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Abstract
We consider the problem Enum·IP of enumerating
prime implicants of Boolean functions represented
by decision decomposable negation normal form
(dec-DNNF) circuits. We study Enum·IP from dec-
DNNF within the framework of enumeration com-
plexity and prove that it is in OutputP, the class
of output polynomial enumeration problems, and
more precisely in IncP, the class of polynomial in-
cremental time enumeration problems. We then fo-
cus on two closely related, but seemingly harder,
enumeration problems where further restrictions
are put on the prime implicants to be generated. In
the first problem, one is only interested in prime
implicants representing subset-minimal abductive
explanations, a notion much investigated in AI for
more than thirty years. In the second problem,
the target is prime implicants representing suffi-
cient reasons, a recent yet important notion in the
emerging field of eXplainable AI, since they aim
to explain predictions achieved by machine learn-
ing classifiers. We provide evidence showing that
enumerating specific prime implicants correspond-
ing to subset-minimal abductive explanations or to
sufficient reasons is not in OutputP.

1 Introduction
Prime implicants are a key concept when dealing with
Boolean functions since the notion has been introduced seven
decades ago [Quine, 1952]. Within AI, prime implicants
(or the dual concept of prime implicates) have been consid-
ered for modeling and solving a number of problems, in-
cluding compiling knowledge [Reiter and de Kleer, 1987]
and generating explanations of various kinds. This is the
case in logic-based abductive reasoning (see e.g., [Selman
and Levesque, 1990; Eiter and Gottlob, 1995]), a form of
inference required in many applications when the available
knowledge base is incomplete (e.g., in medicine) and because
of such an incompleteness, it cannot alone explain the ob-
servations that are made about the state of the world. Ab-
duction gave rise to much research in AI for the past thirty
years, especially because it is closely connected to other
reasoning settings, including truth maintenance [de Kleer,

1986], assumption-based reasoning and closed-world reason-
ing (see e.g., [Marquis, 2000] for a survey). Formally, the
explanations one looks for are terms over a preset alphabet
(composed of the so-called abducible variables, e.g., rep-
resenting diseases) such that the manifestations that are re-
ported (e.g., some symptoms) are logical consequences of
the background knowledge when completed by such a term.
In order to avoid trivial explanations, one also asks those
terms to be consistent with the knowledge base. Explana-
tions that are the less demanding ones from a logical stand-
point (i.e., subset-minimal ones) can be characterized as spe-
cific prime implicants. More recently, deriving explanations
justifying why certain predictions have been made has ap-
peared as essential for ensuring trustworthy Machine Learn-
ing (ML) technologies [Miller, 2019; Molnar, 2019]. In
the research area of eXplainable AI (XAI), recent work has
shown how ML classifiers of various types (including black
boxes) can be associated with Boolean circuits (alias trans-
parent or “white” boxes), exhibiting the same input-output
behaviours [Narodytska et al., 2018; Shih et al., 2018a;
Shih et al., 2019]. Thanks to such mappings, XAI queries
about classifiers can be delegated to the corresponding cir-
cuits. The notion of sufficient reason for an instance given
a Boolean function f modeling a binary classifier has been
introduced in [Darwiche and Hirth, 2020]. Given an instance
a (a simply is an assignment, i.e., a vector of truth values
given to each of the n variables) such that f(a) = 1 (resp.
f(a) = 0), a sufficient reason for a is a subset-minimal par-
tial assignment a′ which is coherent with a (i.e., a and a′ give
the same values to the variables that are assigned in a′) and
which satisfies the property that for every extension a′′ of a′
we have f(a′′) = 1 (resp. f(a′′) = 0). The features assigned
in a′ (and the way they are assigned) can be viewed as ex-
plaining why a has been classified by f as a positive (or as a
negative) instance.

Whatever the way prime implicants are used, generating
them is in general a computationally demanding task, for at
least two reasons. On the one hand, deriving a single prime
implicant of a Boolean function represented by a proposi-
tional formula (or circuit) is NP-hard since such a formula
is satisfiable when it has a prime implicant, and it is valid
precisely when this prime implicant is the empty term. On
the other hand, a source of complexity is the number of prime
implicants that may prevent from computing them all. In-
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deed, it is well-known that the number of prime implicants
of a Boolean function can be exponential in the number of
variables of the function, and, for many representations of
the function, also exponential in the size of the representa-
tion (just consider the parity function as a matter of example).
In more detail, the number of prime implicants of a Boolean
function can be larger than the number of assignments satis-
fying the function [Dunham and Fridshal, 1959]; there also
exist families of Boolean functions over n variables having
Ω( 3n

n ) prime implicants [Chandra and Markowsky, 1978].
In this paper, we focus on the issue of enumerating prime

implicants of a Boolean function represented by a deci-
sion decomposable negation normal form circuit (alias a
Decision-DNNF circuit – dec-DNNF circuit for short). The
question is to determine whether such prime implicants can
be enumerated “efficiently”, which is obviously not the case
when the circuit considered is unconstrained (as explained
above, in such a case, computing a single prime implicant is
already hard). This question is important for all the problems
listed previously, when prime implicants represent explana-
tions: since they are typically too numerous to be computed
as a whole, it makes sense to derive them in an incremen-
tal way, with some performance guarantees in the generation;
this lets the user who asked for an explanation deciding what
to do after each derivation, namely to stop the enumeration
process since he/she is satisfied by the explanation that has
been provided, or alternatively to ask for a further explana-
tion.

The dec-DNNF language [Oztok and Darwiche, 2014;
Darwiche, 2001] and its subsets FBDD (free binary decision
diagrams) [Gergov and Meinel, 1994], OBDD (ordered bi-
nary decision diagrams) [Bryant, 1986] and even DT (the set
of all binary decision trees over Boolean variables, see e.g.,
[Wegener, 2000, Chapter 2]) appear at first sight as good can-
didates for representing the function in the perspective of enu-
merating “efficiently” its prime implicants. Indeed, they are
known as tractable representation languages (they support in
polynomial time many queries and transformations from the
so-called knowledge compilation map [Darwiche and Mar-
quis, 2002; Koriche et al., 2013]).

The main contribution of the paper is as follows. We
give a polynomial incremental time algorithm for enumer-
ating the prime implicants of a Boolean function f repre-
sented by a dec-DNNF circuit Σ. Given Σ and a positive
integer k, this algorithm returns k prime implicants of Σ in
O(poly(k + |Σ|)) time, or returns all prime implicants of
Σ if there are fewer than k. This shows that enumerating
prime implicants from dec-DNNF is in the enumeration com-
plexity class IncP [Strozecki, 2019]. We also provide ev-
idence showing that enumerating specific prime implicants
corresponding to subset-minimal abductive explanations or to
sufficient reasons is not in OutputP: on the one hand, com-
puting a single subset-minimal abductive explanation from
an OBDD circuit or a decision tree is NP-hard; on the other
hand, the existence of an output polynomial time algorithm
for enumerating sufficient reasons given an OBDD circuit or
a decision tree would lead to an output polynomial time al-
gorithm for enumerating the minimal transversals of a hy-

pergraph, thus answering a long-standing question related to
monotone dualization [Eiter et al., 2008].

The rest of the paper is organized as follows. We start with
some preliminaries (Section 2) where the language of dec-
DNNF circuits and the framework used to study enumera-
tion problems are presented. We formally define the problem
Enum·IP of enumerating prime implicants. Then in Section
3 we show that generating the set of all prime implicants
from a dec-DNNF circuit is feasible in output polynomial
time. From there, we show in Section 4 that Enum·IP from
dec-DNNF is in fact in IncP and point out a polynomial in-
cremental time enumeration algorithm. Finally, in Section 5
we focus on subset-minimal abductive explanations and suf-
ficient reasons and show that for each of the two cases, the
enumeration issue is seemingly harder than in the case when
all prime implicants are considered. A full-proof version of
the paper is available at www.cril.univ-artois.fr/expekctation/
papers.html.

2 Preliminaries
A Boolean function over n variables x1, . . . , xn is a mapping
f from {0, 1}n to {0, 1}. The set of variables of f is denoted
by var(f). The assignments to var(f) mapped to 1 by f are
called satisfying assignments of f . A literal upon variable x
is either x or its negation x and a term is a conjunction of
literals. We often omit the conjunction symbols when writing
terms, for instance we may shorten a ∧ c into a c. We define
the empty term t∅ as the term over zero literal. The empty
term verifies t∧t∅ = t for every term t. Given ` ∈ {x, x}, we
denote by f |` the Boolean function over var(f) \ {x} whose
satisfying assignments coincide with that of f ∧`. We use the
usual symbols ∧, ∨, ¬, |= to denote conjunction, disjunction,
negation, and entailment. Given a set S of terms, max(S, |=)
denotes the subset of terms of S that do not entail another
term in S. An implicant of a Boolean function f is a term t
whose satisfying assignments also satisfy f , i.e., t |= f . An
implicant t is prime when no term t−` obtained by removing
a literal ` from t is an implicant of f .

2.1 Compilation Languages
Compilation languages are often seen as classes of circuits.
Let PS be a countable set of propositional variables. A
circuit in negation normal form (NNF) is a directed acyclic
graph (DAG) whose leaves are labelled with 0 (false), 1
(true), or a literal built upon x ∈ PS, and whose internal
nodes are labelled with ∧ or ∨ connectives; we call them
∧-nodes and ∨-nodes. An NNF circuit computes a Boolean
function over the variables appearing in it. For v a node of
an NNF circuit Σ, var(v) denotes the set of variables la-
belling leaves under v in Σ and Σv denotes the subcircuit
of Σ rooted at v. The language of decomposable NNF cir-
cuits (DNNF) contains the NNF circuits where ∧-nodes are
decomposable, that is, the children v1, . . . , vm of every ∧-
node v are such that var(vi) ∩ var(vj) = ∅ for all i 6= j.
The language of deterministic, decomposable NNF circuits
(d-DNNF) contains the DNNF circuits Σ where ∨-nodes are
deterministic, that is, the children v1, . . . , vm of every ∨-node
v are such that Σvi

∧Σvj
is inconsistent for all i 6= j. Finally,
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the language of Decision-DNNF circuits (dec-DNNF) is that
of circuits whose leaves are labelled with 0, 1, or a literal
built upon x ∈ PS, and whose internal nodes are decision
nodes and ∧-nodes. Whenever n is a decision node labelled
by variable x in a dec-DNNF circuit Σ, the circuit Σn given

by
x

u v

is viewed as a compact representation of the

d-DNNF circuit
∨

∧ ∧
x xu v

(see Definition 2.6 and Fig-

ure 2 in [Darwiche and Marquis, 2002]).
Thus, a decision node n is labelled by a variable and has

two children: the 0-child (node u on the previous picture) and
the 1-child (node v on the previous picture). If n is labelled by
x and Σu (resp. Σv) represents the function f0 (resp. f1), then
Σn represents the function (x ∧ f0) ∨ (x ∧ f1). For instance,
Figure 1a gives a dec-DNNF circuit whose deepest decision
node computes (s ∧ 1) ∨ (s ∧ p). It is worth mentioning
that all Boolean functions on finitely many variables can be
represented in dec-DNNF, or indeed in any of its subsets like
FBDD, OBDD, and DT.

Let Σ be a dec-DNNF circuit. The size of Σ, denoted
by |Σ| is its number of edges. From a dec-DNNF circuit
Σ, one can easily derive in polynomial time a dec-DNNF
circuit equivalent to Σ where every ∧-node has exactly two
children. Since it is computationally harmless, for the sake
of simplicity, our enumeration algorithms suppose that the
dec-DNNF circuits satisfy this condition, so that their size
is at most twice their number of nodes. In the same vein,
we suppose that our dec-DNNF circuits have been reduced,
i.e., every node v in Σ such that Σv computes the 0 func-
tion reduces to a leaf labelled by 0. Testing the satisfiability
of a dec-DNNF circuit is feasible in linear time [Darwiche
and Marquis, 2002], so reducing a dec-DNNF circuit also is
a polynomial-time operation.

2.2 Enumeration Complexity
We now recall some enumeration complexity classes as de-
scribed in [Strozecki, 2019]. Let V be an alphabet and let
A be a binary predicate in V ∗ × V ∗. Given an instance
x ∈ V ∗ (the input), A(x) (the set of solutions) denotes the set
of all y ∈ V ∗ such that A(x, y). The enumeration problem
Enum·A is the function mapping x toA(x). Enum·A is in the
class EnumP if for every y ∈ A(x), |y| is polynomial in |x|,
and if deciding whether y is in A(x) is in P. EnumP does
not capture the complexity of computing the set of solutions
A(x), it serves more as a counterpart of NP for enumeration
problems.

The model used for the enumeration of solutions is the ran-
dom access machine (RAM) model. See [Strozecki, 2019] for
details on why RAM have been chosen for this task. A RAM
solves Enum·A if, for all x, it returns a sequence y1, . . . , ym
of pairwise distinct elements such that {y1, . . . , ym} = A(x).
Enum·A is in OutputP if there is a RAM solving Enum·A in
time O(poly(|x| + |A(x)|)) on every input x. OutputP is a
relevant enumeration class when the whole set of solutions is
explicitly asked for. For instance, the dualization of a mono-
tone CNF formula φ is the task of generating a DNF formula

equivalent to φ. Because of the monotony condition on φ, the
terms used in any smallest DNF formula equivalent to φ are
precisely its prime implicants. Thus, the dualization problem
boils down to enumerating all the prime implicants of φ.

For other applications, computing only a fixed number
of solutions may be enough. A RAM solves Enum·A in
incremental time f(t)g(n) if on every x, it runs in time
O(f(t)g(|x|)) and returns a sequence y1, . . . , yt of t pairwise
distinct elements ofA(x) when t ≤ |A(x)|, and the whole set
A(x) when t > |A(x)|. Enum·A is in IncP if there is a RAM
that solvesA in incremental timeO(tanb) for some constants
a and b. IncP has a characterization that uses the function
problem AnotherSol·A which, given x and S ⊆ A(x), re-
turns y ∈ A(x) \ S when S 6= A(x), and false otherwise.

Proposition 1 ([Strozecki, 2019]). A problem Enum·A in
EnumP is in IncP if and only if AnotherSol·A is in FP.

Note that OutputP is thought to be distinct from
IncP [Strozecki, 2019].

3 Enum·IP from Dec-DNNF is in OutputP
Let us first consider the problem of enumerating the prime
implicants of a Boolean function f given as a dec-DNNF cir-
cuit Σ, for short the prime implicants of Σ. Let IP(Σ, t) be the
binary predicate representing the relation that t is a prime im-
plicant of Σ. Then IP(Σ) denotes the set of prime implicants
of Σ. We extend the notation IP(·) to any Boolean function f .
To be able to speak of prime implicants enumeration from cir-
cuits other than dec-DNNF ones we write “Enum.IP from L”
with L the language Σ belongs to.

We start with a couple of easy results. First of all, since
there is a linear-time procedure to verify that a term is an im-
plicant of a dec-DNNF circuit, there is a polynomial-time al-
gorithm to decide whether a given a term is a prime implicant
of a dec-DNNF circuits, thus:

Proposition 2. Enum·IP from dec-DNNF is in EnumP.

In addition, it is known that Enum·IP from OBDD is
in OutputP [Madre and Coudert, 1991], and it is almost
straightforward to extend this result to dec-DNNF. To make
it precise, let us briefly describe the output polynomial con-
struction of IP(Σ) for Σ, a dec-DNNF circuit. The construc-
tion is based on the three following, folklore propositions (for
the sake of completeness, a proof for each of them is nonethe-
less reported in the full-proof version of the paper).

Proposition 3. Let f and g be Boolean functions, then IP(f∧
g) = max({t ∧ t′ | t ∈ IP(f), t′ ∈ IP(g)}, |=). Furthermore
if var(f) ∩ var(g) = ∅, then IP(f ∧ g) = {t ∧ t′ | t ∈
IP(f), t′ ∈ IP(g)}.
Proposition 4. Let f a Boolean function, let x be a variable,
and let ` ∈ {x, x}. Consider t ∈ IP(f |`). If t |= f |`, then
t ∈ IP(f), otherwise t ∧ ` ∈ IP(f).

Proposition 5. Let f be a Boolean function and let x be a
variable.

IP(f) = {t ∧ x | t ∈ IP(f |x), t 6|= f |x}
∪ {t ∧ x | t ∈ IP(f |x), t 6|= f |x}
∪ IP(f |x ∧ f |x)
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(a) A dec-DNNF circuit

hv0 :

e ev1 :

∧
∧ bv2 :
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b sv3 : p

1 p

S3 = ∅

S0 = {h e b p , h p s , e p s}

S2 = {b p , p s}

S1 = {e b p , p s}

(b) A path followed in MissingIP

hv0 :

e ev1 :

∧
∧ bv2 :

p s

b sv3 : p

1 p

h e b s ∈ IP(Σv0)

s ∈ IP(Σv3)

e b s ∈ IP(Σv1)

b s ∈ IP(Σv2)

(c) Propagation of an implicant

Figure 1: Generation of a new prime implicant from a dec-DNNF circuit

Note that t ∈ IP(f |x) (resp. IP(f |x)) entails f |x (resp. f |x)
if and only if t is subsumed by some term in IP(f |x∧f |x). As
a consequence, from IP(f |x) and IP(f |x), one can construct
IP(f |x∧f |x) in polynomial time thanks to Proposition 3 and
we use it to derive IP(f) thanks to Proposition 5.

We also have that (see the algorithm for conditioning a
prime implicant representation provided in [Darwiche and
Marquis, 2002]):

Proposition 6. Let f a Boolean function and let x be a vari-
able, then |IP(f)| ≥ max(|IP(f |x)|, |IP(f |x)|).

Consider now a dec-DNNF circuit Σ and an internal node
v with two children u and w. If the sets IP(Σu) and IP(Σw)
are provided, then IP(Σv) is obtained in polynomial time us-
ing Proposition 3 if v is a decomposable ∧-gate, and using
Proposition 5 if v is a decision node. Furthermore, in both
cases, we have |IP(Σv)| ≥ max(|IP(Σu)|, |IP(Σw)|). These
observations lead to a simple algorithm that generates IP(Σ)
by computing the sets IP(Σv) for every node v of Σ consid-
ered in a bottom-up way. Since constructing the set of prime
implicants for any node given that of its children is tractable,
since this set is smaller than |IP(Σ)|, and since it is computed
only once, the algorithm runs in timeO(poly(|Σ|+|IP(Σ)|)).
Thus, we get:

Proposition 7. Enum·IP from dec-DNNF is in OutputP.

Example 1. We give the construction of the sets of prime
implicants for the nodes v1, v2, v3 in the dec-DNNF circuit Σ
represented on Figure 1b.

v3: the sets of prime implicants of the children are IP(1) =
{t∅} and IP(p) = {p}. Using Proposition 5 we have that
s ∧ t∅ = s and Σv3 |s = p, so s ∧ t∅ 6|= Σv3 |s showing
that s ∈ IP(Σv3). We also have that Σv3 |s = 1, so
s p |= Σv3 |s showing that s p 6∈ IP(Σv3). Finally, we
have that IP(Σv3 |s ∧ Σv3 |s) = {p} by Proposition 3, so
IP(Σv3

) = {s, p}.
v2: the sets of prime implicants of the children are

IP(p) = {p} and IP(Σv3
) so we compute IP(Σv2

) =
{b p, b s, b p, p s}

v1: the sets of prime implicants of the children are IP(p ∧
s) = {p s} and IP(Σv2

) so we compute IP(Σv1
) =

{e b p, e b p, e b s, p s}

4 Enum·IP from Dec-DNNF is in IncP
We now investigate Enum·IP from dec-DNNF from the in-
cremental enumeration perspective. Based on Proposition 1,
we design a tractable algorithm AnotherIP for solving the
problem AnotherSol·IP, thus showing that Enum·IP from
dec-DNNF is in IncP.

4.1 Solving the Decision Variant of AnotherSol·IP
We first consider the decision variant of AnotherSol·IP from
dec-DNNF: given a dec-DNNF circuit Σ and a set S ⊆
IP(Σ), return false if and only if S 6= IP(Σ). Recall
from the discussion preceding Proposition 7 that there is a
bottom-up procedure for generating all prime implicants of
the dec-DNNF circuit Σ. To address the decision variant of
AnotherSol·IP on inputs Σ and S, a reverse, top-down search
is performed, assuming that S is IP(Σ) until finding a contra-
diction.

Before defining what a contradiction means in this setting,
a few notations are useful. For t a term and X a set of vari-
ables, tX denotes the restriction of t to variables in X . Note
that ifX and var(t) are disjoint, then tX is the empty term t∅.
Proposition 8. Let Σ be a dec-DNNF circuit and let S ⊆
IP(Σ). If the root of Σ is an ∧-node, let u and w be its chil-
dren and let Su = {tvar(Σu) | t ∈ S} and Sw = {tvar(Σw) |
t ∈ S}. Then Su ⊆ IP(Σu) and Sw ⊆ IP(Σw) hold, and

S = IP(Σ) iff Su = IP(Σu) and Sw = IP(Σw).

Proposition 9. Let Σ be a dec-DNNF circuit whose root is
a decision node labelled by x. Let u be its 0-child and w
be its 1-child. Given S ⊆ IP(Σ), let Su = {t | t ∧ x ∈
S} ∪ (S ∩ IP(Σu)), Sw = {t | t ∧ x ∈ S} ∪ (S ∩ IP(Σw))
and S′ = {t | t ∈ S, x 6∈ var(t)}. Then Su ⊆ IP(Σu) and
Sw ⊆ IP(Σw) hold, and

S = IP(Σ) iff Su = IP(Σu) and Sw = IP(Σw)

and S′ = max({tu ∧ tw | tu ∈ Su, tw ∈ Sw}, |=).

Let v be the root of the dec-DNNF circuit Σ and let S ⊆
IP(Σ). We say that we have a contradiction at node v when
(c1) S = ∅ while Σ is satisfiable, or
(c2) v is a decision node, Su = IP(Σu) and Sw = IP(Σw),

but S′ 6= max({tu ∧ tw | tu ∈ Su, tw ∈ Sw}, |=).

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

2586



Algorithm 1: MissingIP(Σ, S, P )

Promises: Σ is reduced, S ⊆ IP(Σ)
1 Let v be the root of Σ and let P ′ ← P ∪ (v)
2 if λ(v) = |S| then return false
3 if S = ∅ then
4 if v is labelled by 0 then set λ(v) to 0, return false
5 else return (GenerateIP(Σ), P ′)
6 end
7 if v is a ∧-node with children u and w then
8 Build Su and Sw as in Proposition 8
9 r ← MissingIP(Σu, Su, P

′)
10 if r 6= false then return r
11 r ← MissingIP(Σw, Sw, P

′)
12 if r 6= false then return r
13 else if v is a decision node with children u and w then
14 Build Su, Sw, S′ as in Proposition 9
15 r ← MissingIP(Σu, Su, P

′)
16 if r 6= false then return r
17 r ← MissingIP(Σw, Sw, P

′)
18 if r 6= false then return r
19 S∗ ← max({tu ∧ tw | tu ∈ Su, tw ∈ Sw}, |=)
20 if S∗ 6= S′ then for any t ∈ S∗ \ S′ return (t, P ′)
21 end
22 Set λ(v) to |S| and return false

A contradiction guarantees that S 6= IP(Σ). The contradic-
tion (c1) is easy to check. Contradiction (c2) on the other
hand requires to show that Su = IP(Σu) and Sw = IP(Σw).
When v is an internal node, with children u and w, if there
is no contradiction (c1) at v, we use Propositions 8 and 9 to
build from S two sets Su and Sw that we recursively compare
to IP(Σu) and IP(Σw). Either the recursion ends under u or
w on a contradiction, in which case S 6= IP(Σ), or it stops
by itself (i.e., when reaching the leaves of the circuit), which
shows that Su = IP(Σu) and Sw = IP(Σw), and then we can
check whether there is contradiction (c2) at node v. If there
is none, then S = IP(Σ).

The procedure is given by Algorithm MissingIP. The
inputs are a dec-DNNF circuit Σ, a set S ⊆ IP(Σ) and a path
P in Σ (which will be useful later). A function λ mapping
the nodes of Σ to integers is used for memoization purposes.
Initially λ(v) = −1 for every node v, but λ(v) may be as-
signed a non-negative value at some point. More precisely,
the first time a call MissingIP(Σv, S, P ) returns false, we
learn that S = IP(Σv) and set λ(v) to |S|. Then for each
later call MissingIP(Σv, S

′, P ′) with S′ ⊆ IP(Σv), we
check whether S′ = IP(Σv) by verifying that λ(v) = |S′|.
Proposition 10. Given a reduced dec-DNNF circuit Σ and
S ⊆ IP(Σ), MissingIP(Σ, S, ∅) runs in timeO(poly(|S|+
|Σ|)), and it returns false if and only if S = IP(Σ).

4.2 Augmenting an Incomplete Subset of IP(Σ)

We build upon MissingIP so that, when S 6= IP(Σ), we
also return a prime implicant in IP(Σ) \ S. The idea is to
use the path P to keep track of the ancestor nodes that were
visited before reaching a contradiction and to use P to con-

Algorithm 2: GenerateIP(Σ)

Promise: Σ is satisfiable
1 Find a satisfying assignment a of Σ
2 Let t =

∧
a(x)=1 x ∧

∧
a(x)=0 x

3 while there is ` ∈ t such that t− ` |= Σ do
4 Remove ` from t
5 end
6 Return t

struct a prime implicant in IP(Σ) \ S. As an example, con-
sider calling MissingIP(Σ, S0, ∅) with Σ the dec-DNNF
circuit of Figure 1a and S0 = {h e b p, h p s, e p s} a set of
prime implicants of Σ. Figure 1b shows a scenario when
MissingIP(Σ, S0, ∅) calls MissingIP(Σv1

, S1, (v0)),
which calls in turnMissingIP(Σv2

, S2, (v0, v1)), which fi-
nally calls MissingIP(Σv3

, S3, (v0, v1, v2)). Since S3 = ∅
and Σv3

is reduced and different from 0, the algorithm has
reached a contradiction (c1) at node v3 and has not returned
false, thus indicating that S0 6= IP(Σ). MissingIP has fol-
lowed the pathP = (v0, v1, v2, v3) to reach that contradiction
and has kept it in memory. This path P can then be used to
generate a prime implicant in IP(Σ) \ S0. First MissingIP
returns the path P to v3 as well as a prime implicant of Σv3

,
say it is s. Then we construct a prime implicant of Σv2

upon
s, here since v3 is the 0-child of v2 and since s does not entail
the 1-child of v2 we obtain b s ∈ IP(Σv2

). Then we construct
a prime implicant of Σv1

upon b s, here since v2 is the 0-child
of v1 and since b s does not entail the 1-child of v1 we obtain
e b s ∈ IP(Σv1). Repeating the step one more time leads to
h e b s ∈ IP(Σv0) = IP(Σ). The procedure is illustrated in
Figure 1c. In this example, for generating a new prime im-
plicant of Σ, we have created t ∈ Σv3

\ S3 and augmented it
using Proposition 4 as we travelled backwards along P . We
say that we have propagated t along the path P .

Accordingly, the algorithm AnotherIP to generate
a new prime implicant breaks into two steps. First
MissingIP(Σ, S, P ) searches for a contradiction. It returns
false if S = IP(Σ) or a pair (t, P ) with P the path followed
to reach a node v where a contradiction has been found (like
v3 in the example), and t a prime implicant of Σv that could
not be derived from S. The procedure GenerateIP is used
to generate t. GenerateIP runs in polynomial time thanks
to linear-time implicant check on dec-DNNF circuits. Finally
PropagateIP is called to propagate t along the path P .

The next proposition shows the correctness of
AnotherIP:

Proposition 11. Let Σ be a reduced dec-DNNF circuit and let
S ⊆ IP(Σ). AnotherIP(Σ, S) runs in time O(poly(|S| +
|Σ|)). It returns false if S = IP(Σ), otherwise it returns a
prime implicant of Σ that does not belong to in S.

On this basis, the existence of a polynomial incremental
time enumeration of prime implicants for dec-DNNF circuits
can be easily established:

Proposition 12. Enum·IP from dec-DNNF is in IncP.
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Algorithm 3: Propagate(Σ, t, P = (v0, . . . , vi))

Promise: Σ is reduced, its root is v0, P is a path in Σ
1 if |P | = 1 then return t
2 if vi−1 is a ∧-node with children u and w then
3 if vi = u then t′ ← GenerateIP(Σw)
4 if vi = w then t′ ← GenerateIP(Σu)
5 else if vi−1 is a decision node for variable x with

0-child u and 1-child w then
6 if vi = u then
7 if t |= Σw then t′ ← t∅ else t′ ← x
8 else
9 if t |= Σu then t′ ← t∅ else t′ ← x

10 end
11 Propagate(Σ, t ∧ t′, (v0, . . . , vi−1))

Algorithm 4: AnotherIP(Σ, S)

Promise: Σ is reduced, S ⊆ IP(Σ)
1 r ← MissingIP∗(Σ, S, ∅)
2 if r = false then return false
3 else if r = (t, P ) then return Propagate(Σ, t, P )

5 Enumerating Specific Prime Implicants
For some applications, enumerating all prime implicants of
f makes sense, even though there can be exponentially many.
We have already mentioned the dualization of monotone CNF
formulae as an example. In this section, we describe two
problems that ask for generating only specific prime impli-
cants, representing respectively subset-minimal abductive ex-
planations and sufficient reasons.

To illustrate the two notions we use the function f com-
puted by the dec-DNNF circuit of Figure 1a as a toy example.
f encodes a very incomplete characterization of human-like
creatures in Tolkien’s Middle Earth based on four physical at-
tributes: presence of beard and facial hair (b), small size (s),
human-like skin (h), pointy ears (p), plus the indication of
whether the creature is enrolled in the armies of evil (e). We
imagine that there are only seven possible creatures: hobbits
(h b p s e), elves (h b p s e), dwarfs (h b p s e), men and women
(h∗p s ∗),1 ents (h∗p s e), orcs (h b p∗e) and trolls (h b p s e).
The satisfying assignments of f describe these creatures. Its
prime implicants are the smallest combinations of attributes
which guarantee the existence of a creature in our Middle
Earth.

5.1 Abductive Explanations
Abductive explanations (see e.g., [Selman and Levesque,
1990; Eiter and Gottlob, 1995]) can be defined as follows:

Definition 1 (Abductive explanation). Given a Boolean
function f over variables X , a subset H ⊆ X , and a term
m on X \H , an abductive explanation is a term t on H such
that f ∧ t is satisfiable and f ∧ t |= m.

1∗ denotes that both choices are possible for the variable, typi-
cally here humans may fight for evil, humans and ents may or may
not have beards, and orcs have a wide range of size.

The abduction problem asks whether an abductive explana-
tion t exists for the input (f,H,m).
Example 2. Consider our toy example. We look for combi-
nations of physical attributes that guarantee that the creature
is evil. This is an abduction problem with H = {h, b, p, s}
and m = e. For instance the term h ∧ p is an abductive ex-
planation because there exist creatures with pointy ears and a
skin that are not human-like, and all of them are evil (in this
case only the orcs fit the description).

It is easy to see that an abductive explanation t is in fact an
implicant of ¬f∨mwith the conditions that f∧t is satisfiable
and that t is restricted to variables inH (the abducibles). Fur-
thermore, since abduction is not a truth-preserving form of in-
ference, one is often interested in generating subset-minimal
abductive explanations only (i.e., the logically weakest ab-
ductive explanations); they correspond to the prime impli-
cants of ¬f ∨m such that f ∧ t is satisfiable and t is restricted
to variables in H .

Obviously enough, the abduction problem we focus on (the
existence of an abductive explanation) is the same, would
we consider subset-minimal abductive explanations or not.
Indeed, deciding whether an abductive explanation exists is
equivalent to deciding whether a subset-minimal abductive
explanation exists. Unfortunately, the condition that only
variables in H are allowed in abductive explanations is al-
ready too demanding from an enumeration perspective.
Proposition 13. Unless P = NP, there is no polynomial-time
algorithm which, given an OBDD circuit or a decision tree
computing a function f over X and a set Y ⊆ X , decides
whether f has an implicant t with var(t) ⊆ Y .

5.2 Sufficient Reasons
The notion of sufficient reason2 [Darwiche and Hirth, 2020]
(aka prime implicant explanation [Shih et al., 2018b]) is de-
fined as follows:
Definition 2 (Sufficient reason). Given a Boolean function
f , let a be any assignment to a superset of var(f). A suf-
ficient reason for a is a prime implicant t of f (resp. ¬f )
such that a satisfies t, provided that a satisfies f (resp. ¬f ).
The set of all sufficient reasons for a given f is denoted by
SR(f, a) (resp. SR(¬f, a)) when a satisfies f (resp. ¬f ).
Example 3. Consider again our toy example. There is no
creature which is small, has human-like skin, pointy ears, no
facial hair, and is evil. Finding the reasons of why such a
creature cannot exist means finding sufficient reasons for the
assignment a defined by a(h) = a(p) = a(s) = a(e) = 1
and a(b) = 0 given ¬f . In this case h p e ∈ SR(¬f, a)
explains why such a creature cannot exist: there are no crea-
tures that are evil and have both human-like skin and pointy
ears, but there are such creatures that are non-evil (hobbits
and elves), and there are evil creatures that have pointy ears
(orcs) or human-like skin (men). There are other sufficient
reasons for a given ¬f , for instance h s e ∈ SR(¬f, a).

2This concept is also referred to as “abductive explanations” [Ig-
natiev et al., 2019; Ignatiev et al., 2020]; in the following, we stick
to “sufficient reason” to avoid any confusion with the (distinct) con-
cept of abductive explanations as discussed in the previous section.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

2588



We define the problem Enum·SR similarly to Enum·IP. A
couple of results about the complexity of computing suffi-
cient reasons have been pointed out for the past few years.
Obviously enough, when no assumption is made on the rep-
resentation of f , computing a single sufficient reason for an
assignment a is already NP-hard (for pretty much the same
reasons as for the prime implicant case, i.e., f is valid iff for
any a, the unique sufficient reason for a given f is the empty
term). Furthermore, the number of sufficient reasons for an
assignment a given f can be exponential in the number of
variables even when f is represented in DT [Audemard et al.,
2021]. Contrary to abductive explanations, it is computation-
ally easy to generate a single sufficient reason from SR(Σ, a)
when Σ is an OBDD circuit or a decision tree representing
f . A greedy algorithm can be used to this end: if a satisfies
Σ (resp. ¬Σ), then start with the canonical term having a as
its unique satisfying assignment and remove literals from this
term while ensuring that it still is an implicant of Σ (resp.
¬Σ), until no more literal can be removed. In addition, when
Σ is in DT, we can generate in polynomial time a monotone
CNF formula Ψ such that IP(Ψ) = SR(Σ, a) (see [Darwiche
and Marquis, 2021] for details), and then take advantage of
a quasi-polynomial time algorithm for enumerating the ele-
ments of IP(Ψ) [Gurvich and Khachiyan, 1999]. Contrast-
ingly, deciding whether a preset number of sufficient reasons
for a given a exists is intractable (NP-hard), even when the
Boolean function f is monotone (see Theorem 3 in [Marques-
Silva et al., 2021]).

In the following, we complete those results by provid-
ing evidence that Enum·SR from any language among dec-
DNNF, OBDD, or DT is a difficult problem, despite the fact
that those languages are quite convenient for many reasoning
tasks [Darwiche and Marquis, 2002; Koriche et al., 2013].

Let us first give an inductive computation of SR(Σ, a) sim-
ilar to that of IP(Σ).

Proposition 14. Let f and g be Boolean functions with
var(f) ∩ var(g) = ∅ and let a be a truth assignment to a
superset of var(f) ∪ var(g), then SR(f ∧ g, a) = {t ∧ t′ |
t ∈ SR(f, a), t′ ∈ SR(g, a)}.
Proposition 15. Let f be a Boolean function, let a be a truth
assignment to a superset of var(f) and let x ∈ var(f). If a
satisfies the literal ` on variable x then

SR(f, a) = {t ∧ ` | t ∈ SR(f |`, a), t 6|= f |`}
∪ SR(f |x ∧ f |x, a).

By Proposition 6, |IP(f)| ≥ max(|IP(f |x)|, |IP(f |x)|). In a
sense this means that using IP(f |x) and IP(f |x) to generate
IP(f) is not a waste of resources since all these implicants
are kept in some form through IP(f). This led to our out-
put polynomial procedure to generate IP(f) for OBDD and
more generally for dec-DNNF circuits. On the other hand, it
is not guaranteed that SR(f, a) is larger than SR(f |x, a) and
SR(f |x, a) so there is no straightforward adaptation of this
procedure from Enum·IP to Enum·SR.

Example 4. Let Σ be the dec-DNNF circuit of Figure 1a.
Consider the dec-DNNF circuit Σv1

rooted at node v1, as

spotted in Figure 1b. The assignment a to {b, e, p, s} de-
fined by a(b) = a(e) = 1 and a(p) = a(s) = 0
satisfies Σv1

. Recall that the set IP(Σv1
) has been con-

structed in Example 1 and observe that SR(Σv1
, a) =

{p s}. Now the 0-child of v1 is v2 and looking at the set
IP(Σv2

) constructed in Example 1, we see that SR(Σv2
, a) =

{p s, b p}. Since Σv2
= Σv1

|e, we have that |SR(Σv1
, a)| <

max(|SR(Σv1
|e, a)|, |SR(Σv1

|e, a)|).
Actually, we give evidence that enumerating sufficient rea-

sons from dec-DNNF, and even from OBDD or DT, is not in
OutputP by reducing to it the problem of enumerating the
minimal transversals of a hypergraph, a well-known problem
whose membership to OutputP is a long-standing question.
Formally:
Proposition 16. If Enum·SR from OBDD is in OutputP or
Enum·SR from DT is in OutputP, then enumerating the min-
imal transversals of a hypergraph is in OutputP.

6 Conclusion
Most applications of prime implicants for Boolean function
analysis use only a fraction of the many prime implicants
a Boolean function may have. Especially, in the context
of logic-based abduction, subset-minimal assumptions to be
added to the available background knowledge in order to be
able to derive some given manifestations are looked for; in
the propositional case, they correspond to specific prime im-
plicants. Furthermore, in an eXplainable AI perspective, spe-
cific prime implicants known as sufficient reasons are used to
explain the predictions of machine learning algorithms.

In our work, we have studied the enumeration of general
and specific prime implicants of Boolean functions repre-
sented as dec-DNNF circuits. It was known that these circuits
enable efficient reasoning on Boolean functions. Our results
show that when it comes to prime implicants enumeration,
dec-DNNF circuits have benefits as well as limitations. Our
take-home message is that, while dec-DNNF circuits enable
enumerating general prime implicants in incremental polyno-
mial time, there are strong pieces of evidence against the exis-
tence of any output-polynomial time procedure for enumerat-
ing specific prime implicants from dec-DNNF circuits. More
precisely, if a procedure for enumerating subset-minimal ab-
ductive explanations were to exist, then P = NP would fol-
low. Similarly, if there were an output-polynomial time al-
gorithm for enumerating sufficient reasons from dec-DNNF
circuits, then the enumeration of the minimal transversals of
a hypergraph would be in OutputP. Though this is considered
unlikely in enumeration complexity, we think that proving a
stronger statement would be a valuable contribution. We let
this task open for future research.
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