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Abstract
It is well established that graph neural networks
(GNNs) can be interpreted and designed from the
perspective of optimization objective. With this
clear optimization objective, the deduced GNNs ar-
chitecture has sound theoretical foundation, which
is able to flexibly remedy the weakness of GNNs.
However, this optimization objective is only proved
for GNNs with single-relational graph. Can we in-
fer a new type of GNNs for multi-relational graphs
by extending this optimization objective, so as to
simultaneously solve the issues in previous multi-
relational GNNs, e.g., over-parameterization? In
this paper, we propose a novel ensemble multi-
relational GNNs by designing an ensemble multi-
relational (EMR) optimization objective. This
EMR optimization objective is able to derive an it-
erative updating rule, which can be formalized as
an ensemble message passing (EnMP) layer with
multi-relations. We further analyze the nice prop-
erties of EnMP layer, e.g., the relationship with
multi-relational personalized PageRank. Finally, a
new multi-relational GNNs which well alleviate the
over-smoothing and over-parameterization issues
are proposed. Extensive experiments conducted on
four benchmark datasets well demonstrate the ef-
fectiveness of the proposed model.1

1 Introduction
Graph neural networks (GNNs), which have been applied
to a large range of downstream tasks, have displayed supe-
rior performance on dealing with graph data within recent
years, e.g., biological networks [Huang et al., 2020] and
knowledge graphs [Yu et al., 2021]. Generally, the current
GNN architecture follows the message passing frameworks,
where the propagation process is the key component. For ex-
ample, GCN [Kipf and Welling, 2016] directly aggregates
and propagates transformed features along the topology at
each layer. PPNP [Klicpera et al., 2018] aggregates both
of the transformed features and the original features at each

∗Corresponding author.
1Code and appendix are at https://github.com/tuzibupt/EMR.

layer. JKNet [Xu et al., 2018] selectively combines the aggre-
gated messages from different layers via concatenation/max-
pooling/attention operations.

Recent studies [Zhu et al., 2021; Ma et al., 2021] have
proven that despite different propagation processes of vari-
ous GNNs, they usually can be fundamentally unified as an
optimization objective containing a feature fitting term Ofit
and a graph regularization term Oreg as follows:

O = min
Z
{ζ ∥F1Z − F2H∥2F︸              ︷︷              ︸

Ofit

+ ξ tr
(
ZT L̃Z

)︸        ︷︷        ︸
Oreg

}, (1)

where H is the original input feature and L is the graph Lapla-
cian matrix encoding the graph structure. Z is the propagated
representation, and F1, F2 are defined as arbitrary graph con-
volutional kernels and usually set as I. This optimization ob-
jective reveals a mathematical guideline that essentially gov-
erns the propagation mechanism, and opens a new path to
design novel GNNs. That is, such clear optimization ob-
jective is able to derive the corresponding propagation pro-
cess, further making the designed GNN architecture more in-
terpretable and reliable [Zhu et al., 2021; Liu et al., 2021;
Yang et al., 2021]. For example, [Zhu et al., 2021] replaces
F1 and F2 with high-pass kernel and infers new high-pass
GNNs; [Liu et al., 2021] applies l1 norm to Oreg term and
infers Elastic GNNs.

Despite the great potential of this optimization objective
on designing GNNs, it is well recognized that it is only pro-
posed for traditional homogeneous graphs, rather than the
multi-relational graphs with multiple types of relations. How-
ever, in real-world applications, multi-relational graphs tend
to be more general and pervasive in many areas. For instance,
the various types of chemical bonds in molecular graphs,
and the diverse relationships between people in social net-
works. Therefore, it is greatly desired to design GNN mod-
els that are able to adapt to multi-relational graphs. Some
literatures have been devoted to the multi-relational GNNs,
which can be roughly categorized into feature mapping based
approaches [Schlichtkrull et al., 2018] and learning relation
embeddings based approaches [Vashishth et al., 2019]. How-
ever, these methods usually design the propagation process
heuristically without a clear and an explicit mathematical ob-
jective. Despite they improve the performance, they still suf-
fer from the problems of over-parameterization [Vashishth et
al., 2019] and over-smoothing [Oono and Suzuki, 2019].
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“Can we remedy the original optimization objective to de-
sign a new type of multi-relational GNNs that is more reliable
with solid objective, and at the same time, alleviates the weak-
ness of current multi-relational GNNs, e.g., over-smoothing
and over-parameterization?”

Nevertheless, it is technically challenging to achieve this
goal. Firstly, how to incorporate multiple relations into an op-
timization objective. Different relations play different roles,
and we need to distinguish them in this optimization objec-
tive as well. Secondly, to satisfy the above requirements, it is
inevitable that the optimization objective will become more
complex, maybe with more constrains. How to derive the un-
derlying message passing mechanism by optimizing the ob-
jective is another challenge. Thirdly, even with the message
passing mechanism, it is highly desired that how to integrate
it into deep neural networks via simple operations without in-
troducing excessive parameters.

In this paper, we propose a novel multi-relational GNNs
by designing an ensemble optimization objective. In particu-
lar, our proposed ensemble optimization objective consists of
a feature fitting term and an ensemble multi-relational graph
regularization (EMR) term. Then we derive an iterative opti-
mization algorithm with this ensemble optimization objective
to learn the node representation and the relational coefficients
as well. We further show that this iterative optimization al-
gorithm can be formalized as an ensemble message passing
layer, which has a nice relationship with multi-relational per-
sonalized PageRank and covers some existing propagation
processes. Finally, we integrate the derived ensemble mes-
sage passing layer into deep neural networks by decoupling
the feature transformation and message passing process, and
a novel family of multi-relational GNN architectures is devel-
oped. Our key contributions can be summarized as follows:

• We make the first effort on how to derive multi-relational
GNNs from the perspective of optimization framework,
so as to enable the derived multi-relational GNNs more
reliable. This research holds great potential for opening
new path to design multi-relational GNNs.

• We propose a new optimization objective for multi-
relational graphs, and we derive a novel ensemble mes-
sage passing (EnMP) layer. A new family of multi-
relational GNNs is then proposed in a decoupled way.

• We build the relationships between our proposed EnMP
layer with multi-relational personalized PageRank, and
some current message passing layers. Moreover, our
proposed multi-relational GNNs can well alleviate the
over-smoothing and over-parameterazion issues.

• Extensive experiments are conducted, which compre-
hensively demonstrate the effectiveness of our proposed
multi-relational GNNs.

2 Related Work
Graph Neural Networks. The dominant paradigms of
GNNs can be generally summarized into two branches:
spectral-based GNNs [Defferrard et al., 2016; Klicpera et al.,
2018] and spatial-based GNNs [Gilmer et al., 2017; Klicpera

et al., 2018]. Various of representative GNNs have been pro-
posed by designing different information aggregation and up-
date strategies along topologies, e.g., [Gilmer et al., 2017;
Klicpera et al., 2018]. Recent works [Zhu et al., 2021;
Ma et al., 2021] have explore the intrinsically unified opti-
mization framework behind existing GNNs.
Multi-relational Graph Neural Networks. The core idea of
multi-relational GNNs [Schlichtkrull et al., 2018; Vashishth
et al., 2019; Thanapalasingam et al., 2021] is to encode rela-
tional graph structure information into low-dimensional node
or relation embeddings. As a representative relational GNNs,
RGCN [Schlichtkrull et al., 2018] designs a specific convolu-
tion for each relation, and then the convolution results under
all relations are aggregated, these excess parameters gener-
ated are completely learned in an end-to-end manner. An-
other line of literature [Ji et al., 2021; Wang et al., 2019;
Fu et al., 2020; Yun et al., 2019] considers the heterogeneity
of edges and nodes to construct meta-paths, then aggregate
messages from different meta-path based neighbors.

3 Proposed Method
Notations. Consider a multi-relational graph G = (V,E,R)
with nodes vi ∈ V and labeled edges (relations)

(
vi, r, v j

)
∈ E

, where r ∈ R is a relation type. Graph structure Gr under re-
lation r can be described by the adjacency matrix Ar ∈ Rn×n,
where Ar

i, j = 1 if there is an edge between nodes i and j un-
der relation r, otherwise 0. The diagonal degree matrix is de-
noted as Dr = diag

(
dr

1, · · · , d
r
n

)
, where dr

j =
∑

j Ar
i, j. We use

Ãr = Ar+I to represent the adjacency matrix with added self-
loop and D̃r = Dr + I. Then the normalized adjacency matrix
is ˆ̃Ar =

(
D̃r

)−1/2
Ãr

(
D̃r

)−1/2
. Correspondingly, L̃r = I − ˆ̃Ar is

the normalized symmetric positive semi-definite graph Lapla-
cian matrix of relation r.

3.1 Ensemble Optimization Framework
Given a multi-relational graph, one basic requirement is that
the learned representation Z should capture the homophily
property in the graph with relation r, i.e., the representations
Zi and Z j should be similar if nodes i and j are connected by
relation r. We can achieve the above goal by minimizing to
the following term with respect to Z:

tr
(
ZT L̃rZ

)
=

n∑
i, j

ˆ̃Ar
i, j

∥∥∥Zi − Z j

∥∥∥2
, (2)

where ˆ̃Ar
i, j represents the node i and node j are connected

under relation r.
With all the R relations, we need to simultaneously capture

the graph signal smoothness. Moreover, consider that differ-
ent relations may play different roles, we need to distinguish
their importance as well, which can be modelled as an ensem-
ble multi-relational graph regularization as follows:

Oe-reg =


λ1

R∑
r=1

µr

n∑
i, j

ˆ̃Ar
i, j

∥∥∥Zi − Z j

∥∥∥2
+ λ2 ∥µ∥

2
2 ,

s.t.
R∑

r=1

µr = 1, µr ≥ 0,∀r = 1, 2, . . . ,R,

(3)
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where λ1 and λ2 are non-negative trade-off parameters. µr ≥ 0
is the weight corresponding to relation r, and the sum of
weights is 1 for constraining the search space of possible
graph Laplacians. The regularization term ∥µ∥22 is to avoid
the parameter overfitting to only one relation [Geng et al.,
2012].

In addition to the topological constraint by Oe-reg term, we
should also build the relationship between the learned repre-
sentation Z with the node features H. Therefore, there is a
feature fitting term: Ofit = ∥Z −H∥2F , which makes Z encode
information from the original feature H, so as to alleviate the
over-smoothing problem. Finally, our proposed optimization
framework for multi-relational graphs, which includes con-
straints on features and topology, is as follows:

arg min
Z,µ
∥Z −H∥2F︸     ︷︷     ︸

Ofit

+ λ1

R∑
r=1

µrtr
(
Z⊤L̃rZ

)
+ λ2 ∥µ∥

2
2︸                                 ︷︷                                 ︸

Oe-reg

,

s.t.
R∑

r=1

µr = 1, µr ≥ 0,∀r = 1, 2, . . . ,R. (4)

By minimizing the above objective function, the opti-
mal representation Z not only captures the smoothness be-
tween nodes, but also preserves the personalized information.
Moreover, the optimal relational coefficients µ can be derived,
reflecting the importance of different relations.

3.2 Ensemble Message Passing Mechanism
It is nontrivial to directly optimize Z and µ together because
Eq.(4) is not convex w.r.t. (Z,µ) jointly. Fortunately, an iter-
ative optimization strategy can be adopted, i.e., i.) first opti-
mizing Eq.(4) w.r.t. µ with a fixed Z, resulting in the solution
of relational coefficients µ; ii.) then solving Eq.(4) w.r.t. Z
with µ taking the value solved in the last iteration. We will
show that performing the above two steps corresponds to one
ensemble message passing layer in our relational GNNs.

Update Relational Coefficients
We update relational parameters µ by fixing Z, then the ob-
jective function (4) w.r.t. µ is reduced to:

arg min
µ

R∑
r=1

µr sr +
λ2

λ1
∥µ∥22 ,

s.t.
R∑

r=1

µr = 1,µ ≥ 0,∀r = 1, 2, . . . ,R, (5)

where sr = tr
(
Z⊤L̃rZ

)
.

(1) When λ2
λ1
= 0, the coefficient might concentrate on one

certain relation, i.e., µ j = 1 if s j = minr=1,...,R sr, and µ j = 0
otherwise. When λ2

λ1
= +∞, each relation will be assigned

equal coefficient, i.e., µr =
1
R

[Geng et al., 2012].
(2) Otherwise, theoretically, Eq.(5) can be regarded

as a convex function of µ with the constraint in a
standard simplex [Chen and Ye, 2011], i.e., ∆ ={
µ ∈ RR :

∑R
r=1 µr = 1,µ ≽ 0

}
. Therefore, the mirror entropic

descent algorithm (EMDA) [Beck and Teboulle, 2003] can
be used to optimize µ, where the update process is described
by Algorithm 1. The objective f (·) should be a convex Lips-
chitz continuous function with Lipschitz constant ϕ for a fixed
given norm. Here, we derive this Lipschitz constant from
∥∇ f (µ)∥1 ≤ 2λ2

λ1
+ ∥s∥1 = ϕ, where s = {s1, . . . , sR}.

Update Node Representation
Then we update node representation Z with fixing µ, where
the objective function Eq. (4) w.r.t. Z is reduced to:

arg min
Z
∥Z −H∥2F + λ1

R∑
r=1

µrtr
(
Z⊤L̃rZ

)
. (6)

We can set the derivative of Eq. (6) with respect to Z to zero
and get the optimal Z as:

∂
{
∥Z −H∥2F + λ1

∑R
r=1 µrtr

(
Z⊤L̃rZ

)}
∂Z

= 0 (7)

⇒ Z −H + λ1

R∑
r=1

µrL̃rZ = 0. (8)

Since the eigenvalue of I + λ1
∑R

r=1 µrL̃r is positive, it has
an inverse matrix, and we can obtain the closed solution as
follows:

Z =

I + λ1

R∑
r=1

µrL̃r

−1

H

=
1

1 + λ1

I − λ1

1 + λ1

R∑
r=1

µr
ˆ̃Ar

−1

H. (9)

However, obtaining the inverse of matrix will cause a com-
putational complexity and memory requirement of O

(
n2
)
,

which is inoperable in large-scale graphs. Therefore, we can
approximate Eq.(9) using the following iterative update rule:

Z(k+1) =
1

(1 + λ1)
H +

λ1

(1 + λ1)

 R∑
r=1

µ(k)
r

ˆ̃Ar

Z(k). (10)

where k is the iteration number.

Ensemble Message Passing Layer (EnMP layer)
Now with the node representation Z and the relation coeffi-
cient µ, we can propose our ensemble message passing layer,
consisting of the following two steps: (1) relational coeffi-
cient learning step (RCL step), i.e., update the relational co-
efficients µ according to Algorithm 1; (2) propagation step
(Pro step), i.e., update the node representation Z according
to Eq.(10). The pseudocode of EnMP layer is shown in ap-
pendix A. We will show some properties of our proposed
EnMP layer.
Remark 1 (Relationship with Multi-Relational/Path Person-
alized PageRank). Given a realtion r, we have the relation
based probability transition matrix Ar

rw = Ar(Dr)−1. Then,
the single relation based PageRank matrix is calculated via:

Πr
pr = Ar

rwΠ
r
pr. (11)
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Algorithm 1 Relational Coefficients Learning

Input: Candidate Laplacians
{
L̃1, · · · , L̃R

}
, the embedding

matrix Z, the Lipschitz constant ϕ, the tradeoff param-
eters λ1, λ2.

Output: Relational coefficients µ.
1: Initialization: µ = [ 1

R ,
1
R , · · · ,

1
R ]

2: for r = 1 to R do
3: sr = tr

(
Z⊤L̃rZ

)
4: repeat
5: Tt ←

√
2lnR
tϕ2 ,

6: f ′
(
µt

r
)
←

2λ2
λ1
µt

r + sr,

7: µt+1
r ←

µt
r exp[−Tt f ′(µt

r)]∑R
r=1 µ

t
r exp[−Tt f ′(µt

r)] ,
8: until Convergence
9: end for

10: return µ

Considering we have R relations, i.e., r = 1, 2, . . . ,R, the
weights of each relation are {µ1, . . . , µR}, according to [Lee et
al., 2013; Ji et al., 2021], we can define the multiple relations
based PageRank matrix:

Πpr =

 R∑
r=1

µrAr
rw

Πr
pr. (12)

According to [Klicpera et al., 2018], the multi-relational per-
sonalized PageRank matrix can be defined:

Πppr = α

In − (1 − α)

 R∑
r=1

µr
ˆ̃Ar

−1

, (13)

where ˆ̃Ar is a normalized adjacency matrix with self-loops, In
represents unit matrix, α ∈ (0, 1] is teleport (or restart) prob-
ability. If α = 1

(1+λ1) , the closed-form solution in Eq.(9) is to
propagate features via multi-relational personalized PageR-
ank scheme.
Remark 2 (Relationship with APPNP/GCN). if λ2 = +∞,
the solution in Eq.(5) is µ = [ 1

R ,
1
R , · · · ,

1
R ], i.e., each re-

laiton is assigned equal coefficient, then the ensemble multi-
relational graph

∑R
r=1 µ

(k)
r

ˆ̃Ar reduces to a normalized adja-
cency matrix 1

R
∑R

r=1
ˆ̃Ar averaged over all relations. The pro-

posed message passing scheme reduces to:

Z(k+1) =
1

(1 + λ1)
H +

λ1

(1 + λ1)
1
R

R∑
r=1

ˆ̃ArZ(k), (14)

if λ1 =
1
α
− 1, it recovers the message passing in APPNP on

the averaged relational graph:

Z(k+1) = αH + (1 − α)
1
R

R∑
r=1

ˆ̃ArZ(k), (15)

if λ1 = +∞, it recovers the message passing in GCN on the
averaged relational graph:

Z(k+1) =
1
R

R∑
r=1

ˆ̃ArZ(k). (16)

Figure 1: Model architecture.

Datasets Nodes Node
Types Edges Edge

Types Target Classes

MUTAG 23,644 1 74,227 23 molecule 2
BGS 333,845 1 916,199 103 rock 2
DBLP 26,128 4 239,566 6 author 4
ACM 10,942 4 547,872 8 paper 3

Table 1: Statistics of multi-relational datasets.

3.3 Ensemble Multi-Relational GNNs
Now we propose our ensemble multi-relational graph neu-
ral networks (EMR-GNN) with the EnMP layer. Similar as
[Klicpera et al., 2018], we employ the decoupled style archi-
tecture, i.e., the feature transformation and the message pass-
ing layer are separated. The overall framework is shown in
Figure 1, and the forward propagation process is as follows:

Ypre = gθ
(
EnMP(K) ( f (X; W) ,R, λ1, λ2)

)
, (17)

where X is the input feature of nodes, and f (X; W) denotes
the MLPs or linear layers (parameterized by W) which is used
to feature extraction. EnMP(K) represents our designed en-
semble relational message passing layer with K layers, where
R is the number of relations, and λ1, λ2 are hyperparame-
ters in our message passing layer. gθ(·) is MLPs as clas-
sifier with the learnable parameters θ. The training loss is:
ℓ(W, θ) ≜ D

(
y∗i , ŷi

)
, where D is a discriminator function of

cross-entropy, y∗i and ŷi are the predicted and ground-truth la-
bels of node i, respectively. Backpropagation manner is used
to optimize parameters in MLPs, i.e., W and θ, and the pa-
rameters in our EnMP layers are optimized during the for-
ward propagation. We can see that EMR-GNN is built on a
clear optimization objective. Besides, EMR-GNN also has
the following two advantages:
• As analyzed by Remark 1, our proposed EnMP can keep

the original information of the nodes with a teleport (or
restart) probability, thereby alleviating over-smoothing.
• For each relation, there is a parameterized relation-

specific weight matrix or parameterized relation encoder
used in the traditional RGCN [Vashishth et al., 2019;
Schlichtkrull et al., 2018]. While in our EnMP, only one
learnable weight coefficient is associated with a relation,
greatly alleviating the over-parameterization problem.

4 Experiment
4.1 Experimental Settings
Datasets. The following four real-world heterogeneous
datasets in various fields are utilized and can be divided
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Dataset DBLP ACM MUTAG BGS
Metric Acc (%) Recall (%) Acc (%) Recall (%) Acc (%) Recall (%) Acc (%) Recall (%)
GCN 90.39±0.38 89.49±0.52 89.58±1.47 89.47±1.49 72.35±2.17 63.28±2.95 85.86±1.96 80.21±2.21
GAT 91.97±0.40 91.25±0.58 88.99±1.58 88.89±1.56 70.74±2.13 63.01±3.79 88.97±3.17 86.13±4.96
HAN 91.73±0.61 91.15±0.72 88.51±0.35 88.50±0.30 - - - -
RGCN 90.08±0.60 88.56±0.76 89.79±0.62 89.71±0.59 71.32±2.11 61.97±3.52 85.17±5.87 81.58±7.94
e-RGCN 91.77±0.90 91.18±1.02 83.00±1.04 84.03±0.75 69.41±2.84 67.57±8.04 82.41±1.96 84.51±3.38
EMR-GNN 93.54±0.50 92.39±0.78 90.87±0.11 90.84±0.13 74.26±0.78 64.19±1.08 89.31±4.12 86.39± 5.33

Table 2: The mean and standard deviation of classification accuracy and recall over 10 different runs on four datasets.

GCN GAT HAN RGCN e-RGCN EMR-GNN
O
(
Kd2

)
O
(
2KNd2

)
O
(
2K (|R|N + 1) d2 + 2Kd

)
O
(
BKd2 + BK|R|

)
O
(
B(K − 1)d2 + |R|d + B(K − 1)|R|

)
O
(
2d2 + K|R|

)
Table 3: Comparison of the number of parameters. Here, K denotes the number of layers in the model, d is the embedding dimension, B
represents the number of bases, |R| indicates the total number of relations in the graph and N is the number of heads of attention-based models.

into two categories: i) the node type and edge type are
both heterogeneous (DBLP [Fu et al., 2020], ACM [Lv
et al., 2021]). ii) the node type is homogeneous but the
edge type is heterogeneous (MUTAG [Schlichtkrull et al.,
2018], BGS [Schlichtkrull et al., 2018]). The statistics of the
datasets can be found in Table 1. The basic information about
datasets is summarized in appendix B.1.

Baselines. To test the performance of the proposed EMR-
GNN, we compare it with five state-of-the-art base-
lines. Among them, GCN [Kipf and Welling, 2016] and
GAT [Veličković et al., 2017] as two popular approaches
are included. In addition, we compare with the heteroge-
neous graph model HAN [Wang et al., 2019], since HAN
can also employ multiple relations. Two models that are
specially designed for multi-relational graphs are compared,
i.e., RGCN [Schlichtkrull et al., 2018] and e-RGCN [Thana-
palasingam et al., 2021].

Parameter settings. We implement EMR-GNN based on
Pytorch.2 For f (X; W) and gθ(·), we choose one layer MLP
for DBLP and ACM, and linear layers for MUTAG and BGS.
We conduct 10 runs on all datasets with the fixed train-
ing/validation/test split for all experiments. More implemen-
tation details can be seen in appendix B.3.

4.2 Node Classification Results
Table 2 summarizes the performances of EMR-GNN and sev-
eral baselines on semi-supervised node classification task.
Since HAN’s code uses the heterogeneity of nodes to design
meta-paths, we do not reproduce the results of HAN on ho-
mogeneous dataset (MUTAG, BGS) with only one type of
nodes. We use accuracy (Acc) and recall metrics for evalua-
tion, and report the mean and standard deviation of classifica-
tion accuracy and recall. We have the following observations:
(1) Compared with all baselines, the proposed EMR-GNN
generally achieves the best performance across all datasets
on seven of the eight metrics, which demonstrates the effec-
tiveness of our proposed model. e-RGCN has a higher recall

2https://pytorch.org/

but a lower accuracy on MUTAG, which may be caused by
overfitting. (2) Meanwhile, the number of parameters of our
model and other baselines are shown in Table 3. We can see
that EMR-GNN is more parameter efficient than all baselines,
i.e., O

(
2d2 + K|R|

)
, but achieves maximum relative improve-

ments of 4.14% than RGCN on BGS. It means that EMR-
GNN largely overcomes the over-parameterization in previ-
ous multi-relational GNNs.

4.3 Model Analysis
Alleviating over-smoothing problem. As mentioned be-
fore, EMR-GNN is able to alleviate over-smoothing issue.
Here, we take one typical single-relation GCN (GAT) and
one representative multi-relational GCN (RGCN) as base-
lines to test their performance with different propagation
depths, where the results are shown in Figure.3. We have
the following observations: (1) Our model significantly alle-
viates the over-smoothing problem, since there is generally
no performance degradation when the depth increases. This
benefits from the adjustable factor λ1 in EMR-GNN, which
flexible controls the influence of node feature information. In
contrast, the performance of RGCN and GAT drops seriously
with increasing depth, implying that these models suffer from
the over-smoothing problem. (2) RGCN needs huge storage
cost, making it difficult to stack multiple layers. Cuda out
of memory occurs when the propagation depth increases, i.e.,
DBLP for more than 16 layers, and ACM can merely stack 8
layers. This is not available for capturing long-range depen-
dencies.

Datasets Method Size of training set
10% 15% 20% 25%

DBLP RGCN 0.5381 0.6388 0.7515 0.7721
EMR-GNN 0.8768 0.9109 0.9128 0.9364

ACM RGCN 0.7492 0.8136 0.8278 0.8344
EMR-GNN 0.8489 0.8654 0.8739 0.8753

Table 4: Classification accuracy w.r.t. different training set.
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(a) GCN (SC=0.6196) (b) GAT (SC=0.6351) (c) RGCN (SC=0.6093) (d) EMR-GNN (SC=0.7799)

Figure 2: Visualization of the learned node embeddings on DBLP dataset.

(a) DBLP (b) ACM

Figure 3: Analysis of propagation layers. Missing value in red line
means CUDA is out of memory.

Alleviating over-parameterization problem. To further
illustrate the advantages of alleviating over-parameterization,
we verify EMR-GNN with small-scale training samples. We
conduct experiments on EMR-GNN and RGCN using two
datasets. We only select a small part of nodes from original
training samples as the new training samples. As can be seen
in Table 4, EMR-GNN consistently outperforms RGCN with
different training sample ratios, which again validates the su-
periority of the proposed method. One reason is that a limited
number of parameters in EMR-GNN can be fully trained with
few samples. In contrast, RGCN with excess parameters re-
quires large-scale training samples as the number of relations
increases. The time complexity is analyzed in appendix C.

Analysis of relational coefficients. Besides the perfor-
mance, we further show that EMR-GNN can produce rea-
sonable relational coefficients. To verify the ability of rela-
tional coefficients learning, taking ACM dataset as example,
we evaluate the classification performance under each single
relation. The classification accuracy and the corresponding
relational coefficient value are reported in Figure 4. We can
see that basically, the relation which achieves better accuracy
is associated with a larger coefficient. Moreover, we compute
the pearson correlation coefficient between the accuracy of a
single relation and its relational coefficient, which is 0.7918,
well demonstrating that they are positively correlated.

Visualization. For a more intuitive comparison, we con-
duct the task of visualization on DBLP dataset. We plot the
output embedding on the last layer of EMR-GNN and three

Figure 4: Accuracy under each single relation and corresponding
relational coefficient.

baselines (GCN, GAT and RGCN) using t-SNE [Van der
Maaten and Hinton, 2008]. All nodes in Figure 2 are col-
ored by the ground truth labels. It can be observed that EMR-
GNN performs best, since the significant boundaries between
nodes of different colors, and the relatively dense distribu-
tion of nodes with the same color. However, the nodes with
different labels of GCN and RGCN are mixed together. In
addition, we also calculate the silhouette coefficients (SC) of
the classification results of different models, and EMR-GNN
achieves the best score, furthering indicating that the learned
representations of EMR-GNN have a clearer structure.

5 Conclusion
In this work, we study how to design multi-relational graph
neural networks from the perspective of optimization objec-
tive. We propose an ensemble optimization framework, and
derive a novel ensemble message passing layer. Then we
present the ensemble multi-relational GNNs (EMR-GNN),
which has nice relationship with multi-relational/path per-
sonalized PageRank and can recover some popular GNNs.
EMR-GNN not only is designed with clear objective func-
tion, but also can well alleviate over-smoothing and over-
parameterization issues. Extensive experiments demonstrate
the superior performance of EMR-GNN over the several
state-of-the-arts.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

2303



Acknowledgements
The research was supported in part by the National Natural
Science Foundation of China (Nos. 61802025, 61872836,
U1936104) and Meituan.

References
[Beck and Teboulle, 2003] Amir Beck and Marc Teboulle.

Mirror descent and nonlinear projected subgradient meth-
ods for convex optimization. Operations Research Letters,
31(3):167–175, 2003.

[Chen and Ye, 2011] Yunmei Chen and Xiaojing Ye. Pro-
jection onto a simplex. arXiv preprint arXiv:1101.6081,
2011.

[Defferrard et al., 2016] Michaël Defferrard, Xavier Bres-
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