
MLP4Rec: A Pure MLP Architecture for Sequential Recommendations
Muyang Li1 , Xiangyu Zhao2∗ , Chuan Lyu3 , Minghao Zhao4 , Runze Wu4 , Ruocheng Guo5

1University of Sydney
2City University of Hong Kong

3Zhejiang University
4Fuxi AI Lab, Netease
5Bytedance AI Lab

muli0371@uni.sydney.edu.au, xianzhao@cityu.edu.hk, chuan lyu@zju.edu.cn,
{zhaominghao,wurunze1}@corp.netease.com, rguo.asu@gmail.com

Abstract

Self-attention models have achieved state-of-the-
art performance in sequential recommender sys-
tems by capturing the sequential dependencies
among user-item interactions. However, they rely
on positional embeddings to retain the sequen-
tial information, which may break the semantics
of item embeddings. In addition, most exist-
ing works assume that such sequential dependen-
cies exist solely in the item embeddings, but ne-
glect their existence among the item features. In
this work, we propose a novel sequential recom-
mender system (MLP4Rec) based on the recent
advances of MLP-based architectures, which is
naturally sensitive to the order of items in a se-
quence. To be specific, we develop a tri-directional
fusion scheme to coherently capture sequential,
cross-channel, and cross-feature correlations. Ex-
tensive experiments demonstrate the effectiveness
of MLP4Rec over various representative baselines
upon two benchmark datasets. The simple architec-
ture of MLP4Rec also leads to linear computational
complexity as well as much fewer model parame-
ters than existing self-attention methods.

1 Introduction
Accurately modeling the chronological behavior of users is a
critical area of research in recommender systems. The pri-
mary challenge is to capture the sequential pattern of user in-
terests across multiple items, which is typically dynamic. To
address this issue, Sequential Recommender Systems (SRS)
were proposed and have garnered considerable interests from
both academia and industry. While many endeavors have
been put into this field, the newly emerged self-attention
mechanism [Vaswani et al., 2017] has gained a dominant po-
sition in SRS. Recent works show that self-attention based
models can significantly outperform other models, and have
achieved state-of-the-art (SOTA) performances in SRS [Kang
and McAuley, 2018; Zhang et al., 2019; Sun et al., 2019].

∗Xiangyu Zhao is corresponding author.
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Figure 1: Bi-directional correlations v.s. Tri-directional correlations

Despite the success of self-attention in sequential rec-
ommendations, some limitations can potentially restrict its
further development and practical applications. First, self-
attention and its cognate methods are insensitive to the se-
quential order of the input items, and therefore relies on ex-
tra process such as adding positional embeddings to the in-
put sequence to make the model aware of the information
contained in the order of sequence. However, existing self-
attention methods, combining item sequence and positional
embeddings from two heterogeneous data types, may inter-
rupt the underlying semantics of item embeddings [Zheng
et al., 2021]. Second, self-attention methods’ computational
complexity is quadratic to the length of the input item se-
quence, which yields an unneglectable computational cost
for large-scale recommender systems. Third, incorporating
self-attention in recommender systems typically leads to huge
amounts of model parameters, which result in difficulty in
model optimization and an increased chance of over-fitting.

Recent advances in Multi-layer Perceptron (MLP) archi-
tectures, such as MLP-Mixer, gMLP and resMLP [Tolstikhin
et al., 2021; Liu et al., 2021; Touvron et al., 2021], show
competitive performances in computer vision tasks despite
their architectural simplicity and linear computational com-
plexity. This questions the necessity of attention mecha-
nisms and shows the possibility to replace them via simple
MLP architectures. To address aforementioned challenges of
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Figure 2: Overall framework of MLP4Rec.

self-attention based SRS, this paper proposes a simple yet
effective MLP framework for sequential Recommendations
(MLP4Rec), which has two-fold advantages. First, along
with the above MLP-based models, MLP4Rec is by design
sensitive to the order of input item sequence, avoiding the
bottleneck caused by using positional embeddings. Second,
upon pure MLP blocks, MLP4Rec possesses linear computa-
tional complexity and a significantly lower amount of model
parameters than self-attention based SRS models.

However, due to the design of bi-directional mixer in ex-
isting MLP architectures [Tolstikhin et al., 2021], utilizing
them for sequential recommendations can only capture the
dependencies of item embeddings and incorporate the items’
explicit features (e.g., brand and category) in a naive manner.
To this end, we devise a novel tri-directional information fu-
sion scheme for MLP4Rec with a cross-feature mixer, which
enables the framework to capture the interactions among all
item features, as illustrated in Figure 1. In addition, the
tri-directional scheme also applies the classic bi-directional
mixers from MLP-based models [Tolstikhin et al., 2021;
Lee et al., 2021] on item explicit features, which learns the
users’ sequential preferences within these features. Through
extensive experiments, we demonstrate that MLP4Rec shows
significantly superior performance than the state-of-the-art
methods on two benchmark datasets. To summarize, this pa-
per has the following contributions:

(1) We investigate the possibility of replacing the self-
attention mechanism with simple MLP architectures for se-
quential recommendations;

(2) To the best of our knowledge, this is the first work that
proposes a tri-directional mixing MLP architecture;

(3) We validate the effectiveness of our proposed frame-
work via extensive experiments on two benchmark datasets.

2 Framework
In this section, we discuss the framework, methodology, and
optimization of our proposed MLP4Rec framework.

2.1 Notation Definition
Follow commonly adapted settings [Li et al., 2018; Kang and
McAuley, 2018], we denote the participant of interactions -
users as U = {u1, ..., un..., uN}, where n indicates the ID
of the user. Items as I = {i1, ..., im..., iM}, where m indi-
cates the ID of the item. In addition, each item have some
associated features, such as category and brand, we denote
those features as Q = {qm1 , ..., qmk , ...qmK}, where qmk refers
to the k-th feature of item m. We sort the items that users
have interacted with into sequences, thus each user has a
corresponding sequence containing items (s)he once viewed
chronologically. We denote the item sequence of user n as
Sn = {i1, ..., it..., is}, where i stands for item, t describes
the chronological order of item, s is the maximum length of
the sequence.

2.2 Framework Overview
Here, we present our MLP-based SRS which can explicitly
learn tri-directional information. As we mentioned before, in
order to make an informed prediction, a model must be able
to capture the 3-fold information. The first fold is the tem-
poral information, i.e., sequential dependencies among Sn.
The second fold refers to, the interest information contained
in the item embedding, since different channels (dimensions)
of an item embedding represents different latent semantics,
the cross-channel correlation is also important for our task.
The third fold is the correlations among item features, col-
lectively, they contribute to modeling the semantic meaning
of an item. By repetitively transposing and applying MLP
blocks in different directions of the input embedding tensor
as shown in Figure 2, we show that our proposed framework
can capture the sequential, cross-channel, and cross-feature
correlations at the same time.

To be specific, MLP4Rec consists of L layers, where each
layer has an identical setting, a sequence-mixer, a channel-
mixer, and a feature-mixer. Following [Tolstikhin et al.,
2021], all L layers share the same parameters to reduce model
parameters. Within each layer, we first apply independent
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Figure 3: Architecture of Sequence-Mixer

sequence-mixers and channel-mixers for different features,
so as to learn their unique characteristics. Then, we utilize
a feature-mixer to learn correlations among all features.

2.3 Detailed Architecture
Embedding Layer. We adapt a commonly used method for
constructing item ID embeddings and feature embeddings,
i.e., learning an embedding lookup table to project the dis-
crete item identifiers (i.e., IDs) and explicit features (e.g.,
category and brand) into dense vector representations with di-
mension C [Cheng et al., 2016]. After the embedding layer,
we can stack the embeddings of item IDs and explicit fea-
tures into individual embedding tables, where the row of the
embedding table is each embedding vector, and the column
of the embedding table contains channel information. Stack-
ing all embedding tables together, we obtain a 3-d embedding
table as shown in Figure 3. Note that, unlike self-attention
models, our proposed model does not need to learn a posi-
tional embedding for an input sequence. Instead, temporal
information can be directly learned via the sequence-mixer.

Sequence-Mixer. The sequence-mixer is an MLP block,
which aims to learn the sequential dependencies across the
entire item sequence. The sequence-mixer block takes the
rows of the embedding table as input features (applied to the
transposed embedding table), and outputs an embedding table
with the same dimension as the input. But in this output ta-
ble, all the sequential dependencies are fused within each out-
put sequence. More specifically, a set of input feature would
be the c-th dimension of each embedding vector across the
whole sequence, i.e. {xc

1, ..., x
c
t , ..., x

c
s} as shown in Figure

3. The correlation between them is sequential, which shows
the evolvement of user interest across time, thus making the
sequence-mixer sensitive to the sequential order. Formally,
we denote the output of sequence-mixer at layer l as:

yt = xt +W 2gl(W 1LayerNorm(xt)) (1)

where t = 1,..,s. xt is the input feature, which is the em-
bedding vector at time step t. yt is the output of the block, gl
is the non-linear activation function at layer l, W 1 ∈ Rrs×s

denotes the learnable weights representing the first fully con-
nected layer in the sequence-mixer, W 2 ∈ Rs×rs signifies
the learnable weights of the second fully connected layer in
the sequence-mixer, rs is the tunable hidden size of sequence-
mixer. We employ layer normalization (LayerNorm) [Ba et
al., 2016] and residual connection [He et al., 2016] as in
MLP-mixer [Tolstikhin et al., 2021].

Channel-Mixer. Like sequence-mixer, channel-mixer is
also an MLP block with a similar macro architecture, their
key distinction is between their purpose. The objective of
the channel-mixer is to learn the correlation within an em-
bedding vector. The embedding of an item ID or item fea-
ture usually expresses some latent semantics on each dimen-
sion, learning their representation and internal correlation is
crucial for recommendations. The channel-mixer takes the
columns of the embedding table as input feature, as shown in
Figure 2, channel-mixer is applied after transposing the em-
bedding table back to its original shape. After the sequence-
mixer, sequential information is fused within each sequence,
but the cross-channel correlation has not been discovered
yet. Channel-mixer will take t-th item embedding’s dimen-
sion as input feature, i.e. {x1

t , ..., x
c
t , ..., x

C
t }, the correlation

between them is cross-channel, collectively they express the
overall semantic of the embedding. After the channel-mixer,
the cross-channel correlation will be fused into the output se-
quence. We denote the output of channel-mixer at layer l as:

yc = xc +W 4gl(W 3LayerNorm(xc)) (2)
where c = 1,2,..,C, xc is the input feature, which is the cth
dimension across all embedding at time step t, and yc is the
output of the block,W 3 ∈ RrC×C is learnable weights of
the first fully connected layer in the channel-mixer, W 4 ∈
RC×rC is learnable weights of the second fully connected
layer, rC is tunable hidden size in channel-mixer.
Feature-Mixer. After the sequence-mixer and the channel-
mixer, the sequential and cross-channel dependencies are
fused within each sequence. However, the information among
the embedding table of different features is still independent
of each other. The feature-mixer can fuse cross-feature cor-
relation into the representation of each sequence. More im-
portantly, since the feature-mixer is the last block in a layer,
which not only communicates feature information but also
shares the sequential and cross-channel dependencies within
each feature to other features, thus coherently connects the
tri-directional information. The feature-mixer acts on fea-
tures dimension as shown in Figure 2. We denote the output
of the feature-mixer at layer l as:

yk = xk +W 6gl(W 5LayerNorm(xk)) (3)

where k = 1,2,...,K, xk is the input feature, which is the
embedding vector of kth feature at embedding dimension c,
and yk is the output of the block, W 5 ∈ RrK×K denotes
the learnable weights of the first fully connected layer in the
feature-mixer, W 6 ∈ RK×rK is the learnable weights of the
second fully connected layer in the feature-mixer, and rK is
tunable hidden size in feature-mixer.

2.4 Training and Inference
Training. We adapt Cross-Entropy loss as the loss function
for our model:

L = −
∑
Sn∈S

∑
t∈[1,...,s]

[log(σ(rit,t)) +
∑
j ̸∈Sn

log(1− σ(rij ,t))]

(4)
where σ demotes sigmoid function, rit,t is model’s predicted
similarity to ground-truth item it, and rij ,t is the predicted
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similarity to sampled items at timestep t, j is the negative
sampled items, S is the set of all users’ interaction sequences.
Inference. We adapt the most commonly used inference
method in SRS for fair comparison [Kang and McAuley,
2018; Zhang et al., 2019]. To be specific, after L layers of
sequence-mixer, channel-mixer and feature-mixer, we obtain
a sequence of hidden states that contains the sequential, cross-
channel, and cross-feature dependencies of each interaction,
respectively. Assuming at time step t, we wish to predict next
item it+1, given sequence of hidden states H = h1, ..., ht, we
can calculate the cosine similarity between ht and all candi-
dates items Em via dot product as:

rm,t = ht · ET
m (5)

where m = 1,...,M , Em ∈ RM×C is the item embedding of
all candidate items and rt,m indicates the similarity between
hidden state t to all candidate items, top predictions will be
ranked by their similarity.

2.5 Discussion
Relation to MLP-Mixer and resMLP. The key architec-
tural differences of MLP4Rec to MLP-Mixer and resMLP is
that MLP-Mixer and resMLP directly project a 3-dimensional
input (image) into a 2-dimensional embedding table, and then
operate 2-dimensional (spatial/channel) information fusion,
whereas MLP4Rec directly operates on the 3-dimensional
input and conducts the sequential/channel/feature informa-
tion fusion. MLP4Rec can degenerate into MLP-Mixer and
resMLP when the input is a 2-dimensional embedding table.
Complexity Analysis. The following discussion regarding
the time and space complexity of our model is for the infer-
ence stage. (1) Time Complexity: MLP4Rec’s time complex-
ity is O(s + C + K), which is linear complexity to the se-
quence length s, embedding size C and feature number K.
Compared to the time complexity of self-attention, O(s2C +
C2s), the theoretical upper bound of the MLP4Rec’s time
complexity is significantly lower. (2) Space Complexity:
MLP4Rec’s space complexity is O(K(s + C + 1)), where
the number of features K is usually limited, especially after
feature selection. On the other hand, the space complexity
of self-attention is O(sC + C2) [Kang and McAuley, 2018],
which is quadratic to the embedding size. In the experiment
part, we show that not only do we keep a theoretical lower
upper bound in space complexity, but in practice, we also
achieved a significantly lower number of parameters.

3 Experiments
This section evaluates the performance of MLP4Rec against
representative baselines on two benchmark datasets.

3.1 Datasets
We choose two widely used datasets to benchmark our per-
formance on both small and large datasets, and their statis-
tics can be found in Table 1. (1) MovieLens1: MovieLens
is a site for recommending movies to users given their his-
torical ratings, which is now one of the most commonly used

1https://grouplens.org/datasets/movielens/100k/

Data MovieLens Beauty
# interactions 100,000 2,023,070

# users 943 1,210,271
# items 1,682 249,274

# avg. length 106 8.8

Table 1: Statistics of the datasets.

benchmarks across the field of recommender system. We use
MovieLens-100k in our experiments. (2) Amazon Beauty2:
The online reviews and ratings of Amazon. We use the
“Beauty” category in our experiments. We filter out the items
and users that have less than 5 interactions for two datasets.
We set the maximum sequence length as 50 for both datasets,
and conduct zero-padding for shorter sequences.

3.2 Evaluation Settings
We employ the commonly used evaluation method in SRS,
namely next-item prediction. For dataset splitting, the next-
item prediction task uses the last item in an interaction se-
quence as the test set, the item before as the validation set, and
the rest of the items will be used as the training set. Following
common settings, we pair 100 negative samples with ground-
truth items during prediction [Kang and McAuley, 2018].
Metrics. We apply three commonly used evaluation metrics
in the recommendations, namely Hit Ratio (HR), Normalized
Discounted Cumulative Gain (NDCG), and Mean Reciprocal
Rank (MRR). All results are averaged on three random seeds.

3.3 Implementation Details
The implementation of MLP4Rec and all baselines are based
on RecBole’s library [Zhao et al., 2021], an open-source rec-
ommender system library, which allows us to test and com-
pare all methods in a fair environment, and allows our re-
sults to be reproduced easily. We tune the hyper-parameters
based on original papers’ recommendations. If original pa-
pers did not provide detailed hyper-parameters, we perform
hyper-parameter tuning via cross-validation with Adam opti-
mizer [Kingma and Ba, 2014] and early stop strategy. The
implementation code is available online3.

3.4 Performance Comparison
We will compare our proposed methods against follow-
ing baselines: PopRec, BPR [Rendle et al., 2009],
FPMC [Rendle et al., 2010], GRU4Rec [Hidasi et al.,
2015], GRU4Rec+ [Hidasi et al., 2016], SASRec and
SASRec+ [Kang and McAuley, 2018], BERT4Rec [Sun
et al., 2019], FDSA [Zhang et al., 2019], and MLP-
Mixer+ [Tolstikhin et al., 2021]. Note that superscript “+”
means that we improve the original model, which takes the
concatenation of embeddings of item ID and features as in-
put, enabling fair comparison with MLP4Rec.

Table 2 summarizes the comparison results, where mod-
els above the dashed line consider only item embeddings,
while below models also involve item features. From Ta-
ble 2, we can make the following general observations: (1)

2http://jmcauley.ucsd.edu/data/amazon/
3https://github.com/Li-Muyang/MLP4Rec
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Methods MovieLens Beauty
Metrics MRR@10 NDCG@10 HR@10 MRR@10 NDCG@10 HR@10
PopRec 0.1496 0.0783 0.4044 0.0305 0.0443 0.0954

BPR 0.1479 0.1905 0.3474 0.1479 0.3474 0.1905
FPMC 0.1220 0.1813 0.3810 0.1431 0.1838 0.3165

GRU4Rec 0.1860 0.2550 0.4758 0.1632 0.2050 0.3417
SASRec 0.1901 0.2612 0.4920 0.2009 0.2447 0.3874

BERT4Rec 0.1819 0.2568 0.5061 0.1313 0.1738 0.3135
GRU4Rec+ 0.1880 0.2550 0.4758 0.1848 0.2294 0.3746
SASRec+ 0.2022 0.2710 0.4970 0.2045 0.2488 0.3930

FDSA 0.1913 0.2625 0.4984 0.2056 0.2522 0.4040
MLP-Mixer+ 0.1987 0.2671 0.4920 0.2089 0.2556 0.4065

MLP4Rec 0.2027 0.2747 0.5118 0.2139* 0.2654* 0.4326*
“*” indicates the statistically significant improvements (i.e., two-sided t-test with p < 0.05) over the best baseline.

Table 2: Overall performance comparison on two datasets, where best baseline performances are underlined

Model Param NDCG@10 HR@10
BERT4Rec 2.3M 0.1738 0.3135
GRU4Rec+ 2.5M 0.2294 0.3746
SASRec+ 2.0M 0.2488 0.3930

FDSA 3.2M 0.2522 0.4040
MLP-Mixer+ 1.8M 0.2556 0.4065

MLP4Rec 1.7M 0.2654 0.4326
“Param” refers to the number of trainable model parameters.

Table 3: Model parameter analysis on Beauty dataset.

Starting from GRU4Rec, deep learning based methods ex-
ceed traditional methods such as BPR by a large margin,
suggesting that in sequential recommendations, deep learn-
ing models are better at capturing sequential dependencies.
(2) Models that can handle item features (e.g. SASRec+,
FDSA) usually outperform those who cannot (e.g. SAS-
Rec, BERT4Rec), indicating the importance of item fea-
tures in sequential recommendations. (3) Improvement over
the best baseline is more significant on the larger dataset
“Beauty”. More specifically, we can also observe that: (4)
Compared to RNN-based models, self-attention models usu-
ally have better performances, which can be attributed to self-
attention’s stronger capabilities in capturing sequential pat-
terns. (5) MLP-Mixer+ can achieve comparable performance
when compared with the SOTA methods such as SASRec
and FDSA. (6) MLP4Rec constantly outperforms all base-
lines including MLP-Mixer+ with a significant margin, which
suggests that tri-directional information fusion is an impor-
tant improvement, which jointly captures sequential, cross-
channel, cross-feature correlations.

3.5 Model Parameter Analysis
As shown in Table 3, despite MLP4Rec’s superior perfor-
mance, it also surpasses baselines in terms of memory effi-
ciency. Fewer model parameters not only make the MLP4Rec
easier to train, but also reduce the risk of over-fitting [Lee et
al., 2021].
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Figure 4: Influence of hyper parameters on performance

3.6 Hyper-parameters Analysis
Figure 4 shows the influence of layer depth and embedding
size on MLP4Rec and MLP-Mixer+. Generally, unlike MLP-
Mixer’s application in CV [Tolstikhin et al., 2021], our
framework in SRS does not require a very deep network.
In addition, compared to MLP-Mixer+, the performance of
MLP4Rec is more robust across a wide range of embedding
sizes. A potential reason for this is that the tri-directional
information communication allows latent representations to
be shared on different embedding tables, thus a smaller em-
bedding size does not significantly harm the representational
capacity of the model. However, MLP-Mixer+ needs to com-
press rich semantics from item features. Thus, small embed-
ding sizes lead to sub-optimal performance due to their lim-
ited representational ability. In contrast, a large embedding
size results in an over-fitting issue.

3.7 Ablation Study
As shown in the previous subsections, MLP4Rec achieves
better performance than MLP-Mixer+ in both datasets across
all metrics, and the only difference between their architec-
ture is feature-mixer. Here, we investigate the necessity of
a feature-mixer by answering two important questions: Q1:
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Model MRR@10 NDCG@10 HR@10
MLP-Mixer 0.1974 0.2401 0.3790

MLP4Rec-Linear 0.2100 0.2586 0.4165
MLP4Rec-Simple 0.1995 0.2500 0.4143

MLP-Mixer+ 0.2089 0.2522 0.4040
w/o S-mixer 0.1771 0.2153 0.3396
w/o C-mixer 0.1933 0.2440 0.4092
w/o F-mixer 0.1974 0.2401 0.3790
MLP4Rec 0.2139 0.2654 0.4326

Table 4: Ablation study comparison

Can simpler alternatives achieve the same performance as
the feature-mixer? and Q2: What is the contribution of
each respective module in our proposed model? To an-
swer those questions, and further validate the importance of
our proposed improvement, we design the following alter-
natives to MLP4Rec and MLP-Mixer: (1) MLP-Mixer is
the vanilla MLP-Mixer which does not include item features.
(2) MLP4Rec-Linear is the simplified MLP4Rec which re-
places the MLP feature-mixer block with a simple linear
layer. (3) MLP4Rec-Simple is the simplified MLP4Rec
which only performs feature mixing at the final layer instead
of every layer. (4) w/o S-Mixer is the simplified MLP4Rec
without the Sequence-Mixer module. (5) w/o C-Mixer is the
simplified MLP4Rec without the Channel-Mixer module. (6)
w/o F-Mixer is the simplified MLP4Rec without the Feature-
Mixer module.

The performances of alternatives are displayed in Table 4,
where the upper part of the table mainly addresses Q1 and
the lower part of the table mainly addresses Q2. From Ta-
ble 4, we can summarize that (1) Without incorporating item
features, MLP-Mixer has significantly worse performance,
which confirmed the importance of introducing item features
into sequential recommendations. (2) For two simplified
MLP4Rec versions, we can observe that MLP4Rec-Linear
constantly outperforms MLP4Rec-Simple, which means that
only communicating feature information at the last layer
cannot fuse cross-feature correlation into the hidden repre-
sentation sufficiently. Whereas MLP4Rec-Linear still per-
forms proper tri-directional information without nonlinearity,
leading to the next best performance other than MLP4Rec.
(3) MLP4Rec outperforms MLP4Rec-Linear and MLP4Rec-
Simple consistently over all metrics, attributing to its full tri-
directional fusion by feature-mixer. (4) Without Sequence-
Mixer, MLP4Rec’s performance degenerates most signifi-
cantly, indicating that Sequence-Mixer plays a vital part in the
sequential recommendations, and can successfully capture
the sequential pattern. (5) Without Channel-Mixer, MLP4Rec
also suffers a significant decrease in performance. The most
likely reason is that, without the Channel-Mixer, the respec-
tive dimension of item/feature embedding cannot communi-
cate with one another, thus making the hidden representation
lack cross-channel correlation. And since without Feature-
Mixer, the performance of MLP4Rec is essentially equiva-
lent to vanilla MLP-Mixer, so the effect of removing Feature-
Mixer can refer to summarization (1).

4 Related Work
In this section, we review the related work from the literature
of sequential recommendation systems and MLP-Mixer.
Sequential Recommendation Systems. RNN-based mod-
els can handle complex sequential dependencies in sequential
recommendations by compressing previous user-item interac-
tions into a vector that summarizes that information, and then
make the prediction of the next possible interaction [Quad-
rana et al., 2017; Yu et al., 2016; Zhao et al., 2018a; Zhao et
al., 2018b; Zhao et al., 2019]. For example, GRU4Rec [Hi-
dasi et al., 2015] is one of the most representative RNN-
based SRS, which implements gated recurrent unit (GRU) to
improve the modeling of long-term dependencies, however,
even with GRU, RNN-based models still cannot perform very
well on a long sequence.

Recent years, (self-)attention methods [Vaswani et al.,
2017; Li et al., 2017] show SOTA performances in SRS.
SASRec [Kang and McAuley, 2018] is one of the first to im-
plement self-attention for SRS and obtains promising results,
by stacking several self-attention blocks, SASRec is able to
capture complex dependencies among items.

BERT4Rec [Sun et al., 2019] implements bi-directional
self-attention blocks and Cloze objective, which also shows
promising results. FDSA uses self-attention on both item to-
ken and item features to gain more information for better pre-
diction. Nevertheless, self-attention’s drawbacks are just as
significant, whose computational complexity is quadratic to
the length of the input sequence and embedding size.
MLP-based Architectures. Recent development in MLP
architectures reveals high potential in computer vision [Tol-
stikhin et al., 2021; Touvron et al., 2021; Liu et al., 2021].
Among them, MLP-Mixer [Tolstikhin et al., 2021] is a
symbolic example of recent advances in MLP-based mod-
els. MLP-Mixer uses token-mixer and channel-mixer to sep-
arately learn the spatial and channel correlations. With lin-
ear computation complexity and simpler architectures, MLP-
Mixer was reported to have comparable performance com-
pared with SOTA methods. MOI-Mixer [Lee et al., 2021]
is the first work to investigate the possibility of implement-
ing MLP-Mixer in the sequential recommendation. They pro-
pose a Multi-Order-Interaction layer to improve vanilla MLP-
Mixer’s performance.

5 Conclusion
In this paper, we proposed a simple but efficient architec-
ture with only MLP blocks for sequential recommendations.
This architecture leverages a novel way to coherently con-
nects sequential, cross-channel and cross-feature correlations
in users’ historical interaction data to mine their preference.
MLP4Rec shows superior performances against state-of-the-
art methods with a significant margin on two commonly used
benchmark datasets, validating that: (1) MLP4Rec offers
a powerful alternative to current self-attention based meth-
ods; (2) Feature-mixer enables the proposed model to cope
with heterogeneous features and capture their correlations. In
addition, MLP4Rec’s simpler model architecture and much
fewer model parameters enhance its scalability in large-scale
practical recommender systems.
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