Considering Constraint Monotonicity and Foundedness in Answer Set Programming

Yi-Dong Shen\(^1\) and Thomas Eiter\(^2\)

\(^1\)State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
\(^2\)Institute of Logic and Computation, Vienna University of Technology (TU Wien), Favoritenstraße 9-11, A-1040 Vienna, Austria

ydshen@ios.ac.cn, eiter@kr.tuwien.ac.at

Abstract

Should the properties of constraint monotonicity and foundedness be mandatory requirements that every answer set and world view semantics must satisfy? This question is challenging and has incurred a debate in answer set programming (ASP). In this paper, we address the question by introducing natural logic programs whose expected answer sets and world views violate these properties and thus may be viewed as counter-examples to these requirements. Specifically we use instances of the generalized strategic companies problem for ASP benchmark competitions as concrete examples to demonstrate that the requirements of constraint monotonicity and foundedness may exclude expected answer sets for some simple disjunctive programs and world views for some epistemic specifications. In conclusion these properties should not be mandatory conditions for an answer set and world view semantics in general.

1 Introduction

Answer set programming (ASP) is a declarative problem solving paradigm specifically oriented towards modeling combinatorial search problems arising in areas of AI such as planning, reasoning about actions, diagnosis, and beyond [Gelfond and Kah, 2014; Lifschitz, 2019]. In ASP, a problem is represented by a logic program whose semantics is given by a set of intended logic models, called stable models [Gelfond and Lifschitz, 1988] or answer sets [Gelfond and Lifschitz, 1991], which correspond to solutions to the given problem.

[Gelfond and Lifschitz, 1991] introduced a class of logic programs, called simple disjunctive programs, which consist of rules of the form

\[A_1 \mid \cdots \mid A_k \leftarrow B_1 \land \cdots \land B_m \land \neg C_1 \land \cdots \land \neg C_n \]

where the \(A_i \)'s, \(B_j \)'s and \(C_l \)'s are first-order atoms,\(^1\) “\(\mid \)" is a disjunctive rule head operator, and “\(\leftarrow \)" is an if-then rule operator. Informally, rule (1) says that if the body condition

\[B_1 \land \cdots \land B_m \land \neg C_1 \land \cdots \land \neg C_n \]

has been inferred to be true by any other rules, then some \(A_i \) in the head \(A_1 \mid \cdots \mid A_k \) can be inferred. Rule (1) is a constraint if the head is \(\perp \).

[Gelfond and Lifschitz, 1991] defined the seminal answer set semantics called GL-semantics for a simple disjunctive program \(\Pi \) by means of program transformation. Given an interpretation \(I \), the GL-reduct \(\Pi^I \) is obtained from \(\Pi \) by removing first all rules of form (1) containing some \(C_i \in I \) and then all \(\neg C_i \) from the remaining rules. Then \(I \) is an answer set of \(\Pi \) if \(I \) is a minimal model of \(\Pi^I \). The GL-semantics has the following two properties:

(1) **Constraint monotonicity:** For any constraint \(C \), answer sets of \(\Pi \cup \{ C \} \) are answer sets of \(\Pi \) satisfying \(C \) [Lifschitz et al., 1999].

(2) **Foundedness:** Answer sets of \(\Pi \) contain no unfounded set [Leone et al., 1997], where a set \(X \) of atoms in an interpretation \(I \) is an unfounded set of \(I \) if \(I \) has no rule of form (1) with \(\{ A_1, \cdots, A_k \} \cap X \neq \emptyset \) satisfying (f1)-(f3):

- (f1) \(I \) satisfies the rule body condition;
- (f2) \(\{ B_1, \cdots, B_m \} \cap X = \emptyset \); and
- (f3) \(\{ A_1, \cdots, A_k \} \setminus X \cap I = \emptyset \).

In order to enable representing incomplete knowledge in a logic program that has more than one answer set, [Gelfond, 1991] further extended simple disjunctive programs to epistemic specifications with epistemic modal operators K and M. For a formula \(F \) and a collection \(\mathcal{A} \) of interpretations, \(KF \) (resp. MF) is true in \(\mathcal{A} \) if \(F \) is true in every (resp. some) \(I \in \mathcal{A} \). An epistemic specification \(\Pi^I \) consists of rules of the form

\[L_1 \mid \cdots \mid L_m \leftarrow G_1 \land \cdots \land G_n \]

where each \(L_i \) is an atom, and each \(G_j \) is an atom \(A \) or its negation \(\neg A \) or a modal literal \(KA, \neg KA, MA \) or \(\neg MA \). Rule (2) is a subjective constraint if its head is \(\perp \) and each \(G_j \) is a modal literal.

[Gelfond, 1991] defined the first world view semantics called G91-semantics for an epistemic specification \(\Pi^I \) as follows. Given a collection \(\mathcal{A} \) of interpretations, \(\Pi \) is transformed into a modal reduct \(\Pi^I \) w.r.t. \(\mathcal{A} \) by first removing all rules of form (2) containing a modal literal \(G \) that is not true in \(\mathcal{A} \), then removing the remaining modal literals. \(\mathcal{A} \) is a world view of \(\Pi \) if it coincides with the collection of answer sets of \(\Pi^I \) under the GL-semantics.
It turned out that the G91-semantic for epistemic specifications has both the problem of unintended world views with recursion through K and the problem due to recursion through M [Kahl, 2014]. As an example of the first problem, the epistemic specification $\Pi = \{p \leftarrow Kp\}$ has two world views $A_1 = \{\emptyset\}$ and $A_2 = \{\{p\}\}$ under the G91-semantic; however, as commented in [Kahl, 2014], A_2 is undesired. For the second problem, $\Pi = \{p \leftarrow Mp\}$ has two world views $A_1 = \{\emptyset\}$ and $A_2 = \{\{p\}\}$ under the G91-semantics, where as commented in [Kahl, 2014], A_1 is undesired.

Several approaches have been proposed to address the two problems [Kahl et al., 2020; del Cerro et al., 2015; Shen and Eiter, 2016; Su et al., 2020]. For example, [Shen and Eiter, 2016] proposed to apply epistemic negation to minimize the knowledge in world views (a novel principle they named knowledge minimization with epistemic negation) and presented a new definition of world views, which avoids both the problem with recursion through K and the problem through M. The proposed approach is generic in that it can be used to extend any answer set semantics for epistemic-free programs, such as those defined in [Gelfond and Lifschitz, 1991; Pearce, 2006; Truszczynski, 2010; Faber et al., 2011; Ferraris et al., 2011; Shen et al., 2014; Shen and Eiter, 2019], to a world view semantics for epistemic programs. This generic semantics (called SE16-generic semantics) has been implemented in some solvers for epistemic specifications [Kahl et al., 2019; Hecher et al., 2020].

Recent works [Kahl and Leclerc, 2018; Cabalar et al., 2020] further extended the notions of constraint monotonicity and foundedness from simple disjunctive programs to epistemic specifications and intended to use them as criteria/intuitions to compare different world view semantics on how they comply with these properties. [Cabalar et al., 2019] also defined a stronger property than constraint monotonicity, called epistemic splitting, intending to establish a “minimal requirement” that a world view semantics must satisfy. Unfortunately, most of the existing world view semantics, such as those defined in [Kahl et al., 2020; del Cerro et al., 2015; Shen and Eiter, 2016; Su et al., 2020], violate these properties; see [Fandinno et al., 2021] for a survey.

This strongly motivates us to evaluate the effectiveness of using these properties as criteria/intuitions to judge answer set/world view semantics. A fundamental question is:

Should the properties of constraint monotonicity and foundedness be regarded as mandatory requirements that every answer set and world view semantics must satisfy?

This question is challenging and has incurred a debate in recent ASP research [Shen and Eiter, 2020; Costantini, 2021; Su, 2021].

In this paper, we address the above question by introducing natural logic programs whose expected answer sets and world views violate constraint monotonicity and foundedness and thus may be viewed as counter-examples to these requirements. Specifically we use instances of the generalized strategic companies problem for ASP benchmark competitions [Cadoli et al., 1997; Leone et al., 2006; Shen and Eiter, 2019] as concrete examples to demonstrate that these requirements may exclude expected answer sets for some simple disjunctive programs and world views for some epistemic specifications. In conclusion, these properties should not be mandatory conditions for an answer set and world view semantics in general.

2 Preliminaries

For our concerns, it suffices to consider propositional (ground) logic programs and assume a fixed propositional language \mathcal{L}_P with a countable set Σ of propositional atoms. A (propositional) formula is constructed as usual from atoms using connectives \top, \land, \lor, \lor, \top, \bot, and the epistemic negation operator \neg. The modal operators K and M are shorthands for $\neg \top$ and $\neg \bot$, respectively. An epistemic negation is of the form $\neg F$, where F is a formula from \mathcal{L}_P. An epistemic formula is constructed from atoms and epistemic negations using the above connectives. We then use epistemic formulas to construct rules and logic programs.

Definition 1. An epistemic program consists of rules of the form

$$H_1 \mid \cdots \mid H_m \leftarrow B$$

(3)

where B and each H_i are epistemic formulas.

An epistemic program is an epistemic specification if every rule (3) is of form (2); it is a simple disjunctive program if every rule (3) is of form (1), and is an epistemic-free program if it contains no epistemic negation.

For a rule r of form (3) with $m = 0$, we rewrite it as a constraint $\bot \leftarrow B; \text{if } B \text{ is void, we omit } \bot$. Furthermore, we use $\text{body}(r)$ and $\text{head}(r)$ to refer to the body B and head $H_1 \mid \cdots \mid H_m$ of r, respectively.

For an epistemic-free program Π consisting of rules r of form (3), an interpretation I satisfies r if I satisfies some H_i in $\text{head}(r)$ once I satisfies $\text{body}(r)$; I is a model if I satisfies all rules in Π, and I is a minimal model if it is subset-minimal among all models of Π. I is consistent if it has a model.

The definition of satisfaction and models of epistemic programs is based on a collection of interpretations.

Definition 2. Let Π be an epistemic program and $A \neq \emptyset$ be a collection of interpretations. Let $I \in A$. Then

1. An epistemic negation $\neg F$ is true in A if F is false in some $J \in A$, and false, otherwise. I satisfies $\neg F$ w.r.t. A if $\neg F$ is true in A.

2. I satisfies an epistemic formula E w.r.t. A if I satisfies E^A as in propositional logic, where E^A is E with every epistemic negation $\neg F$ that is true in A replaced by \bot, and the other epistemic negations replaced by \top.

2742
(3) \(I \) satisfies a rule \(r \) of form (3) w.r.t. \(A \) if \(I \) satisfies some \(H_i \) in head(\(r \)) w.r.t. \(A \) once \(I \) satisfies body(\(r \)) w.r.t. \(A \).

(4) A satisfies a rule \(r \) (or \(r \) is true in \(A \)) if every \(J \in A \) satisfies \(r \) w.r.t. \(A \). A satisfies \(\Pi \), or \(A \) is an epistemic model of \(\Pi \), if \(A \) satisfies all rules in \(\Pi \). \(\Pi \) is consistent if it has an epistemic model.

Thus, as \(K \) stands for \(\neg \text{not} \) and \(M \) for \(\neg \text{not} \ KF \) (resp. \(MF \)) is true in \(A \) if \(F \) is true in every (resp. some) \(J \in A \).

An answer set semantics for an epistemic-free program \(\Pi \) assigns to \(\Pi \) a collection of interpretations called answer sets, which can be built on the basis of rules of \(\Pi \). As described in [Gelfond, 2008], the construction of such an answer set \(I \) is guided by the following two informal principles:

(P1) \(I \) must satisfy all rules of \(\Pi \); and

(P2) it should adhere to the rationality principle, i.e., one shall not believe anything one is not forced to believe.

Note that the principle (P1) amounts to that \(I \) must be a model of \(\Pi \), while the rationality principle is used for knowledge minimization in nonmonotone reasoning. We refer to (P1) and (P2) as the Gelfond ASP principles. Examples of answer set semantics following the two principles include the GL-semantics by [Gelfond and Lifschitz, 1991] for simple disjunctive programs and the DL-semantics by [Shen and Eiter, 2019] for arbitrary epistemic-free programs.

A world view semantics for an epistemic program \(\Pi \) is defined in terms of some intended epistemic models of \(\Pi \), called world views. Examples of world view semantics include the G91-semantics by [Gelfond, 1991] for epistemic specifications and the SE16-generic semantics by [Shen and Eiter, 2016] for arbitrary epistemic programs.

3 Considering Constraint Monotonicity and Foundedness for Simple Disjunctive Programs

As mentioned in the introduction, the GL-semantics satisfies the properties of constraint monotonicity and foundedness. Before answering the question whether these properties should be mandatory conditions for answer set semantics for simple disjunctive programs, we first use an example to show limitations of the GL-semantics. [Shen and Eiter, 2019] observed that the requirement of the GL-semantics, i.e., an answer set should be a minimal model of rules of the GL-reduct, may sometimes be too strong, and as demonstrated in the following example some expected answer set may not be a minimal model of the GL-reduct.

Example 1 (generalized strategic companies (GSC) problem). Consider a generalization of the well-known strategic companies problem [Cadoli et al., 1997; Leone et al., 2006], which is popular for ASP benchmark competitions. Suppose a holding has companies \(C = \{ c_1, \ldots, c_m \} \), and it produces goods \(G = \{ g_1, \ldots, g_n \} \), where each company \(c_i \in C \) produces some goods \(G_i \subseteq G \). The holding wants to sell some of its companies subject to the following conditions: all products should be still in the portfolio and no company \(c_i \) for which a strategy rationale, expressed by justifications \(\sigma^1_1, \ldots, \sigma^k_1 \), with each \(\sigma^k_1 = \ell^k_1 \land \cdots \land \ell^k_l \) being a conjunction of literals on \(C \), holds true is sold.

The GSC problem is to find a set \(C' \subseteq C \) of companies, called a strategic set, satisfying the following four conditions:

(1) The companies in \(C' \) produce all goods in \(G \);

(2) \(C' \) covers all \(c_i \in C \) such that some justification \(\sigma^k_1 \) holds true relative to \(C' \);

(3) Every \(c_i \in C' \) either produces some goods in \(G \) or has some justification \(\sigma^k_1 \) that is true relative to \(C' \);

(4) \(C' \) is subset-minimal w.r.t. conditions (1)-(3).

For illustration, consider an instance of the GSC problem, where we have companies \(C = \{ c_1, c_2, c_3 \} \), goods \(G = \{ g_1, g_2 \} \), and the strategy conditions:

\[
\sigma^1_1 = c_2 \land c_3, \quad \sigma^2_1 = c_2 \quad \text{and} \quad \sigma^3_1 = c_1 \land \neg c_2.
\]

Suppose that \(g_1 \) can be produced either by \(c_1 \) or \(c_2 \), and \(g_2 \) produced either by \(c_1 \) or \(c_3 \).

We may naturally encode this GSC problem as the following simple disjunctive program (though other encodings are possible, this seems to be the most concise one; see [Shen and Eiter, 2019, Appendix A] for a discussion):

\[
\Pi : \quad g_1 \quad (1) \\
g_2 \quad (2) \\
c_1 \mid c_2 \leftarrow g_1 \quad // g_1 \text{ is produced either by } c_1 \text{ or } c_2 \quad (3) \\
c_1 \mid c_3 \leftarrow g_2 \quad // g_2 \text{ is produced either by } c_1 \text{ or } c_3 \quad (4) \\
c_1 \leftarrow c_2 \land c_3 \quad // \text{ strategy condition } \sigma^1_1 = c_2 \land c_3 \quad (5) \\
c_2 \leftarrow c_3 \quad // \text{ strategy condition } \sigma^2_1 = c_2 \quad (6) \\
c_3 \leftarrow c_1 \land \neg c_2 \quad // \text{ strategy condition } \sigma^3_1 = c_1 \land \neg c_2 \quad (7)
\]

Then, finding a strategic set \(C' \subseteq C \) for this GSC problem corresponds to constructing an answer set \(I \) from \(\Pi \) corresponding to \(C' \), where: condition (1) for the strategic set \(C' \) corresponds to that the answer set \(I \) contains some \(c_i \) from the head of rule (3) and some \(c_j \) from the head of rule (4); condition (2) for \(C' \) corresponds to that \(I \) covers all \(c_i \) in the heads of rules (5)-(7) whose bodies are \(\sigma^k_1 \), that is satisfied by \(I \); condition (3) for \(C' \) corresponds to that every \(c_i \in C \) is inferred from a head of some rule in \(\Pi \) whose body condition is satisfied by \(I \); and condition (4) for \(C' \) corresponds to that \(I \) is subset-minimal, i.e., no proper subset \(J \) of \(I \) can be constructed in the above way.

Let us check whether \(C' = \{ c_1, c_2 \} \) is a strategic set. First, suppose that \(g_1 \) is produced by \(c_2 \) and \(g_2 \) produced by \(c_1 \). Then \(C' \) produces all goods in \(G \) and condition (1) for \(C' \) to be a strategic set is satisfied. Corresponding to this, for answer set construction, as \(g_1 \) and \(g_2 \) are true in rules (1) and (2), the body conditions of rules (3) and (4) hold true and by choosing \(c_2 \) from the head of rule (3) and \(c_1 \) from rule (4), we infer the set \(I = \{ g_1, g_2, c_1, c_2 \} \) from rules (1)-(4).

Second, as none of the three strategy conditions \(\sigma^1_1 \), \(\sigma^2_1 \) and \(\sigma^3_1 \) holds true relative to \(C' \), condition (2) for \(C' \) to be a strategic set is also satisfied. Corresponding to this, as none of the body conditions of the three rules (5)-(7) is true in \(I \), we infer the same set \(I = \{ g_1, g_2, c_1, c_2 \} \) from rules (1)-(7). As \(I \) satisfies all rules of \(\Pi \), it is a candidate answer set of \(\Pi \).
Third, as every \(c_i \in C' \) produces some goods in \(G \), condition (3) for \(C' \) to be a strategic set is satisfied. Correspondingly, every \(c_j \in I \) has a rule in \(\Pi \) whose head contains \(c_i \) and whose body condition holds true in \(I \).

Finally, it is easy to check that \(C' \) is subset-minimal w.r.t. conditions (1)-(3). Thus \(C' \) is a strategic set of this GSC problem. As no proper subset of \(I \) is a candidate answer set of \(\Pi \) as constructed in the above way, \(I = \{ g_1, g_2, c_1, c_2 \} \) is expected to be an answer set of \(\Pi \), which corresponds to the strategic set \(C' \). One can check that \(C'' = \{ c_1, c_2 \} \) is the only strategic set for this GSC problem, and that \(I = \{ g_1, g_2, c_1, c_2 \} \) is the only expected answer set of \(\Pi \).

However, this simple disjunctive program for the GSC problem has no answer set under the GL-semantics. For \(I = \{ g_1, g_2, c_1, c_2 \} \), the GL-reduct \(\Pi^I \) w.r.t. \(\Pi \) is \(\Pi \) with rule (7) removed. As \(\{ g_1, g_2, c_1 \} \subseteq I \) is a minimal model of \(\Pi^I \), \(I \) is not a minimal model of the GL-reduct and thus is not an answer set of \(\Pi \) in GL-semantics.

To address issues of the GL-semantics with disjunction, [Shen and Eiter, 2019] presented an alternative answer set semantics, called determining inference semantics (DI-semantics for short). Briefly, for an epistemic-free program \(\Pi \), the DI-semantics follows the two Gelfond ASP principles (P1) and (P2) to construct an answer set \(I \) as follows. For (P1), that \(I \) satisfies every rule of \(\Pi \), the DI-semantics interprets the operator “\(\vdash \)” in rule heads truly as a nondeterministic inference operator that returns for \(I \) from each rule \(A_1 \mid \cdots \mid A_k \vdash \text{Body} \) of \(\Pi \) one of the alternatives \(\{ A_1, \ldots, A_k \} \) once \(\text{Body} \) has been inferred to be true.\(^3\) This would produce different candidate answer sets for \(\Pi \) (corresponding to different choices of the alternatives) satisfying the principle (P1). As for (P2), that we shall not believe anything we are not forced to believe, the DI-semantics admits as answer sets only those candidate answer sets that are subset-minimal. It has been proved that for simple disjunctive programs, an answer set in GL-semantics is also an answer set in DI-semantics, but not conversely; i.e., DI-semantics is a relaxation of GL-semantics.

For the GSC problem in Example 1, every candidate answer set of \(\Pi \) in DI-semantics satisfies the first three conditions of a strategic set, so answer sets of \(\Pi \) in DI-semantics correspond to strategic sets for the GSC problem. As a result, the expected answer set \(I = \{ g_1, g_2, c_1, c_2 \} \) of \(\Pi \), corresponding to the strategic set \(C' = \{ c_1, c_2 \} \), is an answer set in DI-semantics, though it is not an answer set in GL-semantics.

Next, we further use instances of the GSC problem as typical examples to show that the requirements of constraint monotonicity and foundedness may exclude expected answer sets for some simple disjunctive programs.

\(^3\)As analyzed in [Shen and Eiter, 2019], the operator “\(\vdash \)” amounts in the GL-semantics for simple disjunctive logic programs to the classical connective “\(\lor \)”. However, [Gelfond and Lifschitz, 1991] deliberately used “\(\vdash \)” to indicate that the connection of alternatives in the rule head is not simply disjunction “\(\lor \)" as in classical logic. Rather, one “commits” to an alternative \(A_i \) in a rule head \(A_1 \mid \cdots \mid A_k \) for the belief state that represents the model one is willing to accept. In [Gelfond, 2008; Gelfond and Kah, 2014] “\(\lor \)" is used in place of “\(\vdash \)" and called epistemic disjunction.

Example 2 (counter-example to constraint monotonicity). Consider again the instance of the GSC problem in Example 1. Observe that there will be no strategic set \(C' \subseteq C \) satisfying the strategy condition \(\sigma^C \). Assume on the contrary that \(\sigma^C \) is true, i.e., company \(c_1 \) is in \(C' \) and \(c_2 \) is not, then (by condition (2) of a strategic set) \(c_3 \) must be in \(C' \); this in turn makes \(\sigma^C \) true and thus company \(c_2 \) must also be in \(C' \), a contradiction.

Correspondingly, the program \(\Pi \) in Example 1 will have no answer set \(I \) satisfying the body condition \(c_1 \land \neg c_2 \) of rule (7). If so, i.e., \(c_1 \) is in \(I \) and \(c_2 \) is not, then by rules (7) and (6), \(c_3 \) and \(c_2 \) must also be in \(I \), a contradiction.

The above observation shows that the strategy condition \(\sigma^C \) and rule (7) play in view of condition \(\sigma^C \) and rule (6) the role of a constraint for strategic set and answer set construction, respectively. That is, rule (7) amounts to a constraint

\[\bot \leftarrow c_1 \land \neg c_2 \]

Let \(\Pi_1 \) be \(\Pi \) with rule (7) replaced by \((7') \). Then \(\Pi_1 \) and \(\Pi \) have the same expected answer set \(I = \{ g_1, g_2, c_1, c_2 \} \), which corresponds to the strategic set \(C' = \{ c_1, c_2 \} \) for the GSC problem.\(^3\)

We now show that the strategic set \(C' = \{ c_1, c_2 \} \) violates constraint monotonicity. One can easily check that without the strategy condition \(\sigma^C \), this GSC problem has the only strategic set \(D = \{ c_1 \} \). However, when \(\sigma^C \) is added, which plays the role of a constraint like rule \((7') \), the only strategic set \(C' = \{ c_1, c_2 \} \) that violates constraint monotonicity. That is, every strategic set of the GSC problem containing \(\sigma^C \) should be a strategic set of the GSC problem without \(\sigma^C \).

Correspondingly, we show that the expected answer set \(I = \{ g_1, g_2, c_1, c_2 \} \) for \(\Pi_1 \) violates constraint monotonicity. Let \(\Pi' \) consist of rules (1) to (6) in \(\Pi_1 \). It is easy to check that \(J = \{ g_1, g_2, c_1 \} \) is the only answer set of \(\Pi' \). As \(\Pi_1 \) is \(\Pi' \) plus the constraint \((7') \), i.e., \(\Pi_1 = \Pi' \cup \{ (7') \} \), constraint monotonicity requires that answer sets of \(\Pi_1 \) should be answer sets of \(\Pi' \), which satisfies the constraint \((7') \). As the only expected set \(J \) of \(\Pi' \) does not satisfy the constraint \((7') \), if we enforce constraint monotonicity, \(\Pi_1 \) would have no answer set. This reveals that constraint monotonicity may exclude expected answer sets for some simple disjunctive programs.

Note that \(I = \{ g_1, g_2, c_1, c_2 \} \) is the only answer set of \(\Pi_1 \) in DI-semantics, corresponding to the strategic set \(C' = \{ c_1, c_2 \} \); however, \(\Pi_1 \) has no answer set in GL-semantics.

Discussion: It is the “subset-minimal” condition that makes some strategic sets like \(C' = \{ c_1, c_2 \} \) and answer sets like \(I = \{ g_1, g_2, c_1, c_2 \} \) in the above example violate the property of constraint monotonicity. Without the constraint \(\sigma^C \), \(C' \) satisfies the first three conditions of a strategic set, but it is not subset-minimal \((D = \{ c_1 \} \) is subset-minimal) and thus is not a strategic set. However, \(C' \) becomes subset-minimal when \(\sigma^C \) is added. This explains why \(C' \) is a strategic set of the GSC problem containing \(\sigma^C \), but it is not a strategic set when the constraint is removed. For the same reason, \(I \)
becomes subset-minimal and is an answer set of the simple disjunctive program Π_1 containing the constraint \((7')\), but it is not an answer set when the constraint is removed.

Example 3 (counter-example to foundedness). Next we show that the expected answer set $I = \{g_1, g_2, c_1, c_2\}$ of Π in Example 1, which corresponds to the strategic set $C' = \{c_1, c_2\}$ for the GSC problem, violates the property of foundedness, i.e., some subset X of I is an unfounded set (see the three conditions (f1)-(f3) of an unfounded set in the introduction).

Consider $X = \{c_2\}$. The program P in Example 1 has rules (3) and (6), i.e., $c_1 \leftarrow g_1$ and $c_2 \leftarrow c_3$, whose heads intersect with X. For rule (3), as $\{(c_1, c_2) \setminus X \cap I = \{c_1\}$, condition (f3) is violated, while for rule (6), as I does not satisfy c_3, condition (f1) is violated. Consequently, no rule in P whose head intersects with X satisfies the conditions (f1)-(f3); thus X is an unfounded set of I.

Therefore, the requirement of foundedness would exclude the expected answer set $I = \{g_1, g_2, c_1, c_2\}$ and the corresponding strategic set $C' = \{c_1, c_2\}$.

Discussion: It is the restriction of condition (f3), i.e., $\{(A_1, \ldots, A_k) \setminus X \cap I = \emptyset$, that makes the answer set $I = \{g_1, g_2, c_1, c_2\}$ resp. the strategic set $C' = \{c_1, c_2\}$ in Example 1 unfounded. The GSC problem says that c_1 can be produced either by c_1 or c_2, and g_2 produced either by c_1 or c_3. So we can choose c_2 from the head of rule (3) (i.e., we can assume that c_2 produces g_1 and c_1 from the head of rule (4) (i.e., c_1 produces g_2). This yields the answer set I resp. the strategic set C'. However, by condition (f3) once c_1 is selected from the head of rule (4), selecting c_2 from the head of rule (3) is disallowed; otherwise, $\{(c_1, c_2) \setminus X \cap I = \{c_1\} \neq \emptyset$ would hold, leading to an unfounded set $X = \{c_2\}$ of I.

4 Considering Constraint Monotonicity and Foundedness for Epistemic Specifications

In [Kahl and Leclerc, 2018], the notion of constraint monotonicity for simple disjunctive programs was extended to epistemic specifications. In particular, they introduced a notion of subjective constraint monotonicity, which requires that for any epistemic specification II and subjective constraint C, world views of $\Pi \cup \{C\}$ should be world views of Π satisfying C. Here a subjective constraint is a constraint $\bot \leftarrow G_1 \land \cdots \land G_n$, where each G_i is a modal literal of the form KA, $\neg KA$, MA, or $\neg MA$, and A is an atom.

We also use an instance of the GSC problem as a typical example to show that subjective constraint monotonicity may exclude expected world views for epistemic specifications.

Example 4 (counter-example to subjective constraint monotonicity). Consider a slightly different instance of the GSC problem, which is obtained from the instance in Example 1 simply by replacing the strategy condition $\sigma^3_1 = c_1 \land \neg c_2$ with $\sigma^3_1 = \neg c_2$. This instance can naturally be encoded as a simple disjunctive program Π_2, which is Π in Example 1 with the last rule replaced by the rule

\[
c_3 \leftarrow \neg c_2 \quad \text{// strategy condition } \sigma^3_1 = \neg c_2 \tag{7}
\]

It is easy to check that Π_2 has only one expected answer set $I = \{g_1, g_2, c_1, c_2\}$, which corresponds to the only strategic set $C' = \{c_1, c_2\}$ for this instance of the GSC problem.

Observe that this instance of the GSC problem will have no strategic set C' satisfying the strategy condition σ^3_1. Actually, σ^3_1 plays the role of a constraint requiring that every strategic set C' should contain body c_2. If σ^3_1 is true, i.e., some C' does not contain c_2, then (by condition (2) of a strategic set) c_3 must be in C'; this in turn makes σ^3_1 true and thus c_2 must also be in C', a contradiction.

As strategic sets of this instance of the GSC problem one-to-one correspond to answer sets of Π_2, the above observation suggests that Π_2 will have no answer set satisfying the body condition $\neg c_2$ of rule (7). That is, rule (7) in Π_2 for σ^3_1 amounts to a constraint

\[
\bot \leftarrow \neg c_2 \tag{7'}
\]

which requires that every answer set of Π_2 should contain c_2.

Such a constraint on “every answer set” can also be encoded as a subjective constraint with a modal literal $\neg KC_2$:

\[
\bot \leftarrow \neg KC_2 \quad \text{// each strategic set/answer set contains } c_2 \tag{7''}
\]

Let Π_3 and Π_4 be Π_2 with rule (7) replaced by (7') and (7''), respectively. Then arguably Π_3 and Π_4 should have the same answer sets, i.e., they have only one expected answer set $I = \{g_1, g_2, c_1, c_2\}$. Likewise, Π_3 and Π_4 should admit the same answer sets.

Note that Π_4 is an epistemic specification, so finding the set \mathcal{S} of all strategic sets for the GSC problem corresponds to constructing the world view W consisting of all expected answer sets of Π_4 corresponding to \mathcal{S}. As Π_4 has only one expected answer set $I = \{g_1, g_2, c_1, c_2\}$, it is expected that Π_4 has the only world view $W = \{I\}$, which corresponds to the set $\mathcal{S} = \{C'\}$ of all strategic sets, where $C' = \{c_1, c_2\}$.

We next show that this expected world view $W = \{\{g_1, g_2, c_1, c_2\}\}$ for Π_4 violates the property of subjective constraint monotonicity. Let Π' consist of rules (1)-(6) in Π_2. Then $J = \{g_1, g_2, c_1\}$ is the only answer set of Π' and thus $W' = \{\{g_1, g_2, c_1\}\}$ is the only world view of Π' as $\Pi' \cup \{\Pi'\}$ plus the subjective constraint (7''), the subjective constraint monotonicity requires that world views of Π_4 should be world views of Π' satisfying the constraint (7''). As the only world view W' of Π' does not satisfy the constraint (7''), if we require the subjective constraint monotonicity, Π_4 would have no world view. This reveals that subjective constraint monotonicity may exclude expected world views for some epistemic specifications.

Another stronger requirement on world view semantics, called epistemic splitting, was introduced in [Cabalar et al., 2019]. Informally, an epistemic specification can be split if its top part only refers to the atoms of the bottom part through modal literals. Then, a world view semantics is said to satisfy epistemic splitting if it is possible to get its world views by first obtaining the world views of the bottom and then using the modal literals in the top as queries on the bottom part previously obtained. It was shown in [Cabalar et al., 2019] that the epistemic splitting property is even more restrictive than

\[\text{Note in particular that no modal literals occur in rules (1)-(6).}\]
subjective constraint monotonicity in that every world view semantics satisfying epistemic splitting also satisfies subjective constraint monotonicity. Due to this, epistemic splitting may exclude some expected world views for epistemic specifications like that in Example 4.

Furthermore, in [Cabalar et al., 2020] the notion of foundedness for simple disjunctive programs was extended to epistemic specifications. Following their convention, for a rule \(r \) in an epistemic specification, we denote with \(\text{Head}(r) \) the set of atoms in the head of \(r \) and with \(\text{Body}_{\text{sub}}(r) \) and \(\text{Body}_{\text{ob}}(r) \) those atoms occurring in the body of \(r \) in modal and non-modal literals, respectively. Moreover, \(\text{Body}_{\text{sub}}(r) \) (resp. \(\text{Body}_{\text{ob}}(r) \)) refers to those atoms in \(\text{Body}_{\text{sub}}(r) \) (resp. \(\text{Body}_{\text{ob}}(r) \)) occurring in positive literals.

Definition 3 (unfounded set [Cabalar et al., 2020]). Let \(\Pi \) be an epistemic specification and \(W \) a world view. An unfounded set w.r.t. \(W \) is a set \(S \neq \emptyset \) of pairs \((X, I)\), where \(X \) and \(I \) are sets of atoms, such that for each \((X, I) \in S\), no rule \(r \) in \(\Pi \) with \(\text{Head}(r) \cap X \neq \emptyset \) satisfies (ef1)-(ef4):

- (ef1) \(I \) satisfies the body condition of \(r \) w.r.t. \(W \);
- (ef2) \(\text{Body}_{\text{sub}}(r) \cap X = \emptyset \);
- (ef3) \(\text{Head}(r) \cap X = I = \emptyset \); and
- (ef4) for all \((X', I') \in S\), \(\text{Body}_{\text{sub}}(r) \cap X' = \emptyset \).

Note that condition (ef2) generalizes (f2) while (ef4) is new. Founded world views are then as follows.

Definition 4 (founded world view [Cabalar et al., 2020]). A world view \(W \) of an epistemic specification \(\Pi \) is founded if there is some unfounded set \(S \) s.t. every \((X, I) \in S\) satisfies \(X \cap I \neq \emptyset \) and \(I \in W \); otherwise, \(W \) is called founded.

Again we use an instance of the GSC problem as an example to show that the foundedness property may exclude some expected world views for epistemic specifications.

Example 5 (counter-example to foundedness). Consider again the epistemic specification \(\Pi_4 \) for the GSC problem in Example 4, where \(W = \{ (g_1, g_2, c_1, c_2) \} \) is the expected world view of \(\Pi_4 \), which corresponds to the set \(\{ c_1, c_2 \} \) of all strategic sets for the GSC problem.

We show that \(W \) violates the property of foundedness; i.e., there is an unfounded set \(S \) w.r.t. \(W \) such that every \((X, I) \in S\) satisfies \(I \in W \) and \(X \cap I \neq \emptyset \). Let \(S = \{ (X, I) \} \), where \(X = \{ c_2 \} \) and \(I = \{ g_1, g_2, c_1, c_2 \} \). We show that for \((X, I) \in S\) no rule \(r \in \Pi_4 \) with \(\text{Head}(r) \cap \{ c_2 \} \neq \emptyset \) satisfies (ef1)-(ef4).

\(\Pi_4 \) has rules (3) and (6) whose heads intersect with \(X \). For rule (3), as \(\{ c_1, c_2 \} \cap X = \{ c_1 \} \), condition (ef3) is satisfied (in fact, the body of \(r \) is a set of all \(X \)). Consequently, no rule in \(\Pi_4 \) whose head intersects with \(X \) satisfies (ef1)-(ef4); thus \(S = \{ (X, I) \} \) is an unfounded set w.r.t. \(W \). As \(X \cap I \neq \emptyset \) and \(I \in W \), \(W \) is hence unfounded.

Therefore, if taking the foundedness requirement on world views of \(\Pi_4 \), we would lose \(W = \{ (g_1, g_2, c_1, c_2) \} \). This reveals that the foundedness property may exclude expected world views for some epistemic specifications.

5 Related Work

[Kahl and Leclerc, 2018], [Cabalar et al., 2020] and [Cabalar et al., 2019] defined the notions of subjective constraint monotonicity, foundedness and epistemic splitting for epistemic specifications, respectively. [Fandino et al., 2021] provided a survey and compared the existing world view semantics based on how they comply with the three properties.

[Shen and Eiter, 2020] observed that the aforementioned properties may be too strong in general and used some abstract programs to demonstrate it. [Su, 2021] said that the soundness of the three properties is still under debate, and [Costantini, 2021] proposed an alternative yet less restrictive version of the epistemic splitting property.

In this paper, following the observation of [Shen and Eiter, 2020] we further introduced instances of the GSC problem [Cadoli et al., 1997; Leone et al., 2006; Shen and Eiter, 2019] as concrete examples to demonstrate that the three properties may exclude some expected answer sets and world views. The programs in Examples 1 and 2 show this for simple disjunctive programs, where the GEL-semantics does not single out the expected strategic set \(C' = \{ c_1, c_2 \} \). Furthermore, the expected world view \(W = \{ (g_1, g_2, c_1, c_2) \} \) for \(\Pi_4 \) in Examples 4 and 5, which corresponds to the collection \(S = \{ (c_1, c_2) \} \) of all strategic sets for the GSC problem, violates subjective constraint monotonicity and foundedness.

This world view can be obtained by the generic world view semantics of [Shen and Eiter, 2016, Definition 8], where the base answer set semantics \(X \) takes the DI-semantics. As far as we can determine, it is not obtained by other world view semantics such as those in [Gelfond, 1991; Kahl et al., 2020; Kahl et al., 2019; Su et al., 2020; Cabalar et al., 2020].

6 Conclusions

In ASP, a problem is encoded as a logic program whose answer sets correspond to solutions to the problem. The GSC problem for ASP benchmark competitions is a particularly useful example in that it can be naturally represented by a simple disjunctive program \(\Pi \) as in Example 1 such that the expected answer sets of \(\Pi \) by intuition about rule satisfaction and rationality in terms of knowledge minimization in line with the Gelfond’s informal principles [Gelfond, 2008] correspond one-to-one to strategic sets of the GSC problem. In this paper we introduced different instances of the GSC problem whose expected answer sets and world views violate the properties of constraint monotonicity and foundedness. They may be viewed as counter-examples to making these properties mandatory requirements for an answer set and world view semantics, in particular with respect to modeling and when knowledge minimization should be exploited as an asset of nonmonotonic semantics. This provides an answer to the fundamental question that we raised in the introduction.

Now that constraint monotonicity and foundedness may be seen as non-mandatory properties for an answer set/world view semantics in general, a natural question is what else are (perhaps similar) properties that every answer set/world view semantics is expected to satisfy? This presents an interesting and challenging open question for ongoing study in ASP.

Acknowledgments

We thank the reviewers for their helpful comments. This work was supported in part by NSFC grant 61976205 and
the EU grant HumanE-AI-Net (ICT-48-2020-RIA 952026).

References

