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Abstract

This paper is concerned with contrastive learn-
ing (CL) for low-level image restoration and en-
hancement tasks. We propose a new label-efficient
learning paradigm based on residuals, residual
contrastive learning (RCL), and derive an unsu-
pervised visual representation learning framework,
suitable for low-level vision tasks with noisy in-
puts. While supervised image reconstruction aims
to minimize residual terms directly, RCL alterna-
tively builds a connection between residuals and
CL by defining a novel instance discrimination pre-
text task, using residuals as the discriminative fea-
ture. Our formulation mitigates the severe task
misalignment between instance discrimination pre-
text tasks and downstream image reconstruction
tasks, present in existing CL frameworks. Exper-
imentally, we find that RCL can learn robust and
transferable representations that improve the per-
formance of various downstream tasks, such as de-
noising and super resolution, in comparison with
recent self-supervised methods designed specifi-
cally for noisy inputs. Additionally, our unsuper-
vised pre-training can significantly reduce annota-
tion costs whilst maintaining performance compet-
itive with fully-supervised image reconstruction.

1 Introduction

Fueled by the advances of self-supervised learning! (SSL),
large-scale unsupervised pre-training followed by fine-tuning
on small amounts of annotated data has become a pop-
ular label-efficient learning paradigm. A standard exam-
ple involves firstly unsupervised visual representation learn-
ing (UVRL) using ImageNet [Deng er al., 2009]. The
learned representations can then be transferred to downstream
tasks, reducing the number of labels required and yet achiev-
ing strong performance, competitive with supervised pre-
training [He er al., 2020]. Self-supervised strategies therefore
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Figure 1: RCL for low-level visual representations with noisy inputs.
x is a noisy image. &; and &; are two random crops from the same
x (a positive pair). r¢(-) is a residual function, defined in Eq. 2. n;
and m; are two corresponding residual tensors.

have the potential to reduce labeling costs and this becomes
especially pertinent for dense prediction tasks where human
annotation is time-consuming and often very expensive.
Further, an unsupervised pre-training method, capable of
learning representations transferable across various down-
stream tasks, is desirable as this enables efficiency in terms
of both computation and labeling costs. Without this prop-
erty it quickly becomes impractical to label large datasets for
multiple tasks of interest or alternatively design appropriate
individual pretext tasks for each downstream application.
One such SSL strategy capable of learning transferable rep-
resentations [Wang and Isola, 2020] is contrastive learning
(CL) [Chen et al., 2020; He et al., 2020; Chuang et al., 2020;
Li et al., 2021]. CL is based on an instance discrimi-
nation pretext task [Wu et al, 2018], where the learning
goal is to maximize the mutual information of two views
of the same image, pulling two augmented image views to-
gether in the feature space, whilst pushing apart represen-
tations of different images [Oord er al., 2018]. While CL
has been shown to provide comparable performance with,
and even improve upon, supervised pre-training with respect
to various high-level downstream tasks [Chen et al., 2020;
He er al., 20201, contemporary strategies expose two limita-
tions for low-level image restoration and enhancement tasks.
Firstly, recent studies have shown that when the pretext
and downstream tasks are not closely correlated, improving
pretext task performance cannot guarantee downstream task
improvement [Ericsson et al., 2021]. This phenomenon is
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known as fask misalignment [Dong et al., 2021]. However,
existing CL frameworks are mainly designed for high-level
semantic understanding tasks, leaving the potential of CL in
conjunction with low-level vision domains currently under-
explored. Empirically, we find that the task misalignment
can severely impair the representation learning performance
of existing CL frameworks for low-level downstream tasks.

Secondly, images utilized for CL pre-training are typically
assumed to be noise free, yet input to image enhancement
and restoration tasks commonly contain additive noise. This
is compounded by commonly adopted CL data augmentation
policies [Chen et al., 2020] that affect the data distribution
and encourage the learning of invariances less relevant for
image reconstruction tasks. Alternative SSL approaches have
however been designed specifically for noisy images. Al-
though such methods have achieved promising results for the
denoising task specifically [Batson and Royer, 20191, we find
that they are less well equipped to efficiently learn transfer-
able representations when the downstream data distributions
change (i.e. for additional low-level vision tasks).

Motivated by these considerations, our work aims to an-
swer an under-explored question: how can CL be used to
learn transferable representations for low-level vision tasks,
from noisy images?

We start by recalling standard supervised learning (SL).
Let (z, y) define an input and target image reconstruction
respectively (e.g. a noisy and noise-free image pair in the
denoising literature), the loss can then be formulated as
lly — fo(x)]||, where fg(-) is the model of interest with param-
eters 0. This canonical use of paired data provides supervised
models with a useful signal however obtaining ground truth
data for real-world image enhancement and restoration tasks
that necessitate dense prediction may require complex and of-
ten constraining procedures, i.e. y is often unavailable due to
annotation costs. Removing the requirement of a noise-free
image y, and instead minimizing ||z — fp(x)||, can be seen to
provide a trivial solution where fy(-) is an identity mapping.
Various SSL efforts therefore instead propose to minimize
more useful objectives of the form ||z — fp(z)||, where & con-
stitutes e.g. a second noisy variant of x [Lehtinen er al., 2018;
Batson and Royer, 2019; Ehret et al., 2019]. We observe that,
without the norm operator, © — fs(x) can be regarded as a
residual term. In statistics and optimization, a residual de-
notes the difference between observed and estimated values
of interest. In the domain of deep learning residuals com-
monly take the form r(x) = fy(x) — x, where x is the input,
fo(x) is the output, and r(-) is the residual function [He et
al., 2016].

Following this formulation, we propose residual con-
trastive learning (RCL), a residual-based SSL framework for
noisy images (illustrated in Fig. 1). We bridge a methodolog-
ical gap between SSL on visual signals with additive noise
and unsupervised residual learning via CL. We conjecture
that residuals can be effectively used as a discriminative fea-
ture for CL based on the fact that additive image noise is
signal-dependent [Hasinoff et al., 2010]. We propose a resid-
ual contrastive loss, which leverages the earth mover’s dis-
tance (EMD) to measure the similarity between two residual
tensors with the same shape (c.f. cosine similarity applied
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to two feature vectors [Chen ef al., 2020]). By leveraging
signal-dependent noise as an appropriate discriminative fea-
ture based on the prior knowledge in image processing, in
tandem with the representation learning ability of CL, RCL
is expected to learn transferable representations amenable to
downstream image reconstruction tasks.

Similar to previous CL studies that alternatively consider
representation learning for high-level vision tasks [Chen et
al., 2020], we adopt a proxy evaluation protocol that uses the
performance of proxy supervised downstream tasks to mea-
sure the quality of the representations learned during unsuper-
vised pre-training. We establish a set of benchmark datasets
and downstream tasks towards systematically evaluating RCL
against both (i) recent CL methods that focus on dense predic-
tion [O. Pinheiro ef al., 2020; Wang et al., 2021a; Xie et al.,
2021] and (ii) strong SSL methods designed specifically for
noisy inputs [Lehtinen er al., 2018; Batson and Royer, 2019;
Ehret er al., 2019]. We observe that representations learned
by RCL consistently outperform the baselines and exhibit
strong generalization ability in multiple downstream tasks;
namely denoising, super resolution and demosaicing. Finally,
we report that a learning paradigm involving pre-training on
unlabeled data using RCL, followed by fine-tuning on small
labeled data with SL, can achieve performance competitive
with fully-supervised baselines. In summary, our contribu-
tions are as follows:

1. We provide the first formulation of an instance discrimina-
tion pretext task based on residuals.

2. We propose RCL, a novel framework that can learn trans-
ferable representations from only noisy inputs. To the best of
our knowledge, this constitutes the first study of CL on noisy
images for low-level image reconstruction tasks.

3. Our empirical results show that RCL learns robust rep-
resentations from noisy images without paired ground truth,
and unsupervised pre-training with RCL can significantly re-
duce the annotation cost in comparison with fully-supervised
alternatives.

2 Related Work

The recent renaissance of CL has been driven by the suc-
cesses of UVRL on ImageNet [Chen et al., 2020; He e al.,
2020]. In the case of image recognition, the objective of both
the instance discrimination pretext task and corresponding
downstream task are highly correlated and intuitively, so is
resulting performance. However, for tasks such as object de-
tection and others involving dense prediction, correlation still
exists yet is found to be weaker than in the case of recog-
nition [Ericsson et al., 2021]. To mitigate such task mis-
alignment, several state-of-the-art (SOTA) CL frameworks,
designed for dense prediction tasks, have been proposed,
e.g. VADeR [O. Pinheiro et al., 20201, DenseCL [Wang et al.,
2021al, and PixContrast [Xie et al., 2021]. These approaches
perform pixel-wise CL and train encoder-decoder networks
that directly enable dense prediction. However, in contrast
to RCL, these SOTA approaches are designed and evaluated
for semantic understanding tasks, i.e. task misalignment still
exists when the downstream task is related to image recon-
struction. A further significant difference between this work
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and those highlighted is that we purposefully abstain from re-
lying on data augmentation. We find that augmentation can
alter the original data noise distribution and potentially pro-
vides a signal that leads to learning invariances, undesirable
for our target low-level tasks.

There have additionally been recent applications of CL to
specific low-level vision tasks, e.g. dehazing [Wu et al., 2021]
and super resolution [Wang et al., 2021b]. In these studies,
CL is considered as a regularization technique to provide an
end-to-end solution for the specific task. In contrast, our pro-
posed approach attempts to provide a step towards a universal
UVRL framework for unprocessed images with natural noise,
instead of for task-dependent applications. Thus, RCL could
be used as a pre-training step for these downstream tasks.

A recent SSL study that, similar to our work, makes use of
an EMD metric is self-EMD [Liu et al., 2020]. In contrast
to our proposed approach, their method formulates object de-
tection as an optimal transport problem whereas we directly
measure the similarity between two distributions without re-
quiring an iterative procedure, commonly induced by optimal
transport problems that make use of the Sinkhorn-Knopp al-
gorithm.

3 Residual Contrastive Learning

3.1 Preliminary

A widely adopted contrastive loss, InfoNCE [Oord er al.,
2018], is formulated as:

exp(sim(zq, 20)/T)
Sy exp(sim(zg, 2)/7)

where z denotes the feature vector extracted from an image
patch of interest, 7 is a temperature parameter, and sim(-, -)
is the cosine similarity function. Firstly image patches are
encoded into feature vectors via an encoder and then sim(-, -)
can be used to measure the similarity between these repre-
sentations. (z,, zo) is a positive pair such that two augmented
views are taken from the same image; and (z,, z;>0) is a neg-
ative pair, where two patches are taken from different images.

ENCE = — log (1)

3.2 Problem Formulation

We denote x as a noisy image signal with clean image sig-
nal y and additive noise n.. The relation’ between the tuple
(z,y,n) can be formed as « = y + n. The noise element n
follows an unknown signal-dependent distribution.

For a low-level vision task under SL, a training set S =
{(x:, i)} s is given, with N training examples. Let fp
denote a model of interest which takes x as input. The opti-
mization goal is then to minimize || fo(x) — y||,. for optimal
model weights § where || - ||, denotes the p-norm.

The problem setting of interest in this work is UVRL,
which involves an unlabelled training set. We alternatively
consider S = {x;} i]\isl and the goal is to learn representations
(i.e. optimize model weights ¢) for downstream tasks with
access to the noisy image signals only.

2For simplicity, we assume x and y take a common image for-
mat, e.g. RGB or RAW.

3.3 Residual-Based Instance Discrimination

A key contribution of this study consists of the formulation of
our residual-based instance discrimination pretext task. We
prime this by noting that supervised residual learning has led
to success in many low-level vision tasks [Zhang et al., 2017,
Li et al., 2018]. The residual tensor for x is defined as

n(x) =ro(x) = x — fo(x). 2)

We use the residual tensors as the discriminative input for CL.
We are motivated by the empirical observation that on aver-
age; the noise distributions associated with two image crops,
extracted from the same image, have detectably smaller diver-
gence than noise distributions pertaining to crops extracted
from different images. This observation constitutes a natu-
ral extension of the signal-dependency assumption. Further,
for natural images, the noise distributions of two crops orig-
inating from the same instance may also possess high cor-
relation due to potential self-similarities [Batson and Royer,
2019], with similar structures appearing at different locations
and scales in the same image.

3.4 Residual Contrastive Loss

We now formally introduce the proposed residual contrastive
loss. Note, the sim(-, -) function in Eq. 1 implicitly imposes
two constraints: (i) the input z is required to take the form of
anormalized vector; and (ii) an element-wise correspondence
between two feature vectors is required in the feature space.
To realize a residual contrastive loss suitable for dense pre-
diction tasks associated with low-level vision, we relax these
constraints by replacing the cosine similarity sim(-,-) with
a negative distance function. The original contrastive loss
(Eq. 1) can then be reformulated as

exp(—d(A(z,), n(x0))/7)
SN g exp(—d(A(z,), a(;))/7)

where T is a temperature parameter [Chen ef al., 2020] and
d(-,-) is a non-negative statistical metric measuring the diver-
gence between two probability distributions, such that larger
metric values indicate larger divergence.

Distance Function We further note that, unlike cosine sim-
ilarity, d(-, -) should not assume a pair-wise relationship be-
tween two samples, as the noise distribution is independent
of the pixel location. Valid distance measures d(-, -) should
also possess desirable properties such as ease of computa-
tion and differentiability, towards enabling efficient end-to-
end training. Common information theoretic measures that
require density estimation (e.g. Kullback—Leibler divergence)
do not meet the above requirements. In this work, we choose
the earth mover’s distance (EMD). Let (fv(x,), n(x,)) be
two residual tensors, we then have

EMD(7(x),, n(x),) =

inf  Eonia s ? —h 4)
O (@) 0 (@) )~ [[[7U(E)p — (x)g ],

3)

Ecomrast =-1

where n(xz), ~ P,, n(x); ~ P,, and II(-, ) denotes the
joint distribution.

Training For computational simplicity, we define a posi-
tive pair (n(x,), n(xo)) as two overlapping image patches
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Algorithm 1 Batch-wise training of residual contrastive loss

: Sample a batch of N+1 images. > Sample N+1 positive pairs
Sample two positive patches for each image.
Generate 1i () for each of 2N 42 patches.
forj=1,2,...,N+1do

Take the ;" pair as the positive pair (A(x), 72(x0)).

Take the 2" patch of each of the other N pairs as 7(i>1).

Compute Lcontrast for the jth positive pair. > Eq. 3
Sum up Leonrast for a batch of N+1 images as the batch-wise
residual contrastive loss.

> Eq. 2

P RDINRRY

(x4, o) cropped from the same instance and a negative pair
(n(xq), n(x;>1)) as two image patches (x4, €;~1) cropped
from two different instances. The batch-wise training details
of the residual contrastive loss are illustrated in Algorithm 1.

3.5 Optimization

While Eq. 3 enables UVRL, this gives rise to a further ques-
tion: as fy could represent an arbitrary function that satisfies
Eq. 2, the representations learned by RCL may not be mean-
ingful for the downstream tasks of interest. CL works well
for high-level visual representations because the pretext tasks
and downstream tasks both involve discrimination of visual
objects. Similarly, we require to build such a connection be-
tween RCL and low-level vision tasks.

The performance of low-level image reconstruction tasks is
known to be sensitive to pixel-level intensities. This offers a
simple solution: inclusion of the term || — fp(x)]| as a regu-
larizer. Note that minimizing ||z — fy(x)]|| alone (i.e. without
Eq. 3) could lead to the trivial solution of an identity map-
ping. This issue can be mitigated through the introduction
of non-linearities to both terms. Inspired by this strategy, we
leverage the basic concept of the perceptual loss [Johnson et
al., 2016] and define a consistency loss term as

Loonsistency = [[6(9e()) — d(ge(fo(@))3, (5

where ¢(-) represents the features extracted from a pre-
trained encoder g.. Note, g. could either be pre-trained in a
self-supervised fashion using the unlabeled noisy inputs [He
et al., 2020] or acquired from existing pre-trained weights
(e.g. from ImageNet [Deng et al., 2009]). We utilize the as-
sumption that the noisy input image and the reconstructed
output image should convey similar semantic information,
i.e. the noise should not drastically change the semantic con-
tent of the image. The final training objective is then the sum
of the two introduced losses:

Ltotal = Oéﬁcontrast + Econsistencyy (6)

where « is a weighting parameter chosen empirically.

4 Experimental Setup

We introduce here experimental protocols, datasets and im-
plementation details.

Simulation We aim to evaluate the generalization ability of
the learned representations across different downstream tasks.
However we note that real-world multi-task datasets, pertain-
ing exclusively to low-level vision tasks, are currently scarce
in the literature. Thus, to empirically validate the idea of

CL with residuals, we firstly establish a set of benchmark
datasets based on synthetic signal-dependent noise. To sim-
ulate such signal-dependent noise, we generate synthetic het-
eroscedastic Gaussian noise based on a noise level function
(NLF) model (12 ~ N(0, Ashot© + Aread)). We use differ-
ent (Ashot, Aread) to model different cameras and acquisition
settings. The parameters (Aghot, Aread) are randomly sampled
to ensure the overall noise variance level o2, of each image,
falls in a reasonable range for the data used in our experi-
ments and we set o € [0, 20| following [Gharbi er al., 2016].
We therefore consider each image to have a noise distribution
with approximately unique parameters. From the perspective
of the dataset S, there is therefore an approximate one-to-one
mapping between (Ashot, Aread) and each image. This sim-
ulation model is utilized to evaluate the robustness of SSL
methods.

Benchmark Datasets In order to simulate large-scale unla-
beled training data with signal-dependent noise, we consider
three large-scale public datasets, namely, the MIT Demosaic-
ing dataset [Gharbi et al., 2016] (MIT), the Stanford Taskon-
omy dataset [Zamir et al., 2018] (Stanford), and the PASCAL
VOC dataset [Everingham et al., 2010] (VOC). We generate
noisy images by adding synthetic noise. The datasets are split
into training and test sets.

Proxy Evaluation CL aims to learn strong representations
for downstream tasks, i.e. pre-training of fy instead of solv-
ing each problem directly. In this work, we therefore test the
generalization ability of the learned representations [Zhang et
al., 2016]. Following previous studies on CL for high-level
vision tasks [He et al., 2020; Chen et al., 2020; Chuang et
al., 20201, we adopt a proxy evaluation protocol. Concretely,
we fine-tune the learned representations on downstream tasks
with a small amount of annotated data, under SL. We report
the performance of the downstream tasks as the proxy per-
formance for SSL. In this way, we can systematically eval-
uate the generalization and transferablility of representations
learned under different SSL frameworks. Following the lin-
ear classification protocol [He et al., 2020], first the weights
of a network fy are pre-trained using an unlabeled training
set, and then all weights except those in the last layer are
frozen. The pre-trained last layer is then replaced with a ran-
domly initiated task-dependent layer for the downstream task.
The new last layer is then fine-tuned with the labeled training
set and evaluated on the task test set. Note, under proxy evalu-
ation, the representations of the intermediate layers are fixed.
The reported numerical results are used to indirectly reflect
the quality of fixed representations, thus this is a proxy evalu-
ation. We highlight that this evaluation differs from common
low-level vision task evaluation protocols, where end-to-end
solutions are directly compared (without fine-tuning).
Evaluation Metrics We consider two common image recon-
struction metrics for the proxy evaluation, peak signal-to-
noise ratio (PSNR) and structure similarity index measure
(SSIM). We repeat experiments over five trials and report
mean results. We denote the performance of supervised pre-
training as an Oracle.

Implementation Theoretically, fy may constitute any model
capable of performing dense prediction tasks. In the follow-
ing section, we will show that the representations learned by
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Method MIT Stanford VvOC
PSNR SSIM  PSNR SSIM  PSNR SSIM
VADeR 14.63  0.1088 17.54  0.1601 16.33  0.1573
DenseCL 13.78  0.0910 16.46  0.1527 1533 0.1373
PixContrast 1477 0.1101 17.61  0.1610 16.42  0.1585
VADeR+ 19.63  0.4183 21.58  0.4961 20.75  0.4737
DenseCL+ 18.87  0.3998 20.58  0.4705 20.21  0.4647
PixContrast+ 19.87 04121 21.41  0.4899 20.82  0.4858
N2N 28.66  0.8614 34.14  0.8699 3091  0.8272
N2S 28.16  0.8373 34.04  0.8640 30.71  0.8256
RCL-BD 28.83  0.8871 3475  0.8618 3129  0.8274
RCL-MMD 28.68  0.8864 34.87  0.8687 31.53 08316
RCL-EMD 29.54  0.8908 3543  0.8783 31.39  0.8330
Oracle 31.26  0.9187 38.25  0.9422 33.65  0.9038

Table 1: Proxy evaluation of representation learning using denoising
as the downstream task.

fo can be successfully applied to various downstream im-
age reconstruction tasks: denoising, demosaicing and su-
per resolution. Following [Zamir ef al., 2018], we utilize a
generic network backbone; U-Net [Ronneberger er al., 2015]
to instantiate fy. We additionally use a ResNet50 [He et
al., 2016], pre-trained on ImageNet [Deng ef al., 2009] for
the fixed feature extractor g.. To instantiate Eq. 3, we fol-
low [Chen et al., 2020] in defining temperature T values and
use a batch size of 64. We use a weighting parameter a.=10"3
in the unsupervised pre-training phase and an L; loss for
the supervised fine-tuning in the evaluation phase. We use
an Adam [Kingma and Ba, 2015] optimizer with 5;=0.9,
82=0.999, and e=10"", and a fixed learning rate 103, The
minimal image crop size is 128x128. All models are imple-
mented in PyTorch on a NVIDIA Tesla V100 GPU.

S Experiments

Baselines To validate the empirical considerations presented
in Sec. 1, we select two sets of baselines SSL methods. We
include three SOTA CL frameworks for high-level vision
tasks to validate our hypothesis that there exists a task mis-
alignment between semantic understanding tasks and image
restoration tasks. We consider VADeR [O. Pinheiro et al.,
20201, DenseCL [Wang et al., 2021al, and PixContrast [Xie
et al., 2021]. These three baselines apply CL at a pixel-level
in the feature space, thus can train an encoder-decoder net-
work directly for dense prediction tasks. However, in con-
trast to RCL, these methods are designed for semantic under-
standing tasks, i.e. task misalignment still exists. We use a
consistent U-Net backbone for all three methods, where the
number of output channels of the last layer is set to three (for
RGB images). The pre-training and fine-tuning procedures
follow Sec. 4, inline with our RCL. For a fair comparison, we
also report the performance of three methods trained with ad-
ditional Leonsisiency (Eq. 5), denoted as VADeR+, DenseCL+,
and PixContrast+. We also consider two seminal SSL base-
lines that are designed for noisy images, namely noise2noise
(N2N) [Lehtinen et al., 2018] and noise2self (N2S) [Batson
and Royer, 2019], for UVRL on image reconstruction tasks.
For N2N, we generate paired noisy RGB images with the
same random parameters (Ashot, Aread). INOte that N2N and
N2S both utilize a formulation of | — fy(x)||, where & is a
noisy observation of x.

Denoising We instantiate denoising as the first downstream
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SR JDenSR
Method PSNR  SSIM PSNR  SSIM
NN 3161 08730 2790 0.7860
N2S 301 08699 27.80 07831
RCLBD 3880 09654 3210 0.8046
RCL-MMD 3831 09634 3195 08068
RCL-EMD  39.01 09658 32.63 0.8214
SL (Den) 3418 00118 3280 08353
Oracle 3893 09603 3598 09175

Table 2: Proxy evaluation of representation learning using SR and
JDenSR as the downstream task on the Stanford dataset.

task and report representation learning results in Table 1. All
three CL frameworks, designed for high-level tasks, produce
results much weaker than SSL methods designed for specific
low-level vision tasks, with or without Lcongistency.- We empha-
size that this is due to the highlighted severe task misalign-
ment issue. Thus these methods are omitted in the following
discussion. Note, during proxy evaluation, the pre-training
set and testing set do not overlap. RCL shows competitive
representation learning performance in comparison with N2N
and N2S, which are reported to achieve reasonable perfor-
mance in blind denoising tasks. In addition to EMD, we con-
sider two alternative distance functions Bhattacharyya dis-
tance (BD) and maximum mean discrepancy (MMD). EMD
showed more robust performance than BD and MMD in de-
noising and two other downstream tasks (below), we thus se-
lect EMD as our default metric for remaining experiments.

Super Resolution We further explore the generalization abil-
ity of our learned representations to low-level vision tasks that
are markedly distinct from denoising. Super resolution (SR)
constitutes such a task. As each image in the Stanford dataset
has two resolutions (512x512 and 1024 x1024), we define
the higher resolution image as the upsampled ground truth
in order to provide a simple proof of concept SR task. Fol-
lowing the proxy evaluation protocols introduced previously,
results are presented in Table 2 (left). We observe that RCL
outperforms N2N and N2S by a large margin. By comparing
Table 1 with Table 2, we find the performance gap between
RCL and N2N / N2S becomes larger, i.e. N2N and N2S tend
to learn less meaningful representations for disparate down-
stream tasks where the gap between them and respective pre-
text tasks grow, in the investigated setting. This phenomenon
has also been discussed in [Zhang er al., 2016], where a task-
dependent colorization-based SSL shows limited classifica-
tion performance. In comparison, RCL can result in repre-
sentations that exhibit stronger generalisation ability.

Joint Denoising and Super Resolution As a natural ex-
tension to independent denoising and SR tasks, we con-
sider a joint denoising and super resolution downstream task
(JDenSR), which has two sub-tasks and can further demon-
strate the versatility of the learned representations. The re-
sults are presented in Table 2 (right). Again, RCL outper-
forms the baseline SSL frameworks by a large margin. We
note that the objective for image reconstruction tasks is typi-
cally to estimate (minimize) residuals. This is a similar setup
to denoising but with the difference that the residual might
have a different distribution. We hypothesize that RCL is
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# Labels SL RCL + SL
PSNR  SSIM  PSNR  SSIM
0 - - 2262 0.7989
10 20.74  0.7299 2820 0.8834
10? 27.19 0.8734 30.24 0.9028
10° 31.31 09184  32.09 0.9280
10* 3341 09437 33.85 09514

Table 3: Standard SL (left) and RCL pre-training with SL fine-
tuning (right), evaluated with denoising on the VOC dataset. # La-
bels denotes the number of labeled data available for SL.

more robust to this change of distribution.

Transferability: Supervised Pre-Training vs. Unsuper-
vised Pre-Training In addition to unsupervised pre-training,
we report the performance of supervised pre-training by de-
noising in the “SL (Den)” row of Table 2. We learn repre-
sentations by applying SL to the denoising task, defined in
Table 1. We then fine-tune to the alternative downstream
tasks in a fashion identical to the considered SSL meth-
ods. We note that interestingly, RCL is able to outperform
“SL (Den)” for the SR task and also RCL(-EMD) achieves
higher performance than the Oracle in Table 2. This unin-
tuitive phenomenon, that unsupervised pre-training can im-
prove performance over supervised pre-training, has been re-
cently corroborated in CL studies that consider high-level vi-
sion tasks [Wang and Isola, 2020]. While supervised pre-
training tends to learn task-dependent representations, the
representations learned by CL are more informative. In Ta-
ble 2, the “SL (Den)” row, pertaining to JDenSR results,
exhibits strong performance, and a marginal advantage over
RCL, which may be explained by the fact that JDenSR can be
considered closely related to a pure denoising task.

RCL vs. SL To further quantify the performance and
labelling-cost trade-off, we perform a sensitivity study. We
train a U-Net in a supervised fashion (SL) for the denoising
task using VOC data and compare this with RCL(-EMD) un-
der various magnitudes of available training labels. We re-use
the same random seeds for both methods. In the first row of
Table 3, we report the performance of RCL by directly apply-
ing the representations pre-trained on the unlabelled training
set, on the test set. In the remaining Table 3 rows, it can be
observed that the performance gain obtained by pre-training
with RCL grows larger as SL suffers more from label scarcity.
Label-Efficient Learning Our sensitivity study affords ini-
tial evidence towards answering the questions: can RCL help
SL? and, if so, when can RCL help? We fine-tuned the U-
Net, pre-trained by RCL(-EMD) on the entire training set,
with additional paired RGB training images, as above. Pre-
training with RCL consistently improves the performance of
standard SL. In cases where labelled data are rare, expensive
to collect or curate, such pre-training may be able to offer sig-
nificant improvement (e.g. +7.46dB with only ten labels in
Table 3). We observe that fine-tuning with 500 and 4000 la-
bels achieves similar performance to supervised training with
10° and 10* labels, which are around 50% and 60% reduction
in terms of annotation cost, respectively. We also observe that
improvement margins diminish as the number of available la-
bels grow significantly (e.g. +0.44d B with 10, 000 labels).
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Figure 2: Comparison of residual contrastive loss (illustrated with
EMD) before and after training. The density plot depicts the pair-
wise differences of EMD between negative pairs minus EMD be-
tween positive pairs.

Effect of Residual Contrastive Loss Following the same
training procedure of N2N and N2S, we minimize Lconsistency
(Eq. 5) alone to validate the contribution of the residual
contrastive loss. The result of minimizing Lconsisiency alone
is lower than N2N and N2S but higher than VADeR+,
DenseCL+, and PixContrast+, which are negatively impacted
by the task misalignment effect. It is worth mentioning that
including the residual contrastive loss in the training can not
significantly improve the model robustness or generalization
ability for different downstream tasks, as shown in Table 2.
Learning from Residuals It is important to validate that RCL
indeed learns from the residuals in the proposed formula-
tion. To illustrate the learning outcome directly, we extract
the residual tensors by using a U-Net trained on the MIT
dataset with RCL-EMD. Given an anchor image, we calcu-
late the pair-wise difference for EMD between a negative pair
and EMD between a positive pair. Given the same network,
we record the differences before the training starts (i.e. the
weights are randomly initialized) and after the loss converges.
The density plot of the differences is shown in Fig. 2. RCL
contracts the predicted distribution closer to the true under-
lying distribution, where we use the sampled noise as the
residual. We also find that employing large o values in Eq. 6
degrade the performance. We conjecture that this is because
low-level vision tasks are sensitive to pixel-level perturbation.
To provide an example: a minor change in predicted pixel in-
tensity can change the reconstructed pixel color but an anal-
ogous change in predicted pixel probability may not mean-
ingfully change e.g. a segmentation result. RCL with large
« can still learn representations, however these may not be
appropriate for the downstream tasks, discussed in Sec. 3.5.
Limitations The empirical results in Sec. 5 are based on sim-
ulation. It is interesting to evaluate the proposed framework
on real-world multi-task datasets in the future.

6 Conclusion

We present a principled unsupervised strategy which can
learn transferable representations from images with additive
noise for different image reconstruction tasks. To the best of
our knowledge, we are the first to unify CL and residual learn-
ing by formulating a residual-based instance discrimination
pretext task. The empirical studies validate the robustness and
generalization of the representations learned by RCL, and fur-
ther pose a new generic and label-efficient learning direction
for low-level vision tasks.
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