Better Embedding and More Shots for Few-shot Learning

Ziqiu Chi1,2, Zhe Wang1,2*, Mengping Yang1,2, Wei Guo1,2 and Xinlei Xu1,2

1Key Laboratory of Smart Manufacturing in Energy Chemical Process, East China University of Science and Technology, China
2School of Information Science and Engineering, East China University of Science and Technology, China

chiziqiu@mail.ecust.edu.cn, wangzhe@ecust.edu.cn,
\{mengpingyang, wei_guo, Y20190072\}@mail.ecust.edu.cn

Abstract

In few-shot learning, methods are enslaved to the scarce labeled data, resulting in suboptimal embedding. Recent studies learn the embedding network by other large-scale labeled data. However, the trained network may give rise to the distorted embedding of target data. We argue two respects are required for an unprecedented and promising solution. We call them Better Embedding and More Shots (\textit{BEMS}). Suppose we propose to extract embedding from the embedding network. \textit{BEMS} maximizes the extraction of general representation and prevents over-fitting information. For this purpose, we introduce the topological relation for global reconstruction, avoiding excessive memorizing. \textit{MS} maximizes the relevance between the reconstructed embedding and the target class space. In this respect, increasing the number of shots is a pivotal but intractable strategy. As a creative method, we derive the bound of information-theory-based loss function and implicitly achieve infinite shots with negligible cost. A substantial experimental analysis is carried out to demonstrate the state-of-the-art performance. Compared to the baseline, our method improves by up to 10%+. We also prove that \textit{BEMS} is suitable for both standard pre-trained and meta-learning embedded networks.

1 Introduction

The outstanding successes of deep learning are partly accredited to the sheer amount of trainable samples. With the rapid development of deep learning, few-shot learning conceives a more challenging scenario, where only scarce labeled samples exist in each novel class. Under a standard few-shot learning setting, the embedding network is trained on substantial labeled data that sampled from base classes, \textit{i.e.}, no intersection with novel classes. Further, the model can be fine-tuned on the few-shot labeled data of novel classes. Recent researches [Tian et al., 2020] [Hou and Sato, 2021] prove that embedding is the most vital aspect of few-shot image classification, which is also the focus of this paper. The embedding network training paradigm contains standard supervised pre-training [Chen et al., 2019a] and meta-learning [Finn et al., 2017]. Either way, we debate that two problems remain to be solved.

First, the embedding network is not well suited for novel classes as it is associated with base classes closely. While we can employ a few labeled samples to fine-tune the embedding in the novel-class space, there is a gamble of over-fitting. Additionally, the embedding network memorizes overmuch details specific to base classes, resulting in distorted novel-class embedding. Although the relevant art [Lee and Chung, 2021] is aimed at preventing over-fitting to the base classes via early-stage embedding reconstruction, the embedding is still not tailored for novel classes. With a more profound thought, we creatively reconstruct the topological relation instead of the instance similarity. It alleviates the excessive priority on the original feature space and pays more attention to global information. Furthermore, we put on the wings of information theory to make the reconstructed embedding more in line with the novel-class space. Nonetheless, we still face a tough nut, which leads us to the second problem.

Second, increasing the number of shots is pivotal but intractable [Cao et al., 2019]. Explicit GANs-based data augmentation techniques [Zhang et al., 2018] [Li et al., 2020] occur as feasible solutions. Besides, embedding sampling approaches [Yang et al., 2020] [Chi et al., 2021] generate pseudo-labeled embedding in metric space. Unsatisfactorily, these remedies introduce much complexity. In this paper, we unprecedentedly introduce implicit data augmentation into few-shot learning, taking inspiration from ISDA [Wang et al., 2021]. We abstractly achieve infinite augmentation with negligible extra computational cost, where the only alteration reflects in the derived upper bound of the loss function. In summary, our contributions are:

- This paper argues that two respects are required for novel-class-specific embedding learning. First, how to properly reconstruct pre-trained embedding. Second, how to make the reconstructed embedding fit the novel-class space better. Together, these two aspects constitute our Better Embedding and More Shots (\textit{BEMS}).

- This paper creatively considers topological reconstruction avoiding excessive memorizing, corresponding to the Better Embedding (\textit{BEMS}). In addition, we make the
embedding more in accordance with the novel-class space through the derived upper bound of the loss function. This bound implicitly achieves infinite shots with negligible cost, corresponding to the More Shots (\(\mathcal{MS}\)). To the best of our knowledge, it is the first work to introduce implicit data augmentation into the few-shot learning.

- Substantial evaluations and ablation studies prove the promising performance. We also demonstrate that our method is appropriate for both standard pre-trained and meta-learning embedded networks.

2 Related Work

Both the embedding network and downstream module can obtain better embedding. The cross-entropy-based pre-trained methods are the most common for the embedding network. Other strategies, such as self-supervised learning [Chen et al., 2021] and mixup [Mangla et al., 2020], are available for the more general-purpose embedded feature. For the downstream module, one tends to improve the metric space of the embedding. BD-CSPN [Liu et al., 2020] rectifies the prototype based on intra-class and inter-class biases. S2M2 [Mangla et al., 2020] adopts the manifold mixup for robust general-purpose representation. This paper focuses on the downstream module. We reveal that proper reconstruction is beneficial for better embedding.

Most methods explicitly accomplish more shots augmentation in sample or embedding space. MetaGAN [Zhang et al., 2018] generates non-perfect samples to help the classifier identify much tighter decision boundaries based on generative adversarial networks. Similarly, AFHN [Li et al., 2020] takes the few labeled samples as the conditional context to synthesize fake features. MVT [Park et al., 2020] generates virtual embedding to boost the target space. However, it is still an explicit sampling process needing additional regularization. Instead of synthesizing image instances, TriNet [Chen et al., 2019b] proposes to synthesize embedding directly. Distribution Calibration [Yang et al., 2020] and Learning2Capture [Chi et al., 2021] generate pseudo-labeled embedding based on the similarity relation. All of these methods introduce additional complex modules, while the modification in our method is only reflected in the loss function, which is more straightforward and more efficient.

3 Method

3.1 Notation

The few-shot problem is represented by the data in novel class \(\mathcal{C}_n\). With \(x_i\) as the embedded \(D\)-dimension representation and \(y_i\) as its label, the consensual naming, the \(N\)-way \(K\)-shot task sampled from \(\mathcal{C}_n\) denotes the support set \(\mathcal{S} = \{x_i, y_i\}_{i=1}^{N \times K}\), with \(N\) classes and each has \(K\) labeled samples. Corresponding with the \(\mathcal{S}\), the unlabeled query set is defined as \(\mathcal{Q} = \{x_i, y_i\}_{i=(N \times K+1)}^{N \times K+T}\), where \(T\) means the volume. In this paper, we utilize the vector and matrix forms flexibly. For example, we also use \((X \in \mathbb{R}^{T \times D}, Y \in \mathbb{R}^{T \times N})\) to represent data pairs in \(\mathcal{Q}\). To obtain embedding, an embedding network \(f_\Theta(\cdot)\) is trained on a large-scale labeled dataset belonging to the base class \(\mathcal{C}_b\), where \(\mathcal{C}_b \cap \mathcal{C}_n = \emptyset\). Typically, the embedding network can be standard pre-trained [Wang et al., 2019] or meta-learning model [Liu et al., 2019].

3.2 Overview

Figure 1 gives a general description of our method. Given the embedding \(x_i\) and our topological reconstruction network \(g_\Theta(\cdot)\), we implement Better Embedding (\(\mathcal{BE}\)) based on topological reconstruction (Section 3.3), and More Shots (\(\mathcal{MS}\)) by implicit augmentation (Section 3.4). Finally, the trained network provides \(\mathcal{C}_n\)-specific embedding: \(z_i = g_\Theta(x_i)\).

3.3 Better Embedding

We introduce that two steps lead to better embedding. Suppose we propose to extract the embedding by \(f_\Theta(\cdot)\). The first step is to maximize extraction of general information, avoiding over reconstruction. Formally, we have:

\[
\mathcal{L}_{\text{BE}}(X; \Theta) = \|X^TX - Z^TZ\|_F^2,
\]

where \(Z = g_\Theta(X)\) and \(F\) denotes the Frobenius norm. We gingerly strike their trade-off balance for \(\mathcal{S}\) and \(\mathcal{Q}\). Because \(\mathcal{S}\) often acts as the precious supervised prototype [Liu et al., 2020], and \(\mathcal{Q}\) provides more samples. Specifically, we obtain better embedding by:

\[
\mathcal{L}_{\text{BE}} = \lambda_1 \mathcal{L}_{\text{BE}}^S + \lambda_2 \mathcal{L}_{\text{BE}}^Q,
\]

where \(\lambda_1\) and \(\lambda_2\) balance the contribution between \(\mathcal{S}\) and \(\mathcal{Q}\). \(\mathcal{L}_{\text{BE}}\) achieves the purpose of the first step, i.e., appropriate information extraction. Next, we move on to step two.
3.4 More Shots

In BE, the reconstructed embedding is still stuck in the C_b space. Ideally, the second step is to maximize the relevance between the reconstructed embedding and the C_n space. This inspiration can be depicted as:

$$\max R(Z, C_n),$$

where $R(\cdot, \cdot)$ represents the relevance. Nevertheless, scarce labeled data in C_n are not up to this challenge. Fortunately, we propose that distribution capture is a sound thought, where more or even infinite shots can be sampled. Once we have captured the class-conditional distribution, we can perform the following sampling:

$$\widetilde{z}_i \sim N(z_i, \alpha \Sigma_{y_i}),$$

where Σ_{y_i} is the class-conditional covariance matrix, and α is a positive coefficient that controls the strength. Implementing such seemingly trivial sampling requires complex explicit methods, such as metric learning [Chi et al., 2021] and GANS [Li et al., 2020]. Nonetheless, this paper presents straightforward implicit data augmentation without introducing additional modules.

We primarily expand from Q. It is critical to secure accurately estimated distribution for the unlabeled ones, as otherwise, it will cast a catastrophic impact. Consequently, we embrace the prevalent prototypical classifier to acquire pseudo-distribution:

$$p_{ij} = \frac{d(z_i, \mu_j)}{\sum_k d(z_i, \mu_k)},$$

where $d(\cdot, \cdot)$ can be any distance function. The prototype μ_j is calculated by the average of j-class S, mathematically, $\mu_j = \frac{1}{|S|} \sum_{z \in S} z$. According to these pseudo distributions, we can compute Σ_{y_i}, where $y_i = \arg \min_{j \in N} d(z_i, \mu_j)$. Correspondingly, we identify the meaningful semantic directions and proceed to sampling.

Assume we train the $g_{\Theta}(\cdot)$ with the weight matrix W and corresponding bias b. With M times sampling, we maximize $R(Z, C_n)$ via minimizing the L_R^Q:

$$L_R^Q = \frac{1}{T} \sum_{i=1}^{T} \sum_{j=1}^{N} p_{ij} \log \left(\frac{e^{w_{ij}^T z_i + b_j}}{\sum_{k=1}^{N} e^{w_{ij}^T z_i + b_k}} \right).$$

Based on it, the reconstructed embedding leans toward the pseudo C_n distributions. Covetously, when $M \rightarrow \infty$, we rewrite Equation (6) in an expectation form:

$$L_R^Q = \frac{1}{T} \sum_{i=1}^{T} \sum_{j=1}^{N} p_{ij} E_{\tilde{z}_i} \left[\log \left(\sum_{k=1}^{N} e^{v_{kj}^T \tilde{z}_i + b_k - b_j} \right) \right],$$

where $v_{kj} = w_k - w_j$. The above formula, however, is hard to apply. We show the possibility to derive an easy-to-compute upper bound, achieving an unattainable goal.

Theorem 1. The upper bound of L_R^Q is given by [Wang et al., 2021]:

$$L_R^Q \leq \frac{1}{T} \sum_{i=1}^{T} \sum_{j=1}^{N} p_{ij} \log \left(\sum_{k=1}^{N} e^{v_{kj}^T \tilde{z}_i + b_k - b_j} \right) + \frac{1}{T} \sum_{i=1}^{T} \sum_{j=1}^{N} p_{ij} \log \left(\sum_{k=1}^{N} e^{v_{kj}^T \tilde{z}_i + b_k - b_j} \right)$$

$$\Delta \leq L_{MS}^Q.$$

Proof. According to Jensen’s inequality $E[\log X] \leq \log E[X]$, we derive:

$$L_R^Q \leq \frac{1}{T} \sum_{i=1}^{T} \sum_{j=1}^{N} p_{ij} \log \left(\sum_{k=1}^{N} e^{v_{kj}^T \tilde{z}_i + b_k - b_j} \right).$$

According to the moment-generating function $E[e^{tX}] = e^{\mu + \frac{1}{2} \sigma^2 t^2}$, where $X \sim \mathcal{N}(\mu, \sigma^2)$, we have:

$$E_{\tilde{z}_i} \left[e^{v_{kj}^T \tilde{z}_i + b_k - b_j} \right] = e^{v_{kj}^T \tilde{z}_i + b_k - b_j + v_{kj}^T \Sigma_{y_i} v_{kj}}.$$

Thus, the upper bound of L_R^Q is derived:

$$L_R^Q \leq \frac{1}{T} \sum_{i=1}^{T} \sum_{j=1}^{N} p_{ij} \log \left(\sum_{k=1}^{N} e^{v_{kj}^T \tilde{z}_i + b_k - b_j + v_{kj}^T \Sigma_{y_i} v_{kj}} \right),$$

where α is the positive hyper-parameter. Finally, we derive the final loss function L_{MS}^Q.

So far, we have implicitly carried out infinite sampling based on the unlabeled Q. In a similar spirit, we apply the upper bound of cross-entropy loss function for the labeled S.

Theorem 2. Similar to Theorem 1, we derive the upper bound of the cross-entropy loss [Wang et al., 2021]. For $z_i \in S$, we have:

$$L_S^S \leq \frac{1}{T} \sum_{i=1}^{T} \log \left(\sum_{k=1}^{N} e^{v_{ki}^T z_i + b_k - b_j} \right)$$

$$\Delta \leq L_{MS}^S.$$

Proof. Similar to the proof of Theorem 1, we have the following derivation based on Jensen’s inequality and moment-generating function.

$$L_S^S = \frac{1}{T} \sum_{i=1}^{T} E_{z_i} \left[\log \left(\sum_{k=1}^{N} e^{v_{ki}^T z_i + b_k - b_j} \right) \right]$$

$$\leq \frac{1}{T} \sum_{i=1}^{T} \log \left(\sum_{k=1}^{N} E_{z_i} \left[e^{v_{ki}^T z_i + b_k - b_j} \right] \right)$$

$$= \frac{1}{T} \sum_{i=1}^{T} \log \left(\sum_{k=1}^{N} e^{v_{ki}^T z_i + b_k - b_j + v_{ki}^T \Sigma_{y_i} v_{ki}} \right),$$

3.5 Overall Objective Function

In the mass, we minimize the overall objective given by:

$$L_{BE, MS} = \lambda_1 L_{BE}^S + \lambda_2 L_{MS}^Q + L_{MS}^S + L_{MS}^Q.$$

When $K = 1$, L_{MS}^S is reduced to L_S^S. In brief, the first two terms work for BE and the last two terms work for MS. They provide the C_n-specific embedding together.
4 Experiments

4.1 Experimental Settings

Datasets. We perform evaluations on three popular datasets. The miniImageNet [Vinyals et al., 2016] and tieredImageNet [Ren et al., 2018] are the subsets of ImageNet. CUB-200-2011 [Wah et al., 2011] is a fine-grained bird classification dataset. All images are resized to 84×84. More details are depicted in Table 1.

Evaluation Protocol. We report the average accuracy and 95% confidence interval on random sampled 600 tasks. Each task contains 15 query samples of each class, i.e., $T = 15 \times N$. For reported results, the number in bold means the best performance and underline means the second. All our re-implemented algorithms, as indicated by the superscript \dagger, adopt the unified trained embedding network for fairer comparisons.

4.2 Implementation Details

Embedding Networks. We train our embedding networks using the standard cross-entropy loss on C_b based on three backbones: ConvNet, ResNet-18, and WideResNet. ConvNet comprises four blocks. Each block contains a 64-filter 3×3 convolution, a batch normalization layer, a ReLU activation and a 2×2 max-pooling layer. ResNet-18 we used is a standard 18-layer residual network that removed the first two down-sampling layers. WideResNet is the wide residual network with 28 convolutional layers and 10 widening factors. For WideResNet training, we set the label-smoothing parameter as 0.1. We use SGD optimizer and 128 mini-batch sizes. Referring to [Ziko et al., 2020], we use early stopping by prototypical classifier on the validation set. For ConvNet and ResNet-18 training, we adopt the source code provided by [Wang et al., 2019]. In addition, we extend our applicability to meta-learning in Section 4.7. This section trains all re-implemented methods with Adam optimizer and an initial learning rate of 0.001. We cut the learning rate in half every 10,000 and 25,000 episodes for miniImageNet and tieredImageNet, respectively.

Reconstruction Training. We use 2-layer fully connected layers with ReLU function and a 0.5 dropout as our reconstruction module. The first layer reduces the dimension to half the input dimension, and the second layer restores the dimension. We conduct 200 training iterations. For optimization, we use Adam with 0.001 learning rate and 0.01 weight decay.

Preprocessing. The output of the penultimate layer of the embedding network is extracted as the embedding feature. The centering and L2-normalization are used as preprocessing tools. For centering, we first calculate the average value of the embedded features in C_b: $\mu = \mathbb{E}_{x \sim C_b} [x]$. Then $x \leftarrow x - \mu$, where $x \in C_b$. For L2-normalization, we compute: $x \leftarrow \frac{x}{\|x\|_2}$.

Hyper-parameters. The hyper-parameters are tuned by validation set. We set $\alpha = t \times \frac{\text{iter}}{\text{ITER}}$, where iter and ITER are the current and total iterations, respectively. We tune t in $\{0.01, 0.1, 0.25, 1, 10\}$. For λ_1 and λ_2, we tune them in $\{0.01, 0.02, 0.1, 0.5, 1\}$.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Classes</th>
<th>Images</th>
<th>Train/Val/Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>miniImageNet</td>
<td>100</td>
<td>60000</td>
<td>64/16/20</td>
</tr>
<tr>
<td>tieredImageNet</td>
<td>608</td>
<td>779165</td>
<td>351/97/160</td>
</tr>
<tr>
<td>CUB</td>
<td>200</td>
<td>11788</td>
<td>100/50/50</td>
</tr>
</tbody>
</table>

Table 1: Details of datasets.

4.3 Improvement by our Method

We utilize the prototypical classifier as our baseline to investigate the improvement by our method. Concretely, it makes inference of Q by matching the nearest prototype, where Euclidean distance is adopted. Results of three backbones and two datasets are reported in Table 2. All backbones yield satisfactory results. The most remarkable performance is the 10%+ accuracy gain at most on 1-shot evaluation. Comparatively, 5-shot evaluation also gets a maximum 5.11% improvement. In addition, the performance gap between 1-shot and 5-shot results is significantly narrowed, which will be further proved in Section 4.8.

4.4 Comparison with Relevant Methods

We also report the performance of relevant methods in Table 2. (1) In comparison with the explicit data augmentation methods: Distribution Calibration, Learning2Capture, TriNet, MVT, and AFHN, our BE_{MS} perform a significant improvement in a lighter augmentation manner. On all datasets and backbones, we averagely lead by 6.81% and 3.01% on 1-shot and 5-shot scenarios, respectively. (2) In comparison with the embedding adaptation methods: BD-CSPN and ESFR, we surpass them by 2.18% and 0.97% averagely on 1-shot and 5-shot scenarios, respectively, because our approach pays more attention to the topological structure and alleviates the over-fitting risk on C_b. ESFR avoids the over-memorizing of C_b, which is similar to our motivation. Differently, our MS further brings the reconstructed embedding closer to C_b, and the Q to retain information within the task, while our utilization is essential for better embedding.

4.5 Cross-domain Evaluation

We conduct further evaluations on CUB and cross-domain scenario, i.e., miniImageNet \rightarrow CUB. Results are shown in Table 3. We also compare the most relevant algorithms, and our method still maintains the top performance. In cross-domain problems, our BE_{MS} is second only to Learning2Capture, which uses explicit data augmentation.

4.6 Significance of Better Embedding and More Shots

First, we take our core components apart for ablation in Figure 2(Left). In this evaluation, we fix $t = 10$. We analyze the following alterations:

- **Baseline** denotes we directly make predictions through pre-trained embedding and prototypical classifier.
Table 2: Comparison with our baseline and relevant approaches.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Backbone</th>
<th>miniImageNet 1-shot</th>
<th>5-shot</th>
<th>tieredImageNet 1-shot</th>
<th>5-shot</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVT [Park et al., 2020]</td>
<td></td>
<td>67.67 ± 0.70</td>
<td>-</td>
<td>71.37 ± 0.68</td>
<td>-</td>
</tr>
<tr>
<td>LaplacianShot [Ziko et al., 2020]</td>
<td>ConvNet</td>
<td>55.70 ± 0.85</td>
<td>68.04 ± 0.65</td>
<td>57.04 ± 0.99</td>
<td>71.37 ± 0.68</td>
</tr>
<tr>
<td>Learning2Capture† [Chi et al., 2021]</td>
<td></td>
<td>51.18 ± 0.85</td>
<td>66.29 ± 0.69</td>
<td>51.60 ± 0.97</td>
<td>66.60 ± 0.79</td>
</tr>
<tr>
<td>BD-CSPN† [Liu et al., 2020]</td>
<td></td>
<td>52.35 ± 0.87</td>
<td>68.51 ± 0.64</td>
<td>55.15 ± 0.90</td>
<td>71.87 ± 0.71</td>
</tr>
<tr>
<td>Prototypical Classifier†</td>
<td></td>
<td>50.70 ± 0.79</td>
<td>66.15 ± 0.70</td>
<td>50.73 ± 0.79</td>
<td>69.51 ± 0.70</td>
</tr>
<tr>
<td>+BE,M5 (Ours)</td>
<td></td>
<td>56.11 ± 1.05</td>
<td>71.26 ± 0.74</td>
<td>56.87 ± 1.16</td>
<td>72.68 ± 0.74</td>
</tr>
<tr>
<td>TriNet [Chen et al., 2019b]</td>
<td></td>
<td>58.12 ± 1.37</td>
<td>76.92 ± 0.69</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AFHN [Li et al., 2020]</td>
<td></td>
<td>62.38 ± 0.72</td>
<td>78.16 ± 0.56</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Baseline++ [Chen et al., 2019a]</td>
<td></td>
<td>51.75 ± 0.80</td>
<td>74.27 ± 0.63</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Baseline++ [Chen et al., 2019a]</td>
<td>ResNet-18</td>
<td>51.87 ± 0.77</td>
<td>75.68 ± 0.63</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LaplacianShot [Ziko et al., 2020]</td>
<td></td>
<td>72.11 ± 0.19</td>
<td>82.31 ± 0.14</td>
<td>78.98 ± 0.21</td>
<td>86.39 ± 0.16</td>
</tr>
<tr>
<td>Learning2Capture† [Chi et al., 2021]</td>
<td></td>
<td>67.38 ± 0.97</td>
<td>81.04 ± 0.61</td>
<td>76.55 ± 0.95</td>
<td>85.26 ± 0.63</td>
</tr>
<tr>
<td>BD-CSPN† [Liu et al., 2020]</td>
<td></td>
<td>69.81 ± 0.95</td>
<td>82.32 ± 0.59</td>
<td>78.13 ± 0.94</td>
<td>86.88 ± 0.60</td>
</tr>
<tr>
<td>Prototypical Classifier†</td>
<td></td>
<td>63.82 ± 0.82</td>
<td>79.71 ± 0.59</td>
<td>69.53 ± 0.89</td>
<td>85.32 ± 0.57</td>
</tr>
<tr>
<td>+ESFR† [Lee and Chung, 2021]</td>
<td>ResNet-18</td>
<td>71.92 ± 0.92</td>
<td>82.27 ± 0.57</td>
<td>78.26 ± 0.98</td>
<td>85.83 ± 0.68</td>
</tr>
<tr>
<td>+BE,M5 (Ours)</td>
<td></td>
<td>73.63 ± 1.08</td>
<td>82.76 ± 0.64</td>
<td>80.36 ± 0.99</td>
<td>87.04 ± 0.61</td>
</tr>
<tr>
<td>Distribution Calibration [Yang et al., 2020]</td>
<td>WideResNet</td>
<td>68.57 ± 0.55</td>
<td>82.30 ± 0.34</td>
<td>78.19 ± 0.25</td>
<td>89.90 ± 0.41</td>
</tr>
<tr>
<td>AWGIM [Gao and Cheung, 2020]</td>
<td></td>
<td>63.12 ± 0.08</td>
<td>78.40 ± 0.11</td>
<td>67.69 ± 0.11</td>
<td>82.82 ± 0.13</td>
</tr>
<tr>
<td>LaplacianShot [Ziko et al., 2020]</td>
<td></td>
<td>74.86 ± 0.19</td>
<td>84.13 ± 0.14</td>
<td>80.18 ± 0.21</td>
<td>87.56 ± 0.15</td>
</tr>
<tr>
<td>Learning2Capture† [Chi et al., 2021]</td>
<td></td>
<td>68.65 ± 0.92</td>
<td>81.92 ± 0.60</td>
<td>75.09 ± 0.96</td>
<td>86.14 ± 0.64</td>
</tr>
<tr>
<td>BD-CSPN† [Liu et al., 2020]</td>
<td></td>
<td>72.55 ± 0.91</td>
<td>84.02 ± 0.55</td>
<td>79.56 ± 0.94</td>
<td>88.36 ± 0.59</td>
</tr>
<tr>
<td>Prototypical Classifier†</td>
<td></td>
<td>65.95 ± 0.90</td>
<td>81.76 ± 0.56</td>
<td>71.16 ± 0.89</td>
<td>86.32 ± 0.56</td>
</tr>
<tr>
<td>+ESFR† [Lee and Chung, 2021]</td>
<td>WideResNet</td>
<td>73.06 ± 0.91</td>
<td>82.80 ± 0.55</td>
<td>79.87 ± 0.94</td>
<td>87.14 ± 0.64</td>
</tr>
<tr>
<td>+BE,M5 (Ours)</td>
<td></td>
<td>75.38 ± 1.03</td>
<td>84.25 ± 0.53</td>
<td>80.43 ± 1.04</td>
<td>88.16 ± 0.58</td>
</tr>
</tbody>
</table>

Table 3: The classification accuracy (%) on CUB and mini → CUB (5-shot). ResNet-18 is used as the backbone.

As we have mentioned in Section 4.3, our BE,M5 narrows the accuracy gap between different shot numbers, which is more intuitive in the line chart. The proposed BE substantially reconstructs better embedding. The proposed M5 implicitly provides infinite data volume, blurring the shot disparity and boosting the performance. Taking ESFR as a reference for reconstruction problems, BE performs better on the 1-shot setting. In addition, ESFR further supports our M5 perspective that embedding should get close to C0 space on the basis of Cn information reconstructing. Although M5 shows a slightly negative effect on the 5-shot scenario, it improves significantly on the 1-shot setting. Finally, the BE,M5 consistently achieves the highest accuracy.

Second, we report the sensitivity of t in Figure 2(Right). In this evaluation, we fix the λ1 = λ2 = 0.1 and λ1 = 0.01, λ2 = 0.02. We observe that M5 works positively in most t values. The overall trends show that the parameter sensitivity of M5 is affected by BE, which is reflected in the different effects of t on performance under different λ1 and λ2. This is because BE and M5 have a latent antagonistic relationship. M5 makes embedding tend to C0 space, which interferes with the reconstruction in BE to some extent.
4.7 Meta-learning Embedding

As an extension study, we explore the enhancement effect of $BE.MS$ on meta-learning-based embedding. We select two representative meta-learning methods, ProtoNet [Snell et al., 2017] and TPN [Liu et al., 2019], for evaluations. Concretely, we use $BE.MS$ to boost the test phase of two algorithms, making the meta-knowledge transfer to the C_n better. Results in Table 4 strongly prove that our method also significantly improves meta-learning embedding.

4.8 Ablation Study

Based on the overall loss function, Equation (12), we conduct more detailed ablations in Table 5. We fix $\lambda_1 = \lambda_2 = 0.1$ and $t = 10$ in this evaluation. (1) Considering the relevant methods [Park et al., 2020] [Lee and Chung, 2021], we also try the feature reconstruction. Accordingly, $FeatRec$ denotes we change our topological reconstruction to $\|X - g_o(X)\|_F^2$. The results show feature reconstruction plays a negative role in our approach, except for the 1-shot $miniImageNet$. (2) w/o denotes we drop the corresponding component in the loss function. Six results report the S and Q ablations. We observe that the reconstructions of both S and Q are indispensable, especially for S. The MS of S and Q have a steady performance improvement. When the S component is entirely absent, there is a certain negative impact on performance. When we drop all Q components, the performance degradation is more significant.

Parameter Sensitivity Analysis. We conduct the parameter sensitivity analysis in Figure 3. We observe higher λ_1 and λ_2 lead to better performances, where this phenomenon is more sensitive to λ_2. Sensitivity analysis shows that our method is stable and effective when the L_{BE} occupies a high proportion in the overall loss function.

Table 5: More detailed ablation studies based on ResNet-18

Parameter Sensitivity Analysis. We conduct the parameter sensitivity analysis in Figure 3. We observe higher λ_1 and λ_2 lead to better performances, where this phenomenon is more sensitive to λ_2. Sensitivity analysis shows that our method is stable and effective when the L_{BE} occupies a high proportion in the overall loss function.

5 Conclusion

In this paper, we first reconstruct the topological relation of embedding, and then pioneer implicit more shots augmentation. We show significant improvement in different evaluations. In ablation studies, we discuss why $BE.MS$ works. Scarce labeled data is the fundamental problem of few-shot learning. Our approach implicitly alleviates this problem while introducing only negligible complexity, which is very promising.
Acknowledgments

This work is supported by Shanghai Science and Technology Program “Distributed and generative few-shot algorithm and theory research” under Grant No. 2051100600, Natural Science Foundation of China under Grant No. 62076094, and Shanghai Science and Technology Program “Federated based cross-domain and cross-task incremental learning” under Grant No. 2151100800.

References

