training and testing protocols as Scan2Cap. Following Scan2Cap, we set the input number of points \(N \) as 40,000 and the number of object proposal \(M \) as 256. The output feature dimension \(C \) from object detector is 128. For Transformer, we set the number of encoder and decoder blocks \(n \) as 6 and the number of heads in multi-head attentions as 8. The dimensionality of input and output of each layer is 128 except that for the inner-layer of feed-forward networks as 2048.

The input denotes various combinations of different information: \(\text{xyz} \) refers to points’ coordinates, \(\text{normal} \) means the normal vector of each point, \(\text{rgb} \) uses color information and \(\text{mv} \) stands for pretrained 2D multi-view features.
outperforms not only the baseline Scan2Cap but also the standard Transformer (ours-base) in all metrics. It is worth noting that SpaCap3D manages to exceed Scan2Cap, even when SpaCap3D only takes simple coordinates as inputs whereas Scan2Cap uses much richer pretrained multi-view features. To be comparable with Scan2Cap’s input setting, we also provide a variant of our proposed method with color and normal features added and it achieves better results as expected. The inclusion of multi-view features can further boost the performance and we point out that it requires 6 more hours to train compared to its simpler counterpart (i.e., xyz+normal+rgb).

The average forward pass time per training batch is around 0.5s and 0.2s, and the average per-batch inference time is around 11.7s and 2.3s, respectively for Scan2Cap and our SpaCap3D (taking the same xyz-input), which demonstrates our efficiency.

4.3 Qualitative Analysis

To visualize the importance of relative spatiality, we display some detect-and-describe results of the proposed method with and without relative 3D spatiality learning in Figure 7. If the T2T guidance is discarded, the generated descriptions could lack unique spatial relations and tend to be general as shown in Figure 7 (a) and (b). While our spatiality-guided Transformer distinguishes two chairs at a table (“middle” and “corner”) and two pillows on the bed (“left” and “right”) by their spatiality, the method without such guidance could collapse into generic expressions lacking specific spatial relations. Also in Figure 7 (b), our proposed method with T2T is capable of describing more relations for the suitcase compared to the one without T2T guidance (“on the floor by the bed” vs. “on the floor”). Figure 7 (c), (d), and (e) show cases when T2T guidance boosts correct spatial relation prediction. We also emphasize Figure 7 (f) where a table is in between two chairs. Instead of just describing the relation between the table and one chair, the T2T-guided method considers the existence of both chairs and generates more thoughtful expression. More results are displayed in Supplementary Figure 3.

4.4 Ablation Study

Component Analysis

We investigate components of our proposed architecture, the late-guide and early-guide decoder, attention-based encoder with vote center-based positional encoding, and token-to-token spatial relation learning (T2T), in Table 2. Model A and B adopt the decoder alone and the outcome that Model B achieves 3.56% and 1.17% improvement over Model A on captioning and detection respectively demonstrates the superiority of our proposed early-guide decoder. Based on Model B, Model C uses an attention-based encoder to learn the long-range dependency among object proposals, which leads to a detection performance increase by 1.31%. With the guidance of our T2T spatial relation learning objective, the encoder functions better as can be seen in the results from Model D which performs the best in both captioning and detection.
Table 2: Ablation study on different components of our proposed method. T2T denotes the token-to-token spatial relation learning objective.

<table>
<thead>
<tr>
<th>Model</th>
<th>Decoder</th>
<th>Encoder</th>
<th>T2T (captioning)</th>
<th>mAP@0.5IoU (detection)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td></td>
<td>37.80</td>
<td>30.97</td>
</tr>
<tr>
<td>B</td>
<td>✓</td>
<td></td>
<td>41.36</td>
<td>32.14</td>
</tr>
<tr>
<td>C</td>
<td>✓ ✓</td>
<td></td>
<td>41.14</td>
<td>33.45</td>
</tr>
<tr>
<td>D</td>
<td>✓ ✓ ✓</td>
<td>✓</td>
<td>42.53</td>
<td>34.44</td>
</tr>
</tbody>
</table>

Table 3: Ablation study on choices of encoder’s positional encoding. box center* indicates concatenation of box center and size.

Positional Encoding Analysis

To verify the choice of learnable vote center-based positional encoding for encoder, we elaborate on different ways in Table 3. The non-learnable sinusoidal method in standard Transformer has slightly better effect over the one without any positional encoding, showing the necessity of such encoding in our task. For learnable encoding, we compare with random one used in 2D object detection Transformer [Carion et al., 2020] and box center-based one adopted in 3D object detection Transformer [Liu et al., 2021]. More details of these learnable positional encoding methods can be found in the supplementary file. We find that random learnable positional encoding can boost the performance compared to non-learnable ones and the incorporation of object position information can further advance the performance. Among all learnable encoding ways, our vote center-based one achieves the best results.

5 Conclusion

In this work, we propose a new state-of-the-art framework dubbed as SpaCap3D for the newly emerging 3D dense captioning task. We propose to formulate object relations with relative 3D spatiality modeling, based on which we build a transformer-based architecture where a spatially-guided encoder learns how objects interact with their surrounding environment in 3D spatiality via a token-to-token spatial relation learning guidance, and a shared object-centric decoder is conditioned on each spatially-enhanced token to individually generate precise and unambiguous object-level captions. Experiments on two benchmark datasets show that our integrated framework outperforms the baseline method by a great deal in both accuracy and efficiency.

References

