FAITH: Few-Shot Graph Classification with Hierarchical Task Graphs

Song Wang1, Yushun Dong1, Xiao Huang2, Chen Chen1, Jundong Li1
1University of Virginia
2Hong Kong Polytechnic University
\{sw3wv, yd6eb, zrh6du, jundong\}@virginia.edu, xiaohuang@comp.polyu.edu.hk

Abstract
Few-shot graph classification aims at predicting classes for graphs, given limited labeled graphs for each class. To tackle the bottleneck of label scarcity, recent works propose to incorporate few-shot learning frameworks for fast adaptations to graph classes with limited labeled graphs. Specifically, these works propose to accumulate meta-knowledge across diverse meta-training tasks, and then generalize such meta-knowledge to the target task with a disjoint label set. However, existing methods generally ignore task correlations among meta-training tasks while treating them independently. Nevertheless, such task correlations can advance the model generalization to the target task for better classification performance. On the other hand, it remains non-trivial to utilize task correlations due to the complex components in a large number of meta-training tasks. To deal with this, we propose a novel few-shot learning framework FAITH that captures task correlations via constructing a hierarchical task graph at different granularities. Then we further design a loss-based sampling strategy to select tasks with more correlated classes. Moreover, a task-specific classifier is proposed to utilize the learned task correlations for few-shot classification. Extensive experiments on four prevalent few-shot graph classification datasets demonstrate the superiority of FAITH over other state-of-the-art baselines.

1 Introduction
Graph classification aims at predicting classes for graph samples, and many real-world problems can be formulated under this scenario [Xu et al., 2019; Ma et al., 2020]. As an example, in the task of molecular property predictions [Chauhan et al., 2020], each molecule is represented as a graph, and molecular properties are regarded as graph labels. Generally, Graph Neural Networks (GNNs) [Kipf and Welling, 2017; Veličković et al., 2018; Xu et al., 2018] have achieved promising performance in molecular property predictions. However, their performance drops significantly in the few-shot scenario [Yao et al., 2020], in which certain properties only consist of limited labeled molecules due to the expensive labeling process [Guo et al., 2021]. Beyond that, such label deficiency issues also widely exist in other graph classification scenarios [Huang and Zitnik, 2020].

To tackle the label deficiency problem for graph classification, many research efforts have been devoted in recent years [Chauhan et al., 2020; Ma et al., 2020; Yao et al., 2020]. These studies generally resort to prevalent few-shot learning frameworks [Snell et al., 2017; Finn et al., 2017; Li et al., 2019; Zhou et al., 2019], which learn on a series of meta-training tasks and provide fast adaptations to classes with limited labeled data. Specifically, the graph samples in meta-training tasks are first sampled from the auxiliary data, in which a sufficient amount of labeled graphs are provided for each class. Based on these graph samples, a large number of meta-training tasks can be conducted to ensure fast adaptations to the target task. It is noteworthy that the target task shares a similar structure with meta-training tasks but is sampled from a disjoint label set. Across diverse meta-training tasks, recent studies can accumulate meta-knowledge and then generalize such meta-knowledge to the target task. Nevertheless, in few-shot learning, each randomly sampled meta-training task only consists of several labeled samples. Therefore, the discriminative information regarding a particular class can disperse throughout different meta-training tasks. For example, the target task of the toxicity property prediction bears stronger task correlations with the meta-training task of the chemical activity prediction than others [Guo et al., 2021]. As a result, different meta-training tasks are inherently correlated, and such implicit correlations can provide complementary insights in advancing the performance on the target task. Therefore, it is crucial to capture the correlations among meta-training tasks to obtain a comprehensive view of certain classes from a variety of meta-training tasks. In other words, such correlations can help transfer useful meta-knowledge across different meta-training tasks to the target task [Suo et al., 2020; Lichtenstein et al., 2020]. However, to the best of our knowledge, existing few-shot graph classification methods treat different meta-training tasks independently without considering task correlations [Chauhan et al., 2020; Ma et al., 2020; Yao et al., 2020], which results in suboptimal performance.\footnote{Generally, the innate chemical activity is a significant factor that affects the toxicity of molecules.}
Despite the significance of capturing task correlations for few-shot graph classification, how to properly characterize such correlations remains a challenging problem. Essentially, capturing the correlations among different meta-training tasks necessitates a comprehensive understanding of their building blocks (i.e., classes and graph samples) as well as their complex interactions (e.g., the correlations among different graph samples and the correlations among different classes). To this end, we propose to construct a hierarchical task graph to facilitate the meta-knowledge transfer to the target task. Specifically, the hierarchical task graph consists of three layers: at the bottom layer, we construct a relational graph among different graph samples across several meta-training tasks; at the middle layer, another relational graph is established among the centroids (i.e., prototypes) of different classes over the sampled meta-training tasks; at the top layer, we have a coarse-grained relational graph among different meta-training tasks. Then the connections between layers are constructed based on the composing relations among meta-training tasks, classes, and graph samples. In this way, the task correlations can be captured in a more comprehensive way. Furthermore, to facilitate the knowledge transfer across different meta-training tasks, we propose a novel loss-based sampling strategy to sample meta-training tasks with stronger correlations, based on which a refined hierarchical task graph can be constructed. At last, to account for the distinct information unique for each meta-training task, we learn embeddings of each meta-training task in the hierarchical graph and incorporate such embeddings into the prediction model. The main contributions of this work are summarized as follows:

- We study an important problem of few-shot graph classification and evince the importance of capturing the correlations among different meta-training tasks.
- We design a hierarchical task graph to effectively capture task correlations, as well as a loss-based strategy to construct a better task graph and a task-specific classifier to incorporate task information for classification.
- We conduct extensive experiments on four widely-used graph classification datasets, and experimental results validate the superiority of our proposed framework.

2 Problem Definition

In few-shot graph classification, a target task consists of \(NK \) labeled samples \(\{(G_i, y_i)\}_{i=1}^{NK} \) as the support set \(S \), and \(Q \) samples \(\{(G_i, y_i')\}_{i=1}^{Q} \) as the query set \(Q \) to be classified. Here each sample is a graph \(G_i \) with its label \(y_i \in Y \), where \(Y \) is a few-shot label set with limited samples for each class. Moreover, \(|Y_f| = N\) and \(|S| = NK\), which means there are \(K \) labeled samples for each of \(N \) classes in the support set. In this way, the problem is called \(N \)-way \(K \)-shot graph classification. To conduct classification with limited labeled samples, we propose to incorporate meta-knowledge across \(T_{train} \) different meta-training tasks \(\{(S_i, Q_i)\}_{i=1}^{T_{train}} \). Meta-training tasks are sampled in the same setting as the target task, except that the samples are drawn from auxiliary data. The auxiliary data has abundant labeled graph samples and a distinct label set \(Y_i \) from the target task, which means \(Y_i \cap Y_f = \emptyset \). Given the above, the studied problem of few-shot graph classification can be formulated as follows:

Definition 1. Few-shot Graph Classification: Given a target task consisting of a support set \(S = \{(G_i, y_i)\}_{i=1}^{NK} \) and a query set \(Q = \{(G_i, y_i')\}_{i=1}^{Q} \), our goal is to develop a machine learning model that can learn the meta-knowledge across \(T_{train} \) different meta-training tasks \(\{(S_i, Q_i)\}_{i=1}^{T_{train}} \) and predict labels for graph samples in the query set of the target task from the few-shot label set \(Y_f \).

3 Proposed Framework

In this section, we introduce the overall structure of our proposed framework FAITH in detail. As illustrated in Figure 1, to capture task correlations among meta-training tasks and thus facilitate the meta-knowledge transfer and adaptation, we build a three-layer hierarchical task graph for each meta-training task in a bottom-up manner. Specifically, for each current meta-training task, we sample \(P \) additional tasks, denoted as support tasks, via a loss-based sampling strategy. Then these \(P + 1 \) tasks (including the current task) form the hierarchical task graph. Here three layers consist of graph sample nodes, prototype nodes (i.e., the centroid of graph samples of the same class in a task), and task nodes, respectively. In this way, the correlations in graph samples and prototypes from different tasks can be aggregated and propagated among tasks. Then a task-specific classifier utilizes task embeddings learned from the hierarchical task graph for classification on the query set. As a result, the transferred meta-knowledge from other tasks can benefit the classification of each task. Next, we will elaborate on these three key steps.

3.1 Loss-based Sampling for Support Tasks

We aim to sample support tasks to build a hierarchical task graph for each meta-training task; however, random sampling may result in insufficient task correlations caused by huge variance among tasks. Thus, to reduce the task variance, we propose to sample tasks with correlated classes. We assume that the correlated classes for a specific class should consist of graph samples with similar classification results. Therefore, we use a classifier to find correlated classes for a task. Then the classification probability will be used as the sampling probability of each class.

Suppose that we have randomly sampled a meta-training task \(T_0 \) with a support set consisting of \(NK \) graph samples, where each of \(N \) classes consists of \(K \) graph samples. It is noteworthy that these \(N \) classes are sampled from \(Y \), where \(|Y_f| = C\) and \(|S| = NK\). To sample tasks that have strong correlations with \(T_0 \), we need to sample classes that are correlated with classes in \(T_0 \). Therefore, we propose to obtain the sampling probability (i.e., the probability for a class to be sampled) of each class via an MLP layer. Here we use \(z_j \in \mathbb{R}^D \) to denote the embedding of the \(j \)-th graph sample of the \(i \)-th class with dimension \(D \) in \(T_0 \), learned with GNNs. Then the sampling probabilities are generated as:

\[
p_i = \text{softmax}(\text{MLP}(\frac{1}{K} \sum_{j=1}^{K} z_j^i)),
\]

where \(p_i \in \mathbb{R}^C \) is the sampling probability of the \(i \)-th prototype for all \(C \) classes. The final sampling probability is computed by averaging: \(p = \sum_{i=1}^{N} p_i / N \), where \(p \in \mathbb{R}^C \) is
the final sampling probability for all C classes. To refine the sampling strategy during training, we calculate the loss for sampling probabilities as follows:

$$
\mathcal{L}_{\text{sample}} = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{C} y_{i,j} \log p_{i,j},
$$

where $y_{i,j} \in \{0, 1\}$ and $y_{i,j} = 1$ if the i-th prototype belongs to the j-th class of all C classes; otherwise $y_{i,j} = 0$. $p_{i,j}$ denotes the j-th element of p_i. In this way, the sampling loss is incorporated into model training to improve the sampling process. According to p, we can sample N different classes from all C classes to form a new task. In this way, we ensure that classes in the new task are more correlated with classes in T^0, such that the new task could have stronger task correlations with T^0. Similar to T^0, K graph samples are randomly sampled for each of N classes, which form a new task with NK graph samples as the support set. Additionally, Q query graph samples are sampled to form the query set of this task. After repeating this process for P times, we obtain P support tasks $\{T^1, T^2, \ldots, T^P\}$ for the hierarchical task graph.

3.2 Constructing Hierarchical Task Graphs

Although we have selected tasks with strong correlations for the hierarchical task graph, it still remains challenging to capture the implicit correlations among these tasks. The reason is that these tasks have different distributions of graph samples and classes. Hence, we propose to build a three-layer hierarchical task graph to capture task correlations. Specifically, the hierarchical graph contains three layers consisting of graph sample nodes, prototype nodes (i.e., the centroid of different classes in each task), and task nodes, respectively. Moreover, the connections between layers are constructed based on the composing relations among tasks, classes, and graph samples. For example, the graph sample nodes are connected to their corresponding prototype node in the next layer. In this way, task correlations can be captured comprehensively with graph samples and classes. To build the graph in each layer, we propose to utilize a novel similarity learning strategy based on both label information and node embeddings to learn an adjacency matrix for this graph. The detailed construction process of these three layers is introduced below.

Sample-level Graph

Since each task consists of multiple graph samples, task correlations largely exist among graph samples. Hence, we first build a sample-level graph which consists of all graph samples in $P + 1$ tasks. In this way, the sample-level graph contains $M = (NK + Q)(P + 1)$ graph samples in total as nodes. In this sample-level graph, graph samples from different tasks are connected to capture sample-level correlations.

Specifically, the input embeddings for nodes in the sample-level graph are denoted as $Z_s \in \mathbb{R}^{M_s \times D_s}$, obtained via the embedding model GNN_s. D_s denotes the embedding size. To capture the correlations among graph samples, we learn an adjacency matrix A_s to model the connections. In particular, we propose to learn the adjacency matrix based on both node embeddings and label information: $A_s = A'_s + A''_s$, where A'_s, A''_s, and A''_s are learned from node embeddings and label information, respectively. Based on the cosine similarity, we obtain $A'_s(i, j) = \cos(Z_s(i), Z_s(j))$, where $Z_s(i) \in \mathbb{R}^{D}$ denotes the i-th row vector of Z_s. Then A''_s is learned based on the labels of samples:

$$
A''_s(i, j) = \begin{cases}
1, & \text{if } y_i = y_j \\
0, & \text{otherwise}
\end{cases},
$$

where $y_i = y_j$ means the i-th and the j-th samples are of the same class. In this way, the label information is combined with node embeddings to build connections among graph samples. With A_s, we perform message propagation:

$$
H_s = \text{GNN}_{s}^{(s)}(Z_s, A_s),
$$

where $H_s \in \mathbb{R}^{M_s \times D_s}$ is the output node embeddings of the GNN$^{(s)}$ and D_s is the output dimension size. Then, to build the connections from graph samples to prototypes in the next layer (i.e., the prototype-level graph), we propose to learn weights to aggregate sample embeddings in the same class as the corresponding prototype node embedding. In this way, the input prototype embeddings of the prototype-level graph are obtained from its graph samples that have absorbed the knowledge from other tasks with strong correlations. To generate the aggregation weights, we apply another GNN:

$$
G_s = \text{GNN}_{s}^{(y)}(Z_s, A_s),
$$

where $G_s \in \mathbb{R}^{M_s \times D_s}$ is the output prototype embeddings of the GNN$^{(y)}$.
where \(G_s \in \mathbb{R}^{M_s \times 1} \) denotes the aggregation weights for each sample node, and the output dimension size of GNN\(_{s}(\cdot)\) is 1. It should be noted that we assume query samples are unlabeled, so the aggregation step is only performed on support samples. Then to produce an embedding for the \(i \)-th prototype node in the next layer (i.e., the prototype-level graph), we perform aggregation with its \(K \) graph samples as follows. We first extract its corresponding \(K \) entries from \(G_s \) and \(H_s \) to form \(G^t_s \in \mathbb{R}^{K \times 1} \) and \(H^t_s \in \mathbb{R}^{K \times D_t} \). Then a softmax function is applied to normalize the weights:

\[
Z^t_p(i) = \text{softmax}(G^t_s)\top H^t_s,
\]

where \(Z^t_p(i) \in \mathbb{R}^{1 \times D_s} \) denotes the embedding of the \(i \)-th prototype (i.e., the \(i \)-th row vector of \(Z^t_p \in \mathbb{R}^{N(P+1) \times D_s} \) of all prototypes). These prototype embeddings will be used as the input node embeddings of the next layer that consists of \(N(P+1) \) prototype nodes (since each task has \(N \) classes).

Prototype-level Graph

To effectively capture task correlations among prototypes, we propose to build a prototype-level graph that consists of all prototypes in \(P+1 \) tasks. Since the correlations in the sample-level graph have been aggregated into the prototype embeddings, we can connect these prototype nodes to propagate the information of prototypes from different tasks. In this way, the task correlations can be captured among prototypes via message propagation.

Similarly, with \(P+1 \) tasks, we have \(M_p = N(P+1) \) prototypes in total. Then a prototype-level graph is built with prototypes as nodes, and the input node embeddings \(Z^t_p \in \mathbb{R}^{M_p \times D_s} \) are obtained via the aggregation process of the sample-level graph. To generate the adjacency matrix of this graph, we utilize label information and node embeddings in the same way as the sample-level graph to learn an adjacency matrix: \(A_p = A'_p + A''_p \). Similarly to the sample-level graph, \(A'_p \) and \(A''_p \) are learned from embeddings and label information of prototypes, respectively. With the learned \(A_p \), we also apply another two GNN models GNN\(_{h}^{(p)}\) and GNN\(_{q}^{(p)}\) to perform message propagation and aggregate sample nodes, respectively, in the same way as the sample-level graph. Specifically, the output embeddings \(H^t_p \in \mathbb{R}^{M_p \times D_p} \) of this layer are aggregated into their corresponding task nodes to obtain the final input embeddings \(Z^t_i \in \mathbb{R}^{(P+1) \times D_p} \) for the next layer, where \(D_p \) is the output dimension size of the prototype-level graph.

Task-level Graph

Finally, to explicitly characterize task correlations, we build a task-level graph, which consists of \(P+1 \) tasks as nodes. The task correlations are aggregated into each task node from the previous layer, and messages are propagated among different tasks in this layer. In this way, the task correlations can be captured and facilitate the transfer of meta-knowledge.

With the input task embeddings \(Z^t_i \in \mathbb{R}^{(P+1) \times D_p} \) obtained from the previous layer, we first learn an adjacency matrix \(A_t \) based on the task node embeddings: \(A_t(i,j) = \cos(Z^t_i(i), Z^t_j(j)) \), where \(Z^t_i(i) \in \mathbb{R}^{D_p} \) denotes the \(i \)-th row vector of \(Z^t_i \). Then the message propagation is performed with another GNN model: \(H_t = \text{GNN}_t^{(t)}(Z_t, A_t) \), where \(H_t \in \mathbb{R}^{(P+1) \times D_t} \) denotes the output task node embeddings. \(D_t \) is the output dimension size of the task-level graph.

So far, we have constructed the hierarchical task graph that consists of three layers. In this way, the task correlations are captured at different granularities and facilitate the transfer of meta-knowledge among all tasks.

3.3 Task-specific Few-shot Classification

In this part, the process of task-specific few-shot classification is described in detail. Now from the hierarchical task graph, we have obtained comprehensive embeddings for graph samples, prototypes, and tasks. These embeddings are learned via the correlations among tasks, which can provide more useful knowledge for classification. Therefore, we propose to combine the learned embeddings in each task to conduct task-specific classification for query graph samples. In this way, the unique information of each task can be incorporated into the classification process for better performance.

Specifically, we combine prototype and task embeddings with graph sample embeddings to conduct classification, where all three types of embeddings are learned from the hierarchical task graph. The embeddings matrices are \(H_s \in \mathbb{R}^{M_s \times D_s} \), \(H_p \in \mathbb{R}^{M_p \times D_p} \), and \(H_t \in \mathbb{R}^{(P+1) \times D_t} \) for graph samples, prototypes, and tasks, respectively, where \(M_s = (NK + Q)(P+1) \) and \(M_p = N(P+1) \). It is noteworthy that during each training step, query samples in all \(P+1 \) tasks will be classified for optimization, while during test, only query samples in the target task will be classified. Here we denote \(s^k \) and \(p^k \) as the embeddings of the \(i \)-th query sample and the \(j \)-th prototype in the \(k \)-th task, respectively. \(t^k \) denotes the representation of the \(k \)-th task. To incorporate information from prototypes and tasks into the classification process, we classify graph samples based on embeddings of their corresponding prototypes and tasks. In particular, we propose to utilize the projected dot product to calculate the classification scores:

\[
z_{i,j}^k = (s^k)\top W(p^k \circ t^k),
\]

where \(z_{i,j}^k \) denotes the classification score of the \(i \)-th graph sample with respect to the \(j \)-th class in the \(k \)-th task and \(W \in \mathbb{R}^{D_s \times D_p} \) is a trainable parameter matrix. \(\circ \) denotes the element-wise production. After the normalization \(\bar{z}_{i,j} = \exp(z_{i,j}^k)/\sum_{j=1}^{N} \exp(z_{i,j}^k) \), the classification loss is

\[
\mathcal{L}_{\text{class}} = -\frac{1}{(P+1)Q} \sum_{k=1}^{P+1} \sum_{i=1}^{N} \sum_{j=1}^{Q} y_{i,j}^k \log \bar{z}_{i,j}^k,
\]

where \(y_{i,j}^k \in \{0, 1\} \) denotes whether the \(i \)-th sample belongs to the \(j \)-th class in the \(k \)-th task. \(\bar{z}_{i,j}^k \) represents the corresponding classification score. Combined with the loss produced during the sampling process, the final loss becomes

\[
\mathcal{L} = \mathcal{L}_{\text{class}} + \alpha \mathcal{L}_{\text{sample}},
\]

where \(\alpha \) is a weight hyper-parameter for \(\mathcal{L}_{\text{sample}} \). After training, the same process is conducted on target tasks for evaluation. However, the support tasks are also sampled from \(Y_f \), since \(Y_f \) is infeasible. Hence, the only difference between training and evaluation is that the current task is from \(Y_f \).
Table 1. Results of all methods with different few-shot settings on four benchmark datasets. The best results are shown in bold.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Letter-high</th>
<th>ENZYMES</th>
<th>TRIANGLES</th>
<th>Reddit-12K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5-shot</td>
<td>10-shot</td>
<td>5-shot</td>
<td>10-shot</td>
</tr>
<tr>
<td>WL</td>
<td>65.27 ± 7.67</td>
<td>68.39 ± 4.69</td>
<td>55.78 ± 4.72</td>
<td>58.37 ± 3.84</td>
</tr>
<tr>
<td>Graphlet</td>
<td>33.78 ± 6.94</td>
<td>37.59 ± 4.60</td>
<td>53.17 ± 5.92</td>
<td>55.30 ± 3.78</td>
</tr>
<tr>
<td>PN</td>
<td>68.48 ± 3.28</td>
<td>72.60 ± 3.01</td>
<td>53.72 ± 4.37</td>
<td>57.79 ± 3.95</td>
</tr>
<tr>
<td>Relation</td>
<td>51.14 ± 4.21</td>
<td>52.54 ± 4.04</td>
<td>41.39 ± 4.73</td>
<td>43.27 ± 3.49</td>
</tr>
<tr>
<td>GSM</td>
<td>69.91 ± 5.90</td>
<td>73.28 ± 3.64</td>
<td>55.42 ± 5.74</td>
<td>60.64 ± 3.84</td>
</tr>
<tr>
<td>AS-MAML</td>
<td>69.44 ± 0.75</td>
<td>75.93 ± 0.53</td>
<td>49.83 ± 1.12</td>
<td>52.30 ± 1.43</td>
</tr>
<tr>
<td>FAITH</td>
<td>71.55 ± 3.58</td>
<td>76.65 ± 3.26</td>
<td>57.89 ± 4.65</td>
<td>62.16 ± 4.11</td>
</tr>
</tbody>
</table>

Table 2. Detailed statistics of used datasets.
5 Related Work

5.1 Graph Classification

The task of graph classification aims at assigning a class label from a given label set to each unlabeled graph. Existing methods for graph classification can be broadly divided into two categories. The first category measures the similarity between graphs based on graph kernels for classification. Classic graph kernels include Graphlet [Shervashidze et al., 2009] and Weisfeiler-Lehman [Shervashidze et al., 2011]. The second category utilizes Graph Neural Networks (GNNs) [Kipf and Welling, 2017; Xu et al., 2019; Veličković et al., 2018; Bai et al., 2019; Xu et al., 2018] to learn discriminative embeddings for nodes via recursively passing the message from their neighbor nodes with a specific aggregation mechanism. Then the node embeddings are aggregated to obtain a global embedding for the graph. For example, SAGPool [Lee et al., 2019] proposes a self-attention pooling mechanism that considers both node features and graph topology. Graph U-net [Gao and Ji, 2019] designs an encoder-decoder model based on two inverse operations of pooling and unpooling.

5.2 Few-shot Learning

Few-shot learning aims at learning a good classification model for the classes that come with a limited amount of training samples [Ding et al., 2020; Zhang et al., 2019; Wang et al., 2021; Tan et al., 2022; Xiong et al., 2018]. Generally, there are two categories for few-shot learning: metric-based models and optimization-based models. The former type aims at learning an effective distance metric with a well-designed matching function to measure the distance between classes. Then the samples in the query set can be classified according to their distances to samples in the support set. One classic example is Matching Networks [Vinyals et al., 2016], which output predictions for query samples via the similarity between query sample and each support sample. The latter type of method optimizes the model parameters via gradient descent on few-shot samples such that the model can be quickly generalized to new classes. For instance, MAML [Finn et al., 2017] updates parameters with several gradient descent steps in each task for fast adaptations to new data, while LSTM-based meta-learner [Ravi and Larochelle, 2016] learns different step sizes for more effective model optimization.

6 Conclusion

In this paper, we study the problem of few-shot graph classification caused by insufficient labeled graphs. We propose a novel few-shot framework FAITH that builds a hierarchical task graph to capture task correlations among meta-training tasks and facilitates the transfer of meta-knowledge to the target task. To address the associated challenges resulting from constructing the task graph, we propose to utilize a loss-based sampling strategy to sample tasks with stronger correlations for the task graph. We further leverage learned task embeddings to incorporate task-specific information into the classification process. Extensive experimental results on four widely used graph datasets demonstrate the superiority of FAITH over other state-of-the-art baselines on few-shot graph classification. Moreover, the ablation study also verifies the effectiveness of each module in FAITH.
Acknowledgments
Song Wang, Yushun Dong, and Jundong Li are partially supported by the National Science Foundation (NSF) under grant #2006844.

References

