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Abstract
Transformer-based architectures with grid features
represent the state-of-the-art in visual and lan-
guage reasoning tasks, such as visual question an-
swering and image-text matching. However, di-
rectly applying them to image captioning may re-
sult in spatial and fine-grained semantic informa-
tion loss. Their applicability to image captioning
is still largely under-explored. Towards this goal,
we propose a simple yet effective method, Spatial-
and Scale-aware Transformer (S2 Transformer) for
image captioning. Specifically, we firstly propose
a Spatial-aware Pseudo-supervised (SP ) module,
which resorts to feature clustering to help preserve
spatial information for grid features. Next, to main-
tain the model size and produce superior results,
we build a simple weighted residual connection,
named Scale-wise Reinforcement (SR) module, to
simultaneously explore both low- and high-level
encoded features with rich semantics. Extensive
experiments on the MSCOCO benchmark demon-
strate that our method achieves new state-of-art per-
formance without bringing excessive parameters
compared with the vanilla transformer. The source
code is available at https://github.com/zchoi/S2-
Transformer.

1 Introduction
As a fundamental task of visual and language reasoning,
image captioning, which automatically generates a natu-
ral language description for an image, has attracted exten-
sive attention [Vinyals et al., 2016; Cornia et al., 2019;
Wang et al., 2020; Chen et al., 2021]. Originally inspired by
neural machine translation [Sutskever et al., 2014], its general
paradigm is: firstly encoding an image to extract visual fea-
tures, and then feeding those features into an encoder-decoder
framework to generate descriptions [Xu et al., 2015]. Due to
its specific proprieties, such as rich visual information and so-
phisticated semantics of descriptions, it remain a challenging
problem.
∗Pengpeng Zeng and Haonan Zhang contribute equally to this

paper.
†Corresponding author: Jingkuan Song.

For visual feature extracting, two types of features are
widely adopted: region and grid features, as shown in Fig. 1a
(i) and (ii), respectively. The region features are designed
to explore object instances, which strongly correlate with
nouns in textual descriptions (e.g., “giraffe”, “grass” and
“tree”). To detect explicit object boxes and output region fea-
tures, existing off-the-shelf methods such as Faster-RCNN
[Ren et al., 2015] are pre-trained on VG dataset [Krishna
et al., 2017], which is computationally expensive and not
flexible. Beyond that, the detected regions may lack con-
textual information (e.g., “stands on” and “in the forest”)
and fine-grained details (e.g., “eat leaves”). By contrast, the
grid features are designed to extract all patch information to
cover the whole image. Previous studies [Jiang et al., 2020;
Zhang et al., 2021] revise the advantage of grid features and
find them to perform better than region features both in terms
of performance and time-cost. However, directly operating
at grid features in a flatting manner unavoidably disrupts the
spatial association between grids. One natural solution is to
combine the above two visual features as visual inputs, but
it suffers from computation costs and complex fusion proce-
dures.

Furthermore, transformer-based models are applied as the
encoder-decoder for high quality image captioning [Li et al.,
2019; Pan et al., 2020; Zhang et al., 2021] due to its strong
modeling capabilities and excellent performance, shown as
Fig. 1b (i). Most of them are focused on modifying the at-
tention block. For example, [Huang et al., 2019] proposes an
“attention on attention” module, which extends self-attention
mechanisms to determine the relevance between attention re-
sults and queries. [Pan et al., 2020] proposes a X-Linear at-
tention block that fully employs bilinear pooling to capitalize
on visual information or perform multi-modal reasoning se-
lectively. [Cornia et al., 2020] proposes a M2 transformer
that designs a memory-augmented attention to encode a pri-
ori information and a mesh cross attention (MCA) to take
advantage of scale-wise features to fully explore rich visual
semantics, shown as Fig. 1b (ii). However, M2 transformer
(w/o memory) based on grid feature has suffered a perfor-
mance degradation and brought a parameters increase com-
pared with the vanilla transformer, where the results are sum-
marized in Fig. 1b (iv). Thus, how to effectively and effi-
ciently incorporate grid features with transformer-based ar-
chitecture remains to be explored for image captioning.
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Figure 1: (a) Comparison of different visual features. Based on grid
features, our proposed SP module aims to implicitly learn spatial
information about grids in a pseudo-supervised manner instead of
directly using explicit region features. (b) Comparison of different
transformer-based architectures, where all models adopt grid fea-
tures as visual features. Our SR module simultaneously explores
both low- and high-level encoded features to produce superior re-
sults while maintaining a relatively small model size.

To address the above problem, this paper proposes a novel
Spatial- and Scale-aware Transformer (S2 Transformer).
Specifically, we firstly propose a Spatial-aware Pseudo-
supervised (SP ) module that aims to solve the spatial in-
formation loss of grid features caused by the flattening oper-
ation. In practice, we utilize a number of learnable semantic
clusters to quantize grid features into semantic clusters, which
implicitly represent discriminative regions. Furthermore, to
maintain the model size and produce superior performance,
we propose a simple weighted residual connection, named
Scale-wise Reinforcement (SR), module to simultaneously
explore both low- and high-level encoded features, shown as
Fig. 1b (iii). From the Fig. 1b (iv), we can see that compared
with vanilla transformer, only adopting our SR can achieve
an improvement of 1.8 CIDEr points with a slight parameters
increase (i.e., 1.05M), while M2 with a mesh operation in-
creases parameters (i.e., 4.72M) and decreases the CIDEr by
1.1. To summarize, our contributions are threefold:

• We devise a S2 Transformer, a simple yet effective
method, which extends the vanilla transformer frame-
work to fully exploit gird visual features in terms of spa-
tial and scale perception.

• We propose a SP module, which generates valid
pseudo-region features for grid features to capture spa-
tial information based on their clustering information.
Moreover, we propose a simple SR module that further
takes advantage of both low- and high-level encoded fea-
tures without excessive increasing model size.

• We comprehensively evaluate our approach (S2 Trans-

former) on the MSCOCO benchmark. Experimental re-
sults demonstrate that our method performs best while
maintaining the small model size.

2 S2 Transformer
In this section, we present a novel Spatial- and Scale-aware
Transformer (S2 Transformer) for image captioning. The
overview of the architecture is depicted in Fig. 2.

2.1 Overview
Given an image I , the task of image captioning is to auto-
matically generate a description D about visual contents in
images, following the paradigm of an encoder-decoder frame-
work. Technically, S2 Transformer first applies a feature ex-
traction to obtain gird features G = {gm}Mm=1 about an im-
age, whereM indicates the number of grids. As for the spatial
information loss caused by flattening operation when feed-
ing G into an encoder-decoder model, our proposed Spatial-
aware Pseudo-supervised (SP ) module is adopted to im-
plicitly learn possible and discriminative regions to obtain
pseudo-region features P :

P = {pn}Nn=1 = SP (G), (1)

where N means the number of pseudo regions. Then, we use
the same encoder to exploit the visual information of original
grid featuresG and pseudo-region features P simultaneously:

Ḡ = Encoder(G),

P̄ = Encoder(P ),
(2)

where the Encoder is consistent with the vanilla Trans-
former’s encoder without any modifications, which consists
of two main components: Multi-head Self-Attention (MSA),
and Feed Forward Network (FFN). Note that for the sake of
concise expression, positional encoding, residual operation
and layer normalization are omitted.

Different from previous Transformer-based models, which
only feed the encoded feature obtained from the top encoder
layer to the decoder, our proposed Scale-wise Reinforce-
ment (SR) module is to simultaneously explore both low-
and high-level encoded features to obtain augmented encoded
features V :

VG = SR(Ḡ1, Ḡ2, ..., ḠL),

VP = SR(P̄1, P̄2, ..., P̄L),
(3)

where ḠL (or P̄L) means the output of L-th encoder layers
and VG and VP represent grid and pseudo-region augmented
encoded features, respectively. Finally, we fuse VG and VP
to obtain the final encoded features V ∗ and feed it to the de-
coder:

V ∗ = [VG;VP ]WV ,

D = Decoder(V ∗),
(4)

where [; ] means the operation of concatenate, WV is a learn-
able parameter and the decoder is the same as the vanilla
Transformer’s decoder. The detail of our two main compo-
nents (SP and SR) is described in the next subsection.
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Figure 2: Overview of our proposed S2 Transformer architecture for image captioning. It consists of five main components: Feature
extraction, Encoder, Decoder, Spatial-aware Pseudo-supervised (SP ), and Scale-aware Reinforcement (SR), where the encoder and decoder
both adopt the same as that of the vanilla Transformer without any modification. SP resorts to feature clustering to help preserve spatial
information for grid features while SR simultaneously explores both low- and high-level encoded features. Note that both two encoders and
two SRs respectively share parameters.

2.2 Spatial-aware Pseudo-supervised (SP) Module
As discussed above, directly operating at grid features leads
to the loss of spatial information of regions. A plain idea is
introducing region features to compensate for the deficiency.
However, combining gird and region features will inevitably
increase the computational complexity of the model. Intu-
itively, if we implicitly select and aggregate discrete grid fea-
tures into several sub-spaces to obtain pseudo-region features,
this operation would become more flexible. Motivated by this
spirit, we propose a SP module to cluster the grid features
with multiple centroids without explicit supervision. The pur-
pose of these centroids is to integrate grids features of similar
semantic information together to represent possible and dis-
criminative regions.

Formally, in SP , we first design N learnable clusters as
C = {c1, ..., cN}. Following [Arandjelovic et al., 2016], we
calculate the similarity between grid features and clusters by
dot-product. Given each grid feature gm, it can be mapped to
the n-th cluster in the following manner:

rm,n =
exp(gmc

T
n + bn)∑N

k=1 exp(gmc
T
k + bk)

, (5)

where b{n,k} is a trainable parameter. The feature represen-
tation of each center pn is obtained by a weighted integration
of all grid features:

pn = Norm(
M∑
m=1

rm,n(gm − c̃n)), (6)

where “Norm” means `2-normalization operation and c̃n is
a learnable parameter which has the same size as cn. Thus,
we define the final features P as pseudo-region features.

2.3 Scale-aware Reinforcement (SR) Module
Recently, transformer-based captioning models have been
proved helpful for image captioning. However, existing mod-
els neglect the low-level semantic information from the bot-
tom of the encoder layer during the decoding process. Al-
though [Cornia et al., 2020] has provided a solution with a
complex meshed cross-attention, we further propose a novel
and simple SR module to address the above limitations by in-
corporating all features from each encoding layer into the top
features.

For simplicity, we take gird features as an example. Specif-
ically, given the output features (Ḡ1, Ḡ2, ..., ḠL) of each en-
coder layer, we first concatenate them all together:

G̃ = [Ḡ1, ..., ḠL]. (7)

Then, to integrate both low- and high-level visual informa-
tion, we employ a Multi-Layer Perception (MLP) which can
weigh the contribution of features of each layer:

G
′

= (G̃WT
1 )WT

2 , (8)

where W1 and W2 are trainable projection matrices.
Since the output of the top encoder layer contains more

important visual information, to prevent the insertion of addi-
tional noise perturbations, we add featuresG

′
to ḠL to obtain

the final grid augmented encoded features VG:

VG = GL + λG
′
, (9)

where the λ is an adjustable weighting factor. In a same way,
we obtain the pseudo-region augmented encoded features VP .

2.4 Training
Generally, the training of captioning model is split into two
stages [Rennie et al., 2017; Zhang et al., 2021]. In the first
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SP SR B@1 B@4 M R C S Param. ↓

% % 80.9 38.9 29.0 58.5 131.2 22.7 33.57M
" % 81.3 39.6 29.4 59.0 133.2 22.7 33.59M (↑0.02)
% " 81.0 39.5 29.4 58.9 133.0 22.8 34.62M (↑1.05)

" " 81.1 39.6 29.6 59.1 133.5 23.2 34.64M (↑1.07)

Table 1: Ablation studies of the proposed Spatial-aware Pseudo-
supervised (SP ) module and Scale-aware Reinforcement (SR)
module.

Model B@1 B@4 M R C S FLOPs

G 80.9 38.9 29.0 58.5 131.2 22.7 0.92G
R 80.0 38.8 28.7 58.5 130.2 22.3 0.76G
P 80.3 38.2 28.5 57.9 127.6 22.5 0.35G

G+R 81.0 39.0 29.2 58.7 131.5 22.7 1.35G
G+ P 81.3 39.6 29.4 59.0 133.2 22.7 0.96G

Table 2: Ablation studies of different visual features. All models
both adopt vanilla transformer without SR. G, R and P represent
gird features, region features and our pseudo-region features, respec-
tively.

stage, we utilize cross-entropy loss to optimize our model:

LCE = −
T∑
t=1

log(pθ(w
∗
t |w∗1:t−1)), (10)

where T is the length of word sequence and w∗1:t−1 is the
ground truth tokens in the description D.

In the second stage, we adopt the strategy of reinforcement
learning, which exploits the CIDEr score as reward r(·) with
self-critical sequence training [Rennie et al., 2017]:

LRL = −Ew1:T pθ[r(w1:T )]. (11)

In addition, we employ the gradient expression in [Cornia et
al., 2020], which computes the reward baseline of the reward
by the mean operation of rewards, rather than greedy decod-
ing. A sample’s gradient expression is defined as:

b = 1
k (

k∑
i

r(wi)),

∇θLRL ≈ − 1
k

k∑
i=1

((r(wi1:T )− b)∇θ log pθ(w
i
1:T )),

(12)
where k is the number of sampled sequences, wi1:T denotes
the i-th sampled sequence, and b represents the average re-
ward earned by the sampled sequences.

3 Experiments
3.1 Experimental Settings
Dataset and Metric. We conduct experiments to verify the
effectiveness of our proposed S2 Transformer on commonly-
used image captioning dataset, i.e., MS-COCO. It consists of
123,287 images, each associated with five different descrip-
tions. In offline testing, we follow the setting in [Karpathy
and Fei-Fei, 2015], where 113,287 images, 5,000 images,
and 5,000 images are used as train, validation, and test set,

Figure 3: Ablation studies of cluster number N in SP and weighting
factor λ in SR. Note that (a) and (b) only use SP and SR, respec-
tively.

Model B@1 B@4 M R C S Param.↓
Transformer 80.9 38.9 29.0 58.5 131.2 22.7 33.57M
AoA Transformer 80.8 39.1 29.1 59.1 130.3 22.7 87.37M (↑53.80)
M2 Transformer 80.8 38.9 29.1 58.5 131.8 22.7 38.66M (↑5.09)
X-Transformer 81.0 39.7 29.1 59.0 130.2 22.8 56.94M (↑23.37 )
RSTNet 81.1 39.3 29.4 58.8 133.3 23.0 156.31M (↑122.74)

Ours 81.1 39.6 29.6 59.1 133.5 23.2 34.64M (↑1.07)

Table 3: Comparing with the state of the art on ResNext101 grid
features.

respectively. The online evaluation is done on the COCO on-
line test server, where ground-truth annotations of 40,775 im-
ages are not publicly provided. We measure the captioning
performance using the standard evaluation metrics, includ-
ing BLEU [Papineni et al., 2002], METEOR [Banerjee and
Lavie, 2005], ROUGR [Lin, 2004], CIDEr [Vedantam et al.,
2015], and SPICE [Anderson et al., 2016].
Implementation Details. Following [Zhang et al., 2021], we
adopt the same pre-trained Faster-RCNN [Ren et al., 2015]
provided by [Jiang et al., 2020] to extract grid features, where
the gird shape is 7×7 and the dimension of each grid is
2,048. In practice, our encoder and decoder both have 3 lay-
ers, where each layer uses 8 self-attention heads and the inner
dimension of FFN is 2,048. The number of cluster centers N
is 5 and the hyper-parameter λ = 0.2 in Eq. 9.

We employ Adam optimizer to train all models and set
batch size as 50. For cross-entropy (CE) training, we set
the minimum epoch as 15. If CIDEr drops in 5 consecu-
tive epochs, we will choose the model with the best CIDEr
score for self-critical sequence training. Specifically, we use
an epoch decay schedule to adjust the learning rate for CE by

Model B@1 B@4 M R C S

SCST - 34.2 26.7 55.7 114.0 -
Up-Down 79.8 36.3 27.7 56.9 120.1 21.4
RFNet 79.1 36.5 27.7 57.3 121.9 21.2
GCN-LSTM 80.5 38.2 28.5 58.3 127.6 22.0
SGAE 80.8 38.4 28.4 58.6 127.8 22.1
ORT 80.5 38.6 28.7 58.4 128.3 22.6
AoANet 80.2 38.9 29.2 58.8 129.8 22.4
M2 Transformer 80.8 39.1 29.2 58.6 131.2 22.6
TCIC 80.9 39.7 29.2 58.6 132.9 22.4
X-Transformer 80.9 39.7 29.5 59.1 132.8 23.4
RSTNet 81.1 39.3 29.4 58.8 133.3 23.0

Ours 81.1 39.6 29.6 59.1 133.5 23.2

Table 4: Performance comparision with the state-of-the-art on the
MS-COCO “Karpathy” test split.
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Model B@1 B@2 B@3 B@4 METEOR ROUGE-L CIDEr-D
c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

SCST 78.1 93.7 61.9 86.0 47.9 75.9 35.2 64.5 27.0 35.5 56.3 70.7 114.7 116.7
Up-Down 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5
RFNet 80.4 95.0 64.9 89.3 50.1 80.1 38.0 69.2 28.8 37.2 58.2 37.1 122.9 125.1
GCN-LSTM 80.8 95.9 65.5 89.3 50.8 80.3 38.7 69.7 28.5 37.6 58.5 73.4 125.3 126.5
SGAE 81.0 95.3 65.6 89.5 50.7 80.4 38.5 69.7 28.2 37.2 58.6 73.6 123.8 126.5
ETA 81.2 95.0 65.5 89.0 50.9 80.4 38.9 70.2 28.6 38.0 58.6 73.9 122.1 124.4
AoANet 81.0 95.0 65.8 89.6 51.4 81.3 39.4 71.2 29.1 38.5 58.9 74.5 126.9 129.6
M2 Transformer 81.6 96.0 66.4 90.8 51.8 82.7 39.7 72.8 29.4 39.0 59.2 74.8 129.3 132.1
X-Transformer (ResNet-101) 81.3 95.4 66.3 90.0 51.9 81.7 39.9 71.8 29.5 39.0 59.3 74.9 129.3 131.4
X-Transformer (SENet-154) 81.9 95.7 66.9 90.5 52.4 82.5 40.3 72.4 29.6 39.2 59.5 75.0 131.1 133.5
RSTNet (ResNext101) 81.7 96.2 66.5 90.9 51.8 82.7 39.7 72.5 29.3 38.7 59.2 74.2 130.1 132.4
RSTNet (ResNext152) 82.1 96.4 67.0 91.3 52.2 83.0 40.0 73.1 29.6 39.1 59.5 74.6 131.9 134.0

Ours (ResNext101) 81.9 96.4 66.7 91.3 52.1 83.1 40.0 73.1 29.5 39.2 59.2 74.7 131.5 134.5
Ours (ResNext152) 82.2 96.5 67.0 91.4 52.4 83.3 40.1 73.5 29.6 39.3 59.5 75.0 132.6 135.0

Table 5: Leaderboard of the published state-of-the-art image captioning models on the MS-COCO online testing server.

following [Zhang et al., 2021]:

lr =


n/4× 1e-4, n ≤ 3,

1e-4, 3 < n ≤ 10,
0.2× 1e-4, 10 < n ≤ 12,

0.2× 0.2× 1e-4, otherwise,

(13)

where n denotes the number of current epoch. For self-
critical sequence training, the learning rate is fixed at 5×1e-7.

3.2 Ablation Studies
The core of our proposed S2 Transformer is to generate
the high-quality visual descriptions by introducing a spatial-
aware pseudo-supervised (SP ) module and a scale-wise re-
inforcement (SR) module into a vanilla transformer model.
In this section, we conduct comprehensive ablation studies to
prove the effectiveness of our method.
Effect of SP and SR. Tab. 1 gives the results of four con-
trol experiments to investigate the impact of our proposed SP
and SR modules: i) baseline: adapting vanilla transformer
model without any modifications, ii) baseline+SP : integrat-
ing SP into baseline, iii) baseline+SR: integrating SR into
baseline, and iv) baseline+SP+SR: integrating both SP and
SR into baseline. Obviously, the performances are enhanced
by individually adding SP and SR to the baseline, partic-
ularly improving 2.0 and 1.8 points on CIDEr, respectively.
Moreover, the combination of the two components achieves
further improvement. Also, we report the parameters of each
model for measuring its complexity. SP and SR slightly in-
crease parameters by 0.02M and 1.05M compared with the
baseline. To sum up, our proposed components achieve huge
improvements with a small computational cost, indicating our
methods’ effectiveness.
Effect of Pseudo-region feature. In Tab. 2, we execute sev-
eral experiments to examine the effect of different visual fea-
tures, including grid features (G), region features (R) and our
pseudo-region features (P ). All models both adopt a vanilla
transformer. Using only a single feature, our P performs
worst, which indicates that only using pseudo-region features
may lose some important visual information. Combining two

features (i.e.,G+P andG+R) can bring performance gains.
Meanwhile,G+P obtains more significant improvement than
G + R, thus indicating the practicality of our pseudo-region
features. Besides, in terms of FLOPs, G + R brings an ex-
cessive increase of 0.43G while G+P brings a slight increase
of 0.04G. The results demonstrate that the highly abstract
pseudo-region features are sufficient and complementary for
grid features instead of directly using explicit region features.

Effect of N in SP . To determine how many pseudo regions
the model needs to learn, we set the range of cluster number
N from 3 to 9 as shown in Fig. 3a. Note that our SP is
serving for high-level semantic information extraction. From
the figure, we can observe that if N is too large, it may be
difficult for the model to find discriminative pseudo regions,
which harms the performance of the model. On the contrary,
if N is too small, much weak semantics will be discarded
in large quantities, resulting in poor results. Our approach
achieves the best results with N = 5 clusters.

Effect of λ in SR. To choose the best weighting factor λ in
Eq. 9, we conduct a series of experiments by setting the dif-
ferent values of λ. The results are shown in Fig. 3b. We find
that the performance drastically drops with the increase of λ
and the best results are obtained when λ = 0.2. It reveals that
too larger λ introduces more redundant noise for the decoder.
Thus, we set λ = 0.2 in the final model.

Fair comparison with strong transformer-based baselines.
For a fair comparison, we report experimental results uti-
lizing the same ResNext101 grid feature as the visual input
shown in Tab. 3. All models are based on improved ver-
sions of the vanilla transformer. Specifically, our method
achieves state-of-the-art performance on most metrics except
B@4, which demonstrates superior performance without the
interference of diverse features. Moreover, compared to the
SOTA method RSTNet, which increases the Transformer pa-
rameters by 122.74M, our model brings only slight growth of
1.07M on parameters. It further demonstrates that our method
can effectively and efficiently incorporate grid features with
transformer-based architecture.
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GT1: A cat that is sitting next to a laptop.

Trans: An animal sitting on a desk.
Ours: An orange cat sitting on a desk next to a laptop.

GT2: Cat sitting right next to keyboard on laptop.
GT3: The orange cat is sitting on the laptop.

GT1: A bundle of fruit on a wooden table.

Trans: A bunch of bananas and pineapple.
Ours: A bunch of bananas on a table.

GT2: A big bunch of green bananas is on a table.
GT3: Green plantain sitting on a dining table.

GT1: A man takes a picture of food in a restaurant.

Trans: A man is eating and taking a picture of food.
Ours: A man taking a picture of a pizza with a camera.

GT2: A man taking a picture of his meal at diner table.
GT3: A man taking a photo of food on a table.

GT1: A close up of a stop sign in a small town

Trans: A stop sign sitting on road.
Ours: A red stop sign on the side of a street.

GT2: A red stop sign sitting next to country road.
GT3: A close up of a stop sign in a small town.

GT1: Four men are  posing for picture at an event.

Trans: A group of men standing next to each other.
Ours: Four older men posing for picture at event.

GT2: A group of man standing next to each other.
GT3: A group of four older men posing for a photo.

GT1: A long line of pans that are hanging on the wall.

Trans: A lot of pots and pans on the counter.
Ours: A kitchen with pots and pans hanging on the wall.

GT2: A kitchen with pots hanging over the stove.
GT3: Hanging frying pans in commercial kitchen.

Figure 4: Visualization of the proposed S2 Transformer. Each example consists of a raw image, a learned map of cluster indices by SP , the
ground-truth descriptions, and the generated description by the transformer and ours. The size of these learned maps is 7×7.

3.3 Quantitative Analysis
Compared Methods. In this section, we compare our pro-
posed S2 Transformer with the state-of-art methods both on
offline and online evaluation, including SCST [Rennie et al.,
2017], Up-Down [Anderson et al., 2018], RFNet [Jiang et al.,
2018], GCN-LSTM [Yao et al., 2018], SGAE [Yang et al.,
2019], ORT [Herdade et al., 2019], AoANet [Huang et al.,
2019],M2Transformer [Cornia et al., 2020], X-Transformer
[Pan et al., 2020], TCIC [Fan et al., 2021] and RSTNet
[Zhang et al., 2021].
Offline Evaluation. In Tab. 4, we show the image captioning
results of our method and compare it to the aforementioned
competitors on the offline test split. Overall, our method
outperforms all compared methods in terms of B@1, M, R,
C, and S. Specifically, compared with the best counterpart
RSTNet using extra knowledge from a pre-trained language
model, our method yields better gains on all metrics, demon-
strating the superiority of our approach.
Online Evaluation. To further verify the benefit of our S2
Transformer, we estimate it on the online COCO test server.
Following the compared methods, we integrate the results
of four models with different initialization for testing. The
comparison results are summarized in Tab. 5. It is clear that
our S2 Transformer outperforms state-of-the-art models on
most metrics. Particularly, with respect to the best competi-
tor RSTNet (ResNext152), our method S2 Transformer with
ResNext152 achieves improvements of 0.7 and 1.0 CIDEr
points on 5 reference captions (c5) and 40 reference captions
(c40), respectively.

3.4 Visualization
Fig. 4 provides some qualitative results to show the pseudo
regions learned via the proposed SP in heat maps and the
high-quality descriptions generated by our proposed model.
In the heat map, different colors represent different index val-
ues, which indicate different pseudo-regions. As we can see,

SP focuses on specific visual regions in foregrounds but also
reserves discriminative background information, confirming
the usefulness of exploiting pseudo regions to retain the spa-
tial information. Besides, our model can generate more accu-
rate and diverse descriptions compared to basic transformer
model. More visualizations are included in the supplemen-
tary material.

4 Conclusion

In the paper, we study how to effectively and efficiently in-
corporate grid features with transformer-based architecture
for image captioning. To achieve this target, we propose a
S2 Transformer—a simple yet effective approach that implic-
itly learns pseudo regions through a series of learnable clus-
ters in a SP module and simultaneously explores both low-
and high-level encoded features in a SR module. Notice-
ably, pseudo regions can effectively capture spatial informa-
tion lost by the flattening operation of gird features. Exten-
sive experiments on the MSCOCO benchmark and visualiza-
tion analysis confirm the effectiveness and interpretability of
our method. Besides, our approach does not bring excessive
parameters compared with the vanilla transformer.
Broader Impact. Our paper focuses on learning image cap-
tioning tasks, which has broader application in real-world
scenarios such as human-machine interaction and visual-
impaired assistance. Our method provides positive impacts,
including 1) implicitly learning discriminative region features
instead of using explicit region features, which reduces the
increase in parameters and computation, and 2) providing a
simple task-specific transformer-based model, which gener-
ates more high-quality descriptions. However, it is still chal-
lenging to deploy existing models into real-world scenarios
because of their susceptibility to attacks, which remains our
responsibility to grow awareness of these potential dangers.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

1613



Acknowledgments
This work is supported by the National Natural Science Foun-
dation of China (Grant No. 62020106008, No. 62122018,
No. 61772116, No. 61872064), Sichuan Science and Tech-
nology Program (Grant No.2019JDTD0005).

References
[Anderson et al., 2016] Peter Anderson, Basura Fernando,

Mark Johnson, and Stephen Gould. Spice: Semantic
propositional image caption evaluation. In ECCV, 2016.

[Anderson et al., 2018] Peter Anderson, Xiaodong He, Chris
Buehler, Damien Teney, Mark Johnson, Stephen Gould,
and Lei Zhang. Bottom-up and top-down attention for im-
age captioning and visual question answering. In CVPR,
2018.

[Arandjelovic et al., 2016] Relja Arandjelovic, Petr Gronat,
Akihiko Torii, Tomas Pajdla, and Josef Sivic. Netvlad:
Cnn architecture for weakly supervised place recognition.
In CVPR, 2016.

[Banerjee and Lavie, 2005] Satanjeev Banerjee and Alon
Lavie. Meteor: An automatic metric for mt evaluation
with improved correlation with human judgments. In ACL
workshop, 2005.

[Chen et al., 2021] Wenqing Chen, Jidong Tian, Caoyun
Fan, Hao He, and Yaohui Jin. Dependent multi-task learn-
ing with causal intervention for image captioning. In IJ-
CAI, 2021.

[Cornia et al., 2019] Marcella Cornia, Lorenzo Baraldi, and
Rita Cucchiara. Show, control and tell: A framework for
generating controllable and grounded captions. In CVPR,
2019.

[Cornia et al., 2020] Marcella Cornia, Matteo Stefanini,
Lorenzo Baraldi, and Rita Cucchiara. Meshed-memory
transformer for image captioning. In CVPR, 2020.

[Fan et al., 2021] Zhihao Fan, Zhongyu Wei, Siyuan Wang,
Ruize Wang, Zejun Li, Haijun Shan, and Xuanjing Huang.
TCIC: theme concepts learning cross language and vision
for image captioning. In IJCAI, 2021.

[Herdade et al., 2019] Simao Herdade, Armin Kappeler,
Kofi Boakye, and Joao Soares. Image captioning: Trans-
forming objects into words. In NeurIPS, 2019.

[Huang et al., 2019] Lun Huang, Wenmin Wang, Jie Chen,
and Xiao-Yong Wei. Attention on attention for image cap-
tioning. In ICCV, 2019.

[Jiang et al., 2018] Wenhao Jiang, Lin Ma, Yu-Gang Jiang,
Wei Liu, and Tong Zhang. Recurrent fusion network for
image captioning. In ECCV, 2018.

[Jiang et al., 2020] Huaizu Jiang, Ishan Misra, Marcus
Rohrbach, Erik Learned-Miller, and Xinlei Chen. In de-
fense of grid features for visual question answering. In
CVPR, 2020.

[Karpathy and Fei-Fei, 2015] Andrej Karpathy and Li Fei-
Fei. Deep visual-semantic alignments for generating im-
age descriptions. In CVPR, 2015.

[Krishna et al., 2017] Ranjay Krishna, Yuke Zhu, Oliver
Groth, Justin Johnson, Kenji Hata, Joshua Kravitz,
Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A.
Shamma, Michael S. Bernstein, and Li Fei-Fei. Visual
genome: Connecting language and vision using crowd-
sourced dense image annotations. IJCV, 2017.

[Li et al., 2019] Guang Li, Linchao Zhu, Ping Liu, and
Yi Yang. Entangled transformer for image captioning. In
ICCV, 2019.

[Lin, 2004] Chin-Yew Lin. Rouge: A package for automatic
evaluation of summaries. In ACL, 2004.

[Pan et al., 2020] Yingwei Pan, Ting Yao, Yehao Li, and Tao
Mei. X-linear attention networks for image captioning. In
CVPR, 2020.

[Papineni et al., 2002] Kishore Papineni, Salim Roukos,
Todd Ward, and Wei-Jing Zhu. Bleu: a method for au-
tomatic evaluation of machine translation. In ACL, 2002.

[Ren et al., 2015] Shaoqing Ren, Kaiming He, Ross B. Gir-
shick, and Jian Sun. Faster R-CNN: towards real-time ob-
ject detection with region proposal networks. In NeurIPS,
2015.

[Rennie et al., 2017] Steven J Rennie, Etienne Marcheret,
Youssef Mroueh, Jerret Ross, and Vaibhava Goel. Self-
critical sequence training for image captioning. In CVPR,
2017.

[Sutskever et al., 2014] Ilya Sutskever, Oriol Vinyals, and
Quoc V Le. Sequence to sequence learning with neural
networks. In NeurIPS, 2014.

[Vedantam et al., 2015] Ramakrishna Vedantam,
C Lawrence Zitnick, and Devi Parikh. Cider: Consensus-
based image description evaluation. In CVPR, 2015.

[Vinyals et al., 2016] Oriol Vinyals, Alexander Toshev,
Samy Bengio, and Dumitru Erhan. Show and tell: Lessons
learned from the 2015 mscoco image captioning chal-
lenge. TPAMI, 2016.

[Wang et al., 2020] Ziwei Wang, Zi Huang, and Yadan Luo.
Human consensus-oriented image captioning. In IJCAI,
2020.

[Xu et al., 2015] Kelvin Xu, Jimmy Ba, Ryan Kiros,
Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov,
Rich Zemel, and Yoshua Bengio. Show, attend and tell:
Neural image caption generation with visual attention. In
ICML, 2015.

[Yang et al., 2019] Xu Yang, Kaihua Tang, Hanwang Zhang,
and Jianfei Cai. Auto-encoding scene graphs for image
captioning. In CVPR, 2019.

[Yao et al., 2018] Ting Yao, Yingwei Pan, Yehao Li, and Tao
Mei. Exploring visual relationship for image captioning.
In ECCV, 2018.

[Zhang et al., 2021] Xuying Zhang, Xiaoshuai Sun, Yun-
peng Luo, Jiayi Ji, Yiyi Zhou, Yongjian Wu, Feiyue
Huang, and Rongrong Ji. Rstnet: Captioning with adap-
tive attention on visual and non-visual words. In CVPR,
2021.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

1614


	Introduction
	S2 Transformer
	Overview
	Spatial-aware Pseudo-supervised (SP) Module
	Scale-aware Reinforcement (SR) Module
	Training

	Experiments
	Experimental Settings
	Ablation Studies
	Quantitative Analysis
	Visualization

	Conclusion

