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Abstract
Due to the prosperity of Artificial Intelligence (AI)
techniques, more and more backdoor triggers are
designed by adversaries to attack Deep Neural
Networks (DNNs). Although the state-of-the-art
method Neural Attention Distillation (NAD) can
effectively erase backdoors from DNNs, it still
suffers from non-negligible Attack Success Rate
(ASR) together with lowered classification ACCu-
racy (ACC), since NAD focuses on backdoor de-
fense using attention features (i.e., attention maps)
of the same order. In this paper, we introduce a
novel backdoor defense framework named Atten-
tion Relation Graph Distillation (ARGD), which
fully explores the correlation among attention fea-
tures with different orders using our proposed At-
tention Relation Graphs (ARGs). Based on the
alignment of ARGs between teacher and student
models during knowledge distillation, ARGD can
more effectively eradicate backdoors than NAD.
Comprehensive experimental results show that,
against six latest backdoor attacks, ARGD outper-
forms NAD by up to 94.85% reduction in ASR,
while ACC can be improved by up to 3.23%.

1 Introduction
Along with the proliferation of Artificial Intelligence (AI)
techniques, Deep Neural Networks (DNNs) are increasingly
deployed in various safety-critical domains, e.g., autonomous
driving, commercial surveillance, and medical monitoring.
Although DNNs enable both intelligent sensing and control,
more and more of them are becoming the main target of ad-
versaries. It is reported that DNNs are prone to be attacked by
potential threats in different phases of their life cycles [Song
et al., 2021]. For example, due to biased training data or
overfitting/underfitting models, at test time a tiny input per-
turbation made by some adversarial attack can fool a given
DNN and result in incorrect or unexpected behaviors [Car-
lini and Wagner, 2017], which may cause disastrous conse-
quences. As another type of notoriously perilous adversaries,
backdoor attacks can inject Trojan in DNNs on numerous oc-
casions, e.g., collecting training data from unreliable sources,
and downloading pre-trained DNNs from untrusted parties.

Typically, by poisoning a small portion of training data, back-
door attacks aim to trick DNNs into learning the correlation
between trigger patterns and target labels. Rather than affect-
ing the performance of models on clean data, backdoor at-
tacks may cause incorrect prediction at test time when some
trigger pattern appears [Wenger et al., 2021].

Compared with traditional adversarial attacks, backdoor at-
tacks have gained more attentions, since they can be easily
implemented in real scenarios [Chen et al., 2017; Gu et al.,
2019]. Currently, there are two major kinds of mainstream
backdoor defense methods. The first one is the detection-
based methods that can identify whether there exists a back-
door attack during the training process. Although these ap-
proaches are promising in preventing DNNs from backdoor
attacks, they cannot fix models implanted with backdoor trig-
gers. The second one is the erasing-based methods, which
aims to eliminate backdoors by purifying the malicious im-
pacts of backdoored models. In this paper, we focus on the
latter case. Note that, due to the concealment and impercep-
tibility of backdoors, it is hard to fully purify backdoored
DNNs. Therefore, our goal is to further lower Attack Suc-
cess Ratio (ASR) on backdoored data without sacrificing the
classification ACCuracy (ACC) on clean data.

Neural Attention Distillation (NAD) [Li et al., 2020a]
has been recognized as the most effective backdoor erasing
method so far, which is implemented based on finetuning and
distillation operations. Inspired by the concept of attention
transfer [Komodakis and Zagoruyko, 2017], NAD utilizes a
teacher model to guide the finetuning of a backdoored student
model using a small set of clean data. Note that the teacher
model is obtained by finetuning the student model using the
same set of clean data. By aligning intermediate-layer atten-
tion features of the student model with their counterparts in
the teacher model, backdoors can be effectively erased from
DNNs. In NAD, an attention feature represents the activation
information of all neurons in one layer. Therefore, the con-
junction of all the feature attentions within a DNN can reflect
the most discriminative regions in the model’s topology [Pau
et al., 2020].

Although the attention mechanism can be used as an indi-
cator to evaluate the performance of backdoor erasing meth-
ods, the implementation of NAD strongly limits the expres-
sive power of attention features, since it only compares the
feature attentions of the same order during the finetuning. Un-
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fortunately, the correlation among attention features of dif-
ferent orders [Liu et al., 2019; Ren et al., 2021] is totally
ignored. The omission of such salient features in finetuning
may result in a “cliff-like” decline in defending backdoor at-
tacks [Komodakis and Zagoruyko, 2017]. In this paper, we
propose a novel backdoor erasing framework named Atten-
tion Relation Graph Distillation (ARGD), which fully con-
siders the correlation of attention features of different orders.
This paper makes the following three major contributions:

• We propose Attention Relation Graphs (ARGs) to fully
reflect the correlations among attention features of dif-
ferent orders, which can be combined with distillation
to erase more impacts of backdoor triggers from DNNs.

• We define three loss functions for ARGD, which enable
effective alignment of the intermediate-layer ARG of a
student model with that of its teacher model.

• We conduct comprehensive experiments on various
well-known backdoor attacks to show the effectiveness
and efficiency of our proposed defense method.

2 Related Work
2.1 Backdoor Attacks
We are witnessing more and more DNN-based backdoor at-
tacks in real environment [Adi et al., 2018]. Typically, a
backdoor attack refers to designing a trigger pattern injected
into partial training data with (poisoned-label attack [Gu et
al., 2019]) or without (clean-label attack [Liu et al., 2020]) a
target label. At test time, such backdoor patterns can be trig-
gered to control the prediction results, which may result in in-
correct or unexpected behaviors. Aiming at increasing ASR
without affecting ACC, extensive studies [Li et al., 2020b]
have been investigated to design specific backdoor triggers.
Existing backdoor attacks can be classified into two cate-
gories, i.e., observable backdoor attacks, and imperceptible
backdoor attacks [Turner et al., 2018]. Although the observ-
able backdoor attacks have a profound impact on DNNs, the
training data with changes by such attacks can be easily iden-
tified. As an alternative, the imperceptible backdoor attacks
(e.g., natural reflection [Liu et al., 2020] and human imper-
ceptible noises [Zhong et al., 2020]) are more commonly used
in practice.

2.2 Backdoor Defense
The mainstream backdoor defense approaches can be classi-
fied into two major types. The first one is the detection-based
methods, which can identify backdoors from DNNs during
the training [Bryant et al., 2019] or filter backdoored training
data to eliminate the influence of backdoor attacks [Chou et
al., 2020]. Note that few of existing detection-based meth-
ods can be used to purify backdoored DNNs. The second
one is the elimination-based approaches [Wang et al., 2019;
Pei et al., 2021]. Based on a limited number of clean
data, such methods can erase backdoors by finetuning the
backdoored DNNs. Although various elimination-based ap-
proaches [Li et al., 2020a; Zhao et al., 2020] have been ex-
tensively investigated, so far there is no method that can fully

purify the backdoored DNNs. Most of them are still striv-
ing to improve ASR and ACC from different perspectives.
For example, the Neural Attention Distillation (NAD) method
adopts attention features of the same order to improve back-
door elimination performance based on finetuning and distil-
lation operations. However, NAD suffers from non-negligible
ASR. This is because NAD focuses on the alignment of fea-
ture attentions of the same order, thus the expressive power
of attention features is inevitably limited.

To the best of our knowledge, ARGD is the first attempt
that takes the correlation of attention features into account for
the purpose of eliminating backdoor from DNNs. Based on
our proposed ARGs and corresponding loss functions, ARGD
can not only reduce the ASR significantly, but also improve
the ACC on clean data.

3 Our ARGD Approach
As the state-of-the-art elimination-based backdoor defense
method, NAD tries to suppress the impacts of backdoor at-
tacks based on model retraining (finetuning) and knowledge
distillation of backdoored models. Based on clean retrain-
ing data, NAD can effectively erase backdoor by aligning
the intermediate-layer attention features between teacher and
student models. However, due to the privacy issues or var-
ious access restrictions, in practice such clean data for fine-
tuning only accounts for a very small proportion of the data
required for model training. This strongly limits the defense
performance of NAD, since NAD focuses on the alignment
of attention features of the same orders, while the relation of
transforms between attention features is totally ignored. As
a result of limited retraining data, it is hard to guarantee the
ASR and ACC performance for NAD.
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Figure 1: Overview of attention relation graph distillation

To address the ASR and ACC issues posed by NAD, we in-
troduce a novel knowledge distillation method named ARGD
as shown in Figure 1, which fully considers the correla-
tions between attention features using our proposed ARGs
for backdoor defense. This figure has two parts, where the
upper part denotes both the teacher model and its extracted
ARG information. The teacher model is trained by the fine-
tuning of the backdoored student model using the provided
clean data. The lower part of the figure presents the student
model, which needs to be finetuned by aligning its ARG to
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the one of the teacher model. We use the ARG distillation
loss for knowledge distillation, which takes the combination
of node, edge and embedding correlations into account. The
following subsections will introduce the key components of
our approach in detail.

3.1 Attention Relation Graph
Inspired by the instance relation graph introduced in [Liu
et al., 2019], we propose ARGs to enable the modeling
of knowledge transformation relation between attention fea-
tures and facilitate the alignment of defense structures against
backdoor from student models to teacher models. Unlike in-
stance relation graphs that are established based on the re-
gression accuracy of image instances, for a given input data,
an ARG of is built on top of the model’s attention features
within different orders. In our approach, we assume that the
finetuned teacher model by clean data has a benign knowl-
edge structure represented by its ARGs, which fully reflects
the correlations between its attention features of different or-
ders. Therefore, we use ARGs to guide the finetuning of
backdoored student model during the knowledge distillation
by aligning the ARGs of the backdoored student model to its
counterparts of the teacher model. Given an input data, the
ARG of a model can be modeled as a complete graph formal-
ized by a 2-tupleG = (N, ε), where N represents the node set
and ε denotes the edge set. Here, each node in N represents
an attention feature with a specific order, and each edge in ε
indicates the similarity between two nodes.

ARG Nodes
Given a DNN model M and an input data X , we define the
pth convolutional feature map of M as F p =Mp(X), which
is an activation map having the three dimensions of channel
index, width and height. By taking the 3-dimensional F p as
an input, the attention extraction operation A outputs a flat-
tened 2-dimensional tensor T p

M representing the extracted at-
tention feature. Let C, H , W denote the number of channels,
height, and width of input tensors, respectively. Essentially,
the attention extraction operation can be formulated as a func-
tion AM : RC×H×W → RH×W defined as follows:

AM (F p) =
1

C

C∑
i=1

|F p
i (X)|2 ,

where C is the number of channels of F p, and F p
i indicates

the ith channel of F p. By applying AM on F p, we can obtain
the attention feature of F p, which is denoted as an ARG node
with an order of p. Assuming that the model M has k convo-
lutional feature maps, based on AM we can construct a node
set N =

{
T 1
M , T

2
M , ..., T

p
M , ..., T

k
M

}
. Note that in practice we

only use a subset of N to construct ARGs.

ARG Edges
After figuring out the node set to construct an ARG, we
need to construct a complete graph, where the edge set (i.e.,
ε =

⋃k
i=1

⋃k
j=1

{
eij

}
) indicates the correlations between at-

tention features of different orders in M , where eij indicates
the edge between T i

M and T j
M . LetEM be an weight function

of edges in the form of EM : ε→ R, where Eij
M = EM (eij)

denotes the Euclidean distance between two attention features

T i
M and T j

M . Assume that the maximum size of T i
M and T j

M
is h × w. Let Γij(Y ) be a function that converts the atten-
tion feature Y into a 2-dimensional feature Y ′ with a size of
h × w. EM indicates the correlations between attention fea-
tures, where the edge weight Eij

M can be calculated as

Eij
M = ∥Γij(T

i
M )− Γij(T

j
M )∥2.

3.2 ARG Embedding
To facilitate the alignment from a student ARG to its teacher
counterpart, we consider the graph embedding for ARGs,
where an ARG embedding can be constructed by all the in-
volved attention features within a model. Since the embed-
ding reflects high-dimensional semantic features of all the
nodes in an ARG, they can be used to figure out the knowl-
edge dependencies between ARGs of both the teacher and
student models. Let C and S be the teacher model and stu-
dent model, respectively. We construct ARG embedding vec-
tors (i.e.,Rp

C andRp
S) from the pth attention features of C and

S, respectively, based on the following two formulas:
Rp

C = σ(W p
C · ψ(T p

C)), R
p
S = σ(W p

S · ψ(T p
S )),

where ψ(·) is the adaptive average pooling function, and σ(·)
is the activation function to generate the embedding vectors.
Here, W p

C and W p
S are two linear transformation parameters

constructed in the distillation process for the pth attentions
feature of the teacher and student models.

By comparing the embedding vectors between the teacher
model and the student model, we can figure out the correla-
tion between a student node and all the teacher nodes. In our
approach, we use the relation vector βp

S to denote the correla-
tions between the pth student node and all the teacher nodes,
which is defined as
βp
S = Softmax(Rp

S
T ·wb

1 ·R1
C, . . . , R

p
S
T ·wb

p ·Rp
C, . . . , R

p
S
T ·wb

k ·Rk
C),

where wb is the bilinear weight used to convert the underly-
ing relation between different order attention features in dis-
tillation [Pirsiavash et al., 2009].

3.3 ARG Distillation Loss
The ARG distillation loss LG is defined as the difference
between ARGs. It involves three kinds of differences from
different perspectives between the teacher ARG GC and stu-
dent ARG GS: i) node difference that indicates the sum of
distances between node pairs in terms of attention features;
ii) edge difference that specifies the sum of distances be-
tween edge pairs; and iii) embedding difference that denotes
the weighted sum of distances between student-teacher node
pairs in terms of embedding vectors. To reflect such differ-
ences from different structural perspectives, we define three
kinds of losses, i.e., ARG node loss LN, ARG edge loss Lε
and ARG embedding loss LEm. Since the weight of an ARG
edge indicates the similarity between two nodes with different
orders, the ARG edge loss can further enhance the alignment
of ARGs between the teacher model and student model. The
ARG node loss function is defined as

LN (NS,NC) =
1

k

k∑
i=0

∥∥∥∥ T i
C

∥T i
C∥2

− T i
S

∥T i
S∥2

∥∥∥∥
2

.

The ARG node loss LN is essentially a kind of imitation
loss, which enables the pixel-level alignment of attention fea-
tures at same layers from a backdoored student model to its
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teacher counterpart. The ARG edge loss denotes the differ-
ence between two edge sets, which is calculated using

Lε (ES, EC) =
1

C2
k

k−1∑
i=1

k∑
j=i+1

∥∥∥Eij
C − Eij

S

∥∥∥2

2
,

where C2
k is the combination formula. During the alignment

of ARGs, an attention feature of the student model needs
to learn knowledge from different attention features of the
teacher model. However, the combination of ARG node loss
and edge loss cannot fully explore the knowledge structure
dependence among attention features between the teacher
model and student model. To enable such kind of learning,
we propose the ARG embedding loss based on the relation
vector, which is defined as

LEm (TC, TS) =
k∑

i=1

k∑
j=1

βi,j
S

∥∥∥Γij(T
i
C)− Γij(T

j
S )
∥∥∥
2
.

Based on the above three losses, we define the ARG distilla-
tion loss LG to support accurate ARG alignment during the
knowledge distillation, which is defined as

LG (GS, GC) = LN + Lε + LEm.

3.4 Overall Loss for Distillation
Our ARGD method is based on knowledge distillation. To
enable the alignment of ARGs during the distillation process,
we define the overall loss function of the backdoored DNN as

Loverall = LCE + LG,

where LCE is the cross entropy loss between predictions of
the backdoored DNN and corresponding target values.

4 Experimental Results
To evaluate the effectiveness of our approach, we imple-
mented our ARGD framework1 on top of Pytorch (version
1.4.0). All the experiments were conducted on a workstation
with Ubuntu operating system, Intel i9-9700K CPU, 16GB
memory, and NVIDIA GeForce GTX2080Ti GPU. In this
section, we designed comprehensive experiments to answer
the following three research questions.

Q1 (Superiority of ARGD): What are the advantages of
ARGD compared with state-of-the-art methods?

Q2 (Applicability of ARGD): What are the impacts of dif-
ferent settings (e.g., clean data rates, teacher model architec-
tures) on the performance of ARGD?

Q3 (Benefits of ARGs): Why can our proposed ARGs
substantially improve purifying backdoored DNNs?

4.1 Experimental Settings
Backdoor Attacks and Configurations: We conducted ex-
periments using the following six latest backdoor attacks:
i) BadNets [Gu et al., 2019], ii) Trojan attack [Liu et al.,
2017], iii) Blend attack [Chen et al., 2017], iv) Sinusoidal sig-
nal attack (SIG) [Tran et al., 2018], v) Clean Label [Turner
et al., 2018], and vi) Reflection attack (Refool) [Liu et al.,

1Available at https://github.com/BililiCode/ARGD.

2020]. To make a fair comparison against these methods, we
adopted the same configurations (e.g., backdoor trigger pat-
terns, backdoor trigger sizes, and target labels for restoring)
as presented in their original papers. Based on WideResNet
(WRN-16-1) [He et al., 2016] and its variants, we trained
DNN models based on the CIFAR-10 dataset using our ap-
proach and its six opponents, respectively. Note that here
each DNN training for backdoor attacks involves 100 epochs.

Defense Method Settings and Evaluation: We compared
our ARGD with three state-of-the-art backdoor defense meth-
ods, i.e., traditional finetuning [Papernot et al., 2016], Mode
Connectivity Repair (MCR) [Zhao et al., 2020], and NAD
[Li et al., 2020a]. Since it is difficult to achieve clean data for
the purpose of finetuning in practice, similar to the work pre-
sented in [Li et al., 2020a], in our experiments we assumed
that all the defense methods can access only 5% of training
dataset as the clean dataset by default. We conducted the im-
age preprocessing using the same training configuration of
NAD adopted in [Li et al., 2020a]. We set the mini-batch
size of all the defense methods to 64, and the initial learning
rate to 0.1. For each backdoor defense method, we trained
each DNN for 10 epochs for the purpose of erasing backdoor.
We adopted the Stochastic Gradient Descent (SGD) optimizer
with a momentum of 0.9. Similar to the setting of attack
model training, by default we use WideResNet (WRN-16-1)
as the teacher model of ARGD for finetuning. However, it
does not mean that the structures of both student and teacher
models should be the same. In fact, teacher models with dif-
ferent structures can also be applied on ARGD (see Table 3
for more details). During the finetuning, based on the atten-
tion extraction operation, our approach can extract attention
features of each group of the WideResNet model and form an
ARG for the given DNN. We use two indicators to evaluate
the performance of backdoor defense methods: i) Attack Suc-
cess Rate (ASR) denoting the ratio of succeeded attacks over
all the attacks on backdoored data; and ii) the classification
ACCuracy (ACC) indicating the ratio of correctly predicted
data over all the clean data. Generally, lower ASRs mean
better defense capabilities.

4.2 Comparison with State-of-the-Arts
To show the superiority of ARGD, we compared our ap-
proach with the three backdoor defense methods against six
latest backdoor attacks. Table 1 presents the comparison re-
sults. Column 1 presents the name of six backdoor attack
methods. Column 2 shows the results for backdoored student
models without any defense. Column 3 gives the results for
the finetuning methods. Note that here the finetuning method
was conducted based on the counterpart teacher model with
extra 10 epoch training on the same collected clean data.
Columns 4-6 denote the experimental results for MCR, NAD
and ARGD, respectively. Column 7 shows the improvements
of ARGD over NAD for the six backdoor attacks.

From this table, we can find that ARGD can not only purify
the backdoored DNNs effectively, but also have the minimum
side effect on clean data. We can observe that, among all the
four defense methods, ARGD outperforms the other three de-
fense methods significantly. Especially, ARGD greatly out-
performs the state-of-the-art approach NAD from the per-
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Backdoor Backdoored Finetuning MCR (t=0.3) NAD ARGD (Ours) Improvement
Attack ASR(%) ACC(%) ASR(%) ACC(%) ASR(%) ACC(%) ASR(%) ACC(%) ASR(%) ACC(%) ASR(%) ACC(%)

BadNets 100.00 80.08 4.56 77.16 3.12 78.99 3.62 77.98 2.10 79.81 41.99 2.35
Trojan 99.81 80.04 3.57 78.06 2.56 77.76 2.91 77.03 1.97 79.60 32.30 3.23
Blend 79.42 82.76 3.08 80.08 70.06 77.10 2.33 79.09 0.12 80.47 94.85 1.74
SIG 99.98 82.43 9.12 79.08 3.69 81.52 11.78 79.63 1.83 80.56 84.47 1.17

Clean Label 45.94 82.43 11.42 81.24 16.56 79.25 9.56 79.66 5.32 80.18 45.14 2.98
Refool 100.00 82.22 5.96 80.23 8.94 79.99 4.02 80.87 3.12 81.67 22.39 0.99

Average 87.53 81.66 6.29 79.31 17.49 79.10 5.70 79.04 2.41 80.38 +53.52 +2.08
Deviation - - -81.24 -2.35 -70.04 -2.56 -81.82 -2.62 -85.12 -1.38 - -

Table 1: Performance of 4 backdoor defense methods against 6 backdoor attacks. The deviations indicate the percentage changes in average
ASR/ACC compared to the baseline Backdoored. The best experimental results in ASR and ACC are marked in bold.

spectives of both ASR and ACC. As shown in the last col-
umn, compared with NAD, ARGD can reduce the ASR by
up to 94.85% and increase the ACC by up to 3.23%. The
reason of such improvement is mainly because ARGD takes
the alignment of ARGs into account during the finetuning be-
tween teacher and student models, while NAD only considers
the attention features of the same order during the finetuning.
Without considering the structural information of ARGs, the
finetuning using attention features can be easily biased, which
limits the backdoor erasing capacities of attention features as
well as degrades the ACC on clean data.

4.3 Impact of Clean Data Sizes
Since the finetuning is mainly based on the learning on clean
data, the clean data sizes play an important role in determin-
ing the quality of backdoor defense. Intuitively, the more
clean data we can access for finetuning, the better ASR and
ACC we can achieve. Table 2 presents the performance of
the four defense methods against the six backdoor attack ap-
proaches under different clean data sizes. Due to space limita-
tion, this table only shows the averaged ASR and ACC values
of the six backdoor attack methods. In this table, column 1
presents the clean data size information in terms of clean data
ratio. Here, we investigated different ratios from 1% to 20%
of the total training data. For example, 5% means that we
use 5% of the original clean training data for the finetuning
between teacher and student models. Column 2 presents the
averaged ASR and ACC values for all the backdoored DNNs
using the testing data, and columns 3-6 show the ASR and
ACC for the four defense methods, respectively. The last col-
umn denotes the improvement of ARGD over NAD.

From this table, we can find that ARGD has the best perfor-
mance in eliminating backdoor. Compared with Backdoored,
ARGD can reduce ASR by up to 2.41% from 87.53%, while
the finetuning method and NAD reduce ASR by up to 4.38%
and 3.91%, respectively. Among all the four cases, our ap-
proach can achieve the highest ACC in three out of four cases.
Especially, ARGD outperforms both the finetuning method
and NAD in all the cases from the perspectives of both ASR
and ACC. For example, when the ratio of clean data is 1%,
ARGD outperforms NAD by 43.89% and 19.53% for ASR
and ACC, respectively. Note that, when the clean data ratio
is 1%, ARGD can achieve an ASR of 3.58%, which is much
smaller than all the cases of the other three defense meth-
ods with different clean data ratios. It means that the back-
door erasing effect of ARGD with only 1% clean data can
achieve much better ASR than the other three methods with

20% clean data each. For the case with 1% clean data ratio,
although MCR can have a slightly higher ACC than ARGD,
its ASR is much higher than the other three defense methods.
This implies that MCR has a higher dependence on clean data
and is more prone to attacks when there are little clean data
for finetuning.

4.4 Impact of Teacher Model Architectures
In knowledge distillation, the performance of student mod-
els is mainly determined by the knowledge level of teacher
models. However, due to the uncertainty and unpredictability
of training processes, it is hard to figure out an ideal teacher
model for specific student models for the purpose of backdoor
defense. Rather than exploring optimal teacher models, in
this experiment we investigated the impact of teacher model
architectures on the backdoor defense performance.

Table 3 presents the results of defense performance com-
parison between NAD and ARGD. The first column presents
the differences between pairs of teacher and student models.
Column 2 shows the architecture settings for both teacher and
student models. Based on the teacher models trained using
the 5% clean training data, column 3 gives the prediction re-
sults on all the provided testing data in CIFAR-10. From this
table, we can find that model architectures with larger depths
or channel widths can lead to better accuracy as shown in col-
umn 3. This is also true for the ACC results of both NAD and
ARGD methods. Since ASR and ACC are two conflicting tar-
gets for backdoor defense, we can observe that larger teacher
models will result in the reverse trends for ASR. Note that,
no matter what the teacher model architecture is, ARGD al-
ways outperforms NAD for both ASR and ACC. For example,
when we adopt a teacher model with architecture WRN-10-1,
ARGD can improve the ASR and ACC of NAD by 23.66%
and 17.07%, respectively.

4.5 Understanding Attention Relation Graphs
To understand how ARGs help eliminating the impact of
backdoor triggers, Figure 2 presents a comparison of ARGs
generated by different defense methods for a BadNets back-
doored image. Since both teacher and student models used
by the involved defense methods are based on model WRN-
16-1 that has three residual groups, each ARG here has three
nodes representing attention features, where the lighter color
indicates higher attention values. In this figure, the student
models of NAD and ARGD are learnt based on the knowledge
distillation using the backdoored student model and finetun-
ing teacher model with the 5% clean training data. In the
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Clean Data Backdoored Finetuning MCR (t=0.3) NAD ARGD (Ours) Improvement
Ratio(%) ASR(%) ACC(%) ASR(%) ACC(%) ASR(%) ACC(%) ASR(%) ACC(%) ASR(%) ACC(%) ASR(%) ACC(%)

1 87.53 81.66 7.78 76.04 41.34 79.88 6.38 64.06 3.58 76.57 43.89 19.53
5 87.53 81.66 6.29 79.31 17.49 79.10 5.70 79.04 2.41 80.38 57.72 1.70

10 87.53 81.66 6.66 80.75 14.21 80.62 5.18 80.69 3.01 81.21 41.89 0.64
20 87.53 81.66 4.38 82.17 7.01 82.06 3.91 82.31 2.64 82.52 32.48 0.26

Table 2: Performance of 4 backdoor defense methods against 6 backdoor attacks under different clean data ratios.

Model Teacher Student Teacher Backdoored NAD ARGD (Ours) Improvement
Difference Structure Structure ACC(%) ASR(%) ACC(%) ASR(%) ACC(%) ASR(%) ACC(%) ASR(%) ACC(%)

Same Model WRN-16-1 WRN-16-1 67.51 45.94 82.43 6.16 64.76 4.84 74.02 21.43 14.30
Depth WRN-10-1 WRN-16-1 62.31 45.94 82.43 5.96 60.46 4.55 70.78 23.66 17.07

Channel WRN-16-2 WRN-16-1 68.93 45.94 82.43 7.98 66.63 5.46 76.11 31.58 14.28
Depth & Channel WRN-40-2 WRN-16-1 69.01 45.94 82.43 8.08 67.15 4.92 76.45 39.11 13.85

Table 3: Performance of 2 distillation-based backdoor defense methods against Clean Label attacks with different teacher models.

finetuning model, we used circles with specific colors to high-
light the most noticeable areas in different ARG nodes, re-
spectively. Similarly, to enable similarity analysis of student
models, we also labeled the circles with the same sizes, colors
and locations on the ARG nodes of NAD and ARGD.

0.945

Backdoored
(Student)

0.873

Finetuning 
(Teacher)

NAD ARGD

0.734 0.794

Group 1

Group 2 Group 3

Group 1

Group 1Group 1

Group 2 Group 3

Group 2 Group 3 Group 2 Group 3

Figure 2: Visualization of ARGs generated by different defense
methods for a BadNets backdoored image. The two ARGs at bottom
are generated by the student models of NAD and ARGD.

From this figure, we can observe that, benefiting from the
imitative learning of ARGs, our proposed ARGD method can
achieve better ARG alignment between the teacher model
and student model than the one of NAD. Compared with
NAD, ARGD can not only generate closer attention features
with different orders (especially the part inside the circle of
group 2) for its student model, but also have closer correla-
tion between attention features. For example, the correlations
between the attention feature pairs of (group1, group2) and
(group2, group3) are 0.913 and 0.794, while the correspond-
ing correlations for the ARG generated by NAD are 0.984 and
0.734, respectively. Since the edge weights of the finetuning

teacher model are 0.890 and 0.873, respectively, ARDG has
better alignment than NAD for these two ARG edges. In other
words, by using ARG-based knowledge transfer, the effects
of backdoor triggers can be effectively suppressed, while the
benign knowledge structure is minimally affected.

Finetuning Node Edge Embedding ACC (%) ASR (%)
✓ 79.31 6.29
✓ ✓ 79.04 5.70
✓ ✓ ✓ 79.88 3.03
✓ ✓ ✓ ✓ 80.38 2.41

Backdoored DNN 81.66 87.53

Table 4: Ablation results considering impacts of ARG components.

Table 4 evaluates the contributions of key ARG compo-
nents in ARGD based on a series of ablation studies. Col-
umn 1 denotes the case without adopting knowledge distil-
lation or incorporating any of our proposed loss functions.
Columns 5-6 indicate the average ACC and ASR of the six
backdoor attacks under 5% clean training data, respectively.
Note that NAD can be considered as ARGD with only the
node loss. Compared with the finetuning method, the ASR
of NAD can be improved from 6.29% to 5.70%. However, in
this case the ACC slightly drops from 79.31% to 79.04%. Un-
like NAD, the full-fledged ARGD takes the synergy of three
losses into account. Compared with NAD, it can reduce the
ASR from 5.70% to 2.41%, while the ACC can be improved
from 79.04% to 80.38%.

5 Conclusion

This paper proposed a novel backdoor defense method named
Attention Relation Graph Distillation (ARGD). Unlike the
state-of-the-art method NAD that considers attention features
of the same order in finetuning and distillation, ARGD takes
the correlations of attention features with different orders into
account. By using our proposed Attention Relation Graphs
(ARGs) and corresponding loss functions, ARGD enables
quick alignment of ARGs between both teacher and student
models, thus the impacts of backdoor triggers can be effec-
tively suppressed. Comprehensive experimental results show
the effectiveness of our proposed method.
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