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Abstract
A network can effectively depict close relationships
among its nodes, with labels in a taxonomy de-
scribing the nodes’ rich attributes. Network em-
bedding aims at learning a representation vector
for each node and label to preserve their proxim-
ity, while most existing methods suffer from seri-
ous underfitting when dealing with datasets with
dense node-label links. For instance, a node could
have dozens of labels describing its diverse proper-
ties, causing the single node vector overloaded and
hard to fit all the labels. We propose HIerarchical
Multi-vector Embedding (HIME), which solves the
underfitting problem by adaptively learning multi-
ple ‘branch vectors’ for each node to dynamically
fit separate sets of labels in a hierarchy-aware em-
bedding space. Moreover, a ‘root vector’ is learned
for each node based on its branch vectors to bet-
ter predict the sparse but valuable node-node links
with the knowledge of its labels. Experiments re-
veal HIME’s comprehensive advantages over exist-
ing methods on tasks such as proximity search, link
prediction and hierarchical classification.

1 Introduction
A network is able to depict the proximity among nodes. Ex-
tra node properties are described by labels organized as a tax-
onomy, which is often presented as a directed acyclic graph
(DAG). For instance, in a Protein-Protein Interaction (PPI)
network with Gene Ontology (GO) being the taxonomy, net-
work edges reveal interactions among proteins, while differ-
ent hierarchical GO terms of a protein tell its diverse biologi-
cal properties. Generally, a node can have multiple label paths
in the taxonomy, as shown in figure 1 (a).

Traditional heterogeneous network embedding methods
serve as an option for co-embedding the network and the
taxonomy. They learn a representation vector for each node
and label, so that the proximity is preserved by the distances
among the vectors. However, on datasets with dense node-
label relationships, the single representation vector of a node
could be overloaded and hard to fit the node’s different labels,
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Figure 1: The difference between single-vector and multi-vector em-
bedding. Given a network node with five circled labels in a taxon-
omy (a), single-vector embedding learns a vector in the middle of
the five labels without being close to any of them, causing vague
representation (b). However, by giving multiple vectors to a node,
the underfitting problem can be overcome in a Poincaré ball (c).

which causes the underfitting problem [Yang et al., 2020].
As illustrated in figure 1 (b), in order to minimize the overall
distance to its labels, the node vector is embedded near the
center of its five labels without being close to any of them.
This underfitting problem seriously decreases the quality of
the representation vectors, causing them containing vague or
even misleading information.

To solve the underfitting problem, one way is to optimize
the positions of the labels so as to minimize the probability
of underfitting, which can be achieved by the Poincaré ball
model [Nickel and Kiela, 2017]. A Poincaré ball is a hyper-
bolic space with constant negative curvature of −1, and can
be viewed as a continuous version of trees. It naturally caters
to the taxonomy, with high-level labels embedded near the
origin while low-level ones near the ball surface, and labels
in a label-path embedded in the same direction. Therefore,
a node vector is less likely to underfit labels belonging to a
single label path. But using the Poincaré ball alone does not
necessarily tackle the underfitting problem, since a node can
have multiple label paths embedded away from each other.

Based on the Poincaré ball, an effective way to solve the
underfitting problem is to ‘divide and conquer’. Specifically,
we allow multiple ‘branch vectors’ for each node to fit differ-
ent sets of its labels. A branch vector can reflect a group
of closely related low-level characteristics, or indicate the
general concepts that the node belongs to. Therefore, multi-
vector embedding provides a more accurate and hierarchical
representation as shown in figure 1 (c). The branch vector
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number is adaptive to the node’s label distribution. Besides,
the Least Recently Used (LRU) policy is employed to balance
the loads among the branch vectors of the node.

The branch vectors can then be utilized in preserving
sparse but valuable node-node relationships. In a gene reg-
ulatory network for instance, it is expensive and intractable to
biologically examine all the regulations among up to 27000
human genes, making the label information crucial for pre-
dicting unseen regulations. Given a node with its label infor-
mation learned by its branch vectors, we use a single ‘root
vector’ aggregating these information to better preserve ex-
isting links and predict the potential ones.

We conclude our method as HIerarchical Multi-vector Em-
bedding (HIME), which learns a representation vector for
each label and multiple branch vectors for each node to fit its
different label clusters. A single root vector is then learned for
each node based on its branch vectors to preserve node-node
proximity. Our work makes the following contributions: (1)
We propose multi-vector embedding to solve the underfitting
problem. (2) The LRU policy is applied to balance the loads
among the branch vectors. (3) The root vector aggregated
from the branch vectors better preserves the node proximity.
(4) We conduct extensive experiments to show HIME’s com-
prehensive advantages over existing methods.

2 Related Work
Network embedding aims at learning representation vectors
for network nodes to preserve the node proximity. The
methodologies of network embedding can be mainly catego-
rized into matrix factorization, Skip-Gram with walk patterns
[Grover and Leskovec, 2016; Tang et al., 2015] and neural
networks [Wang et al., 2018]. These classic methods laid the
foundation for later variants such as taxonomy-related em-
bedding and multi-aspect embedding.

2.1 Taxonomy-Related Embedding
Most taxonomy-related embedding methods co-embed net-
work nodes and taxonomy labels. Unlike the entity typing
task [Ren et al., 2016] in natural language processing that
focuses on preserving node-label relationships, taxonomy-
related network embedding should take both node-node and
node-label relationships into account.

Poincaré [Nickel and Kiela, 2017] and Lorentz [Nickel and
Kiela, 2018] both embed WordNet into a hyperbolic space
so as to maintain the hypernym relationships. The hyper-
bolic space is later applied by Tag2Vec [Wang et al., 2019]
that co-embeds the network and the taxonomy by Skip-Gram
with meta-paths. The three methods ensure the universality
of the embedding vectors by using a single hyperbolic space,
but they suffer from the underfitting problem. JOIE [Hao et
al., 2019] embeds nodes and labels into two separate spaces
connected by a non-linear affine transformation. TaxoGAN
[Yang et al., 2020] spares an individual embedding space for
every label where its nodes and its child labels are embed-
ded by adversarial training, while its drawback is also obvi-
ous since the representation vectors only function locally in
diverse spaces.

In general, these taxonomy-related methods are blocked by
the trade-off between the universality and the accurateness of

the representation vectors. By contrast, HIME generates a
precise embedding in a single Poincaré ball.

2.2 Multi-Aspect Embedding
Several recent works have revealed the necessity of learning
multiple vectors to capture different aspects of the node. For
instance, PolyDW [Liu et al., 2019] represents each facet of
an item using a single vector, and Splitter [Epasto and Per-
ozzi, 2019] allows multiple node embedding vectors to en-
code different communities. The drawback of them is that
the aspects of the node need to be determined in advance and
are fixed during the learning process, while Asp2Vec [Park
et al., 2020] employs random walks to dynamically assign
aspects to each node according to its local context.

Though multiple vectors are learned for each node, given
a specific aspect, these methods are in essence single-vector
embedding since each node has only a single vector in an
aspect. By contrast, the computation of the distance between
a node and a label in HIME involves all the node’s branch
vectors and the label vector.

3 Problem Statement
HIME takes the following data as inputs:
• a network N = {V, E}, where V = {v1, v2, ..., vn} is

the set of nodes, and E = {ei,j}ni,j is the set of edges.

• a taxonomy T = {L,U}, where L = {l1, l2, ..., lm} is
the set of labels, and U = {(li, lj) | lj ∈ Pa(li)} is the
set of parent-child edges, where Pa(li) is the set of li’s
parents in the DAG.
• The label assignment A = A1 ∪ A2 ∪ ... ∪ An, where
Ai is the set of node-label links of node vi. Once a label
appears in Ai, its ancestors will also appear in Ai.

HIME learns a vector for each label and multiple vectors for
each node. A node has several ‘branch vectors’ to fit its labels
and a single ‘root vector’ to preserve its node-node proximity.
Formally, given branch limit K, HIME learns:
• a set of label vectors Q = {q1, q2, ..., qm}, with qi re-

ferring to the representation vector of label li.
• a set of branch vectors B = B1 ∪ B2 ∪ ... ∪ Bn, where
Bi = {bi,1, bi,2, ..., bi,ki

} is the set of ki branch vectors
of node vi. ki ≤ K.
• a set of root vectorsR = {r1, r2, ..., rn}, with ri being

the root vector of node vi.

4 Method
4.1 The Poincaré Ball
Let ‖·‖ denotes the Euclidean L2 norm. A Poincaré ball with
dimension d and radius 1 can be defined as the Riemannian
manifold: Pd,1 := {x ∈ Rd | ‖x‖2 < 1}, gx = λ2xId, where
gx is the Riemannian metric tensor, λx = 2/(1 − ‖x‖2) and
Id is the identity matrix. The distance between two points
x,y ∈ Pd,1 can be computed as:

d(x,y) = arcosh

(
1 + 2

‖x− y‖2

(1− ‖x‖2)(1− ‖y‖2)

)
. (1)
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With ‖x− y‖ fixed, the distance d(x,y) grows rapidly to
infinity when ‖x‖ approaching the open boundary 1, similar
to a tree that expands exponentially with the increase of the
tree depth. [Nickel and Kiela, 2017] first used the Poincaré
ball to embed hierarchical data.

4.2 Multi-Vector Embedding
The multi-vector embedding (MVE) procedure in HIME is
to learn a representation vector for each label and an adaptive
number of branch vectors for each node to fit its separate label
sets. Inspired by the K-means algorithm, which clusters data
points by assigning them to their closest centroids, we view
the branch vectors as the centroids and the labels as the points
to be clustered. The main difference is that the points are
fixed in the clustering task, while the label vectors can be
dynamically optimized in MVE.

Here we discuss the adaptiveness of MVE by examining
the K-means algorithm. In the K-means, though the num-
ber K of the centroids is predetermined, the final number of
clusters could be less than K if no data points are assigned
to some centroids. It will happen when a poor centroid ini-
tialization is made or the point number has the same or close
order of magnitude to K. The later situation indicates that
the number of clusters can be adaptive to the distribution of
a relatively small number of points, which is often the case
in preserving about a dozen of labels by using several branch
vectors. We present the details of MVE as follows.

The Mechanism of Multi-Vector Embedding
We first allocate K branch vectors bi,1, bi,2, ..., bi,K for each
node vi, and initialize all the branch vectors and the label
vectors close to the origin of the Poincaré ball. We de-
fine the node-label distance between node vi and label lj
as the shortest Poincaré distance from all the branch vectors
{bi,1, bi,2, ..., bi,K} to the label vector qj :

D(vi, lj) = min
a=1,2,...K

d(bi,a, qj). (2)

Parallel computation of this node-label distance can be easily
implemented for a batch of node-label pairs. We then opti-
mize the branch vectors and the label vectors by the following
objective function with negative sampling:

Onl =
∑

(vi,lj)∈A

log σ(−D(vi, lj)) +
∑

(vi,lj)∈Aneg

log σ(D(vi, lj))

(3)
where Aneg contains negatively sampled node-label links. It
should be pointed out that the positive set A can also include
potential node-label links by performing random walks on
meta-path ‘Node-Node-Label’ based on the dataset-specific
assumption that connected nodes will have similar labels.

By maximizingOnl, the negative samples serve as a strong
force to push the branch vectors and the label vectors away
from each other and the origin. By contrast, the positive sam-
ples has the clustering effect. Given a node-label pair (vi, lj),
suppose bi,1 is the branch vector closest to qj among all vi’s
branch vectors, and in this way, D(vi, lj) = d(bi,1, qj). Dur-
ing the back propagation process, only the gradients of bi,1
and qj are updated by (vi, lj). Therefore, if (vi, lj) is a pos-
itive sample, D(vi, lj) will be decreased, which means that
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Figure 2: An illustration of the LRU policy. A node’s three red
branch vectors are allocated to fit the node’s seven blue labels, with
the third branch vector being inactive. After the vector replacement,
the third branch vector attracts three labels from the busiest one, and
finally each is assigned a small set of labels.

Algorithm 1 The LRU policy.

1: for i in n nodes do
2: get hitmin, idmin = min(Hi,1,Hi,2, ...,Hi,K)
3: get hitmax, idmax = max(Hi,1,Hi,2, ...,Hi,K)
4: if hitmin == 0 then
5: sample ε from normal distribution N(0, 10−6)
6: bi,idmin

← expbi,idmax
(ε)

7: end if
8: end for

both bi,1 and qj will be updated closer. It can be interpreted
in a way that given a node, a label is always assigned to the
closest branch vector of the node, while a branch vector fits a
cluster of labels, with all the vectors optimized dynamically.

Tracing the Active Branch Vectors
We call a node’s branch vector ‘active’ if at least one of the
node’s labels is assigned to it, otherwise we call it ‘inactive’.
The active branch vectors are those we want in the end. We
maintain a hit matrix Hn×K , where Hi,a records the number
of labels that bi,a fits at the end of every epoch. Therefore,∑K

a=1 Hi,a = ‖Ai‖, where Ai is the label set of vi. H is
set to 0 at the beginning of every epoch, and it can be simply
maintained by the procedure computing the node-label dis-
tance. Given a positive pair (vi, lj), the procedure remembers
the index id of the branch vector closest to qj when comput-
ing the node-label distance, and plus Hi,id by 1 to record a
hit. At the end of the MVE, we pick the active branch vectors
according to their non-zero hit value in the last epoch.

The LRU Load Balancing Policy
Since all the vectors are dynamically updated, sometimes un-
balanced loads are shared among a node’s branch vectors. In
figure 2, the hit values of the three red branch vectors are 2, 5
and 0 at the beginning. MVE almost degenerates into single
vector embedding since the busiest branch vector fits a ma-
jority of labels. We use a least-recently-used (LRU) policy to
balance the loads among the branch vectors.

The main idea is to split the most active vector into two
vectors so that each is assigned a smaller set of labels. The
two vectors are then optimized in the following epochs to fit
its label clusters. With H providing the hit values, the ‘split-
ting’ can be achieved by replacing an inactive branch vector
(LRU vector) close to the most active branch vector with a
small random margin between them, so as to share the burden
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of the most active vector, as shown in figure 2. Algorithm 1
describes the LRU policy, where expx(y) updates x with a
step y in the Poincaré ball (see appendix1).

4.3 Refining the Label Hierarchy
MVE can roughly generate a hierarchical embedding of the
taxonomy in a way that a high-level label having more nodes
will be placed near the origin so as to minimize the overall
Poincaré distance to its nodes, while low level labels with few
nodes will be embedded near the boundary due to the effect
of negative sampling. But with the ground-truth information
given by T , a more accurate embedding of the label hierarchy
could be further achieved.

One thought is to simply use the Poincaré distance to re-
flect the relationships between two labels. However, though
the Poincaré distance can reflect the proximity, it fails to re-
flect the partial order among the labels since the distance is
symmetric for the two input vectors. Therefore, an asymmet-
ric score function is required for directed parent-child edges.

Given two labels li and lj , we call li ‘is a’ lj if li ≺ lj ,
meaning that there is a directed DAG path from lj to li. We
define the asymmetric score function of relation ‘is a’ as:

Sis a(li, lj) = −(1 + α(‖qj‖ − ‖qi‖))d(qi, qj) (4)

where α is a positive hyper-parameter set to 1. If qi and qj
are close in the Poincaré ball and qj is closer to the origin
than qi, then a high score Sis a(li, lj) will indicate the prob-
ability of li ≺ lj , particularly, li being the child of lj . This
score function is first introduced by [Nickel and Kiela, 2017]
in the experimental evaluation, and here we apply it in the
refinement of the label vectors:

Oll =
∑

(li,lj)∈U

log σ(Sis a(li, lj)) +
∑

(li,lj)∈Uneg

log σ(−Sis a(li, lj))

(5)

Where U is the parent-child edge set and Uneg is the set of
negative edges sampled from {(li, lj)|li 6≺ lj}. By maximiz-
ing Oll, the label vectors will be refined according to both the
proximity and the partial order. The refinement of the label
vectors is performed together with MVE.

4.4 Learning the Root Vector
A single root vector is learned for each node based on its ac-
tive branch vectors to preserve the network proximity. This
procedure is after MVE, since the active branch vectors of a
node are not determined until the end of MVE.

Specifically, we use the hyperbolic aggregation over the
branch vectors to represent ri. The hyperbolic aggregation is
performed by the following steps: (1) Transform the Poincaré
branch vectors into the Euclidean tangent space of the origin
O using logo(·) (see appendix). (2) Perform the aggregation
in the tangent space. (3) Transform the result back to the
Poincaré ball using expo(·). Formally,

ri = expo(

ki∑
j=1

wij logo(bi,j) + ci) (6)

wij = softmaxj∈{1,2,..,ki}(pij) (7)

1Code and Appendix: https://github.com/YueFan1014/HIME.

Algorithm 2 The learning process of HIME.

Input: N , T , A, branch limit K, epoch g, LRU period t
Output: root vectorsR, branch vectors B, label vectors Q
1: initialize Q, nK branch vectors Ball, and H
2: for epoch in {1, 2, ..., g} do
3: H← 0
4: update Q by Oll

5: update Q and Ball by Onl, maintain H
6: if epoch mod t == 0 then
7: update Ball by the LRU with reference to H
8: end if
9: end for

10: obtain the active B from Ball according to H
11: initialize p and c to 0
12: for epoch in {1, 2, ..., g} do
13: updateR by optimizing p and c through Onn

14: end for
15: outputR, B, Q

where p and c are parameters that determine r. Given a node
vi, since the weights of its branch vectors are all positive and
satisfy

∑ki

j=1 wi,j = 1, this aggregation reflects the semantic
meaning: the contributions of different label sets to the node-
node proximity. Besides, the ‘residual vector’ ci endows ri
with more flexibility in preserving the node-node proximity,
while its influence on ri should be minimized in order to fully
extract the information learned by the branch vectors.

We initialize the parameters p and residual vectors c to 0.
We optimize p and c by the following node-node objective:

Onn =
∑

ei,j∈E
log σ(−d(ri, rj)) +

∑
ei,j∈Eneg

log σ(d(ri, rj))

−λ
n∑

i=1

‖ci‖2 (8)

where λ is a positive hyper-parameter which we set to 1, and
Eneg is the negative sample set of the network edges. The
norms of all the residual vectors are minimized by the third
term in Onn in order to maximize the contribution of the
branch vectors to the root vectors.

4.5 The Whole Learning Process of HIME
Algorithm 2 shows the whole learning process of HIME. The
space complexity of HIME is O(K|V| + |L|), which is the
space occupied by R, B and Q. Given the negative sampling
number s, (1 + s)|U| label-label pairs, (1 + s)|A| node-label
pairs and (1 + s)|E| node-node pairs are passed to the model
during each epoch. The extra cost of our method lies in the
node-label distance computation and the hyperbolic aggrega-
tion, which are bothO(K). Therefore the total time complex-
ity of learning for g epochs is O(gs|U|+gsK|A|+gsK|E|),
which grows linearly with the increase of the branch limit K.

5 Experiments
5.1 Datasets
We evaluate HIME on three datasets from different domains.
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Network Taxonomy Assignment
Dataset nodes links labels edges levels N-L links

Protein GO 13840 348658 4184 6848 15 205629
Gene Pathway 5593 30290 241 288 9 28640
DBLP ACM 12379 12164 268 268 4 50402

Table 1: The statistics of the three datasets.

Protein-GO. A human PPI network [Szklarczyk et al.,
2021] with the Cellular Components domain of Gene Ontol-
ogy [Ashburner et al., 2000] being the taxonomy. The GO
terms of proteins are provided by GOA database. [Huntley et
al., 2015].

Gene-Pathway. A human gene regulatory network [Liu et
al., 2015] depicts regulations among genes, with each gene
associated with several biological pathways given by CTD
[Davis et al., 2020]. All the pathways are organized as a path-
way ontology [Petri et al., 2014].

DBLP-ACM. We extract a dense subset of the DBLP co-
authorship network with ACM key word taxonomy. A key
word reflects an author’s research interests.

Table 1 presents the statistics of the datasets. We split the
node-node links with the ratio of 7:3 and the node-label links
with the ratio of 9:1 for training and testing.

5.2 Methods for Comparison

In the experiments, HIME K is the original version of HIME
described in the paper, with the branch limitK being 2, 4 and
8. Besides, we include 8 existing methods for comparison
and 2 variations of HIME for ablation studies.

We run Node2Vec [Grover and Leskovec, 2016] and
GraphGAN [Wang et al., 2018] dealing with plain networks
by viewing labels as plain nodes and label-related edges as
plain links. GraphSAGE [Hamilton et al., 2017] and PTE
[Tang et al., 2015] are methods on heterogenous networks,
while JOIE [Hao et al., 2019] and TaxoGAN [Yang et al.,
2020] are designed for networks with taxonomies. Poincaré
[Nickel and Kiela, 2017] and Lorentz [Nickel and Kiela,
2018] are two hyperbolic embedding methods.

For ablation study, EUHIME refers to the Euclidean ver-
sion of HIME by replacing the hyperbolic distance func-
tion with the inner product score function, which is adopted
by most existing methods. The ‘free-root’ version RHIME
learns a node’s root vector independently from the branch
vectors, taking no label information into account.

In the experiments, we set the embedding dimensions of
all methods to 256. The branch vector dimensions are 128,
64, 32 for HIME 2, HIME 4 and HIME 8 respectively so as
to ensure that a node’s total dimension is no greater than 256.
All methods are tuned to the best and trained for 100 epochs.

5.3 Evaluation

Proximity search, hierarchical classification and link predic-
tion are conducted to evaluate the comprehensive perfor-
mances of the methods on the three datasets.

Figure 3: The 2D embeddings of HIME 4 and EUHIME 4 on Gene-
Pathway. Blue points are labels and the orange points are the active
branch vectors of all nodes. The red points are the active branch
vectors of gene OR7G3 fitting the displayed pathways.

Proximity Search
Label Search (LS). Given a node, label search is to correctly
return its seen or potential labels. The method ranks all the la-
bels according to the node-label scores. The mean rank MR
of the ground-truth labels is calculated for the node, which is
averaged over all nodes to obtain MR. We normalize it to
1−MR/|L| as the metric.

Node Search (NS). Node search aims at recalling the nodes
that a given label describes. Specifically, for a label, the
method ranks all the nodes according to the node-label scores.
AUPRC is then computed for the ranking. The average
AUPRC is calculated to represent the average performance
on all labels.

Child Search (CS). Child Search evaluates a method’s ca-
pability of preserving hierarchical label relationships. Given
a parent label, the method ranks all other labels according to
their ‘is a’ scores. A mean rank MR of the label’s children
is then calculated. The MR for all parent labels are averaged
to obtain MR. 1−MR/|L| is used to evaluate this task.

The LS, NS and CS columns in table 2 show the perfor-
mance of all methods on proximity search.

On the LS task, HIME and EUHIME are the two best meth-
ods due to their multi-vector characteristics: each node has
multiple branch vectors to minimize its distances to all its la-
bels. Besides, the label vectors hierarchically organized in the
hyperbolic space decrease the possibility of underfitting when
searching a node’s labels, which is proven by the better re-
sults of Poincaré and Lorentz compared with their Euclidean
counterparts.

On the NS task, HIME significantly outperforms all other
methods. Specifically, it outperforms Poincaré by 251%,
76% and 132% on the three datasets. Besides, there exists
a positive correlation between HIME’s performance and K,
since the node-label distances of positive pairs will decrease
when the underfitting problem is alleviated by large K, as
illustrated by the small node-label distances between gene
OR7G3 and its pathways in the Poincaré ball shown in fig-
ure 3. Furthermore, all the branch vectors are uniformly dis-
tributed in the whole Poincaré ball, reducing the density of
branch vectors around a given label and leading to a more
accurate node search near the label. By contrast, the branch
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Protein-GO Gene-Pathway DBLP-ACM
Method LS NS CS HC LS NS CS HC LS NS CS HC

Node2Vec 85.29 18.32 72.93 10.31 79.81 47.51 73.27 23.76 59.09 12.57 71.38 18.32
GraphGAN 75.01 25.58 70.33 11.43 62.82 28.18 78.23 20.73 69.36 33.15 71.29 13.01
GraphSAGE 71.58 23.69 73.13 8.70 49.11 15.64 76.77 21.41 77.03 26.33 69.59 36.21

PTE 55.71 19.53 63.65 8.64 47.09 34.36 59.69 28.05 49.51 13.07 46.00 12.91
JOIE 87.81 28.46 79.87 14.84 63.10 32.50 75.74 29.10 67.10 25.34 70.00 17.83

TaxoGAN 43.55 4.55 51.73 61.31 58.23 6.10 50.17 41.15 53.09 4.90 48.95 43.38
Poincare 92.54 22.25 88.88 18.07 86.23 54.96 81.77 22.31 82.04 39.12 69.70 25.19
Lorentz 93.07 25.75 89.29 22.88 89.22 52.42 82.13 19.50 85.18 41.10 71.01 29.89
HIME 2 97.70 48.48 90.19 53.89 95.85 88.18 85.65 37.14 96.05 85.03 81.90 51.48
HIME 4 97.86 70.55 88.94 47.88 96.07 93.52 85.44 55.84 96.92 89.19 82.18 55.42
HIME 8 98.02 78.17 89.08 51.77 95.91 96.85 85.93 55.02 96.93 90.98 82.07 57.73

EUHIME 8 98.56 59.90 86.58 60.84 94.24 22.31 78.11 69.06 94.09 23.89 53.08 62.02

Table 2: The experiments on taxonomy-related tasks. All results are shown in percentage.

Protein-GO Gene-Pathway DBLP-ACM
Method PRC ROC PRC ROC PRC ROC

Node2Vec 62.65 79.26 36.13 66.19 53.28 69.96
GraphGAN 74.11 85.64 41.58 74.96 62.66 74.47
GraphSAGE 48.60 72.33 27.03 56.09 35.17 60.37

PTE 69.87 83.16 33.03 68.03 41.98 68.69
JOIE 70.44 83.28 35.10 65.99 42.49 66.30

TaxoGAN 73.97 85.56 40.62 73.63 63.19 73.26
Poincare 72.18 85.13 39.84 73.46 60.43 74.32
Lorentz 74.19 85.53 36.17 69.99 58.31 73.10
HIME 2 80.88 88.95 45.73 75.70 68.80 78.23
HIME 4 82.93 89.10 45.68 76.88 70.79 79.16
HIME 8 81.99 89.13 47.54 77.08 71.01 79.04

EUHIME 8 79.22 88.65 46.16 76.75 66.37 78.22
RHIME 8 70.22 83.65 39.25 74.39 63.10 75.80

Table 3: The experiments on node-node link prediction.

vectors and the labels in EUHIME are embedded into two
separate groups due to its score function and the negative
sampling, making it hard for EUHIME to correctly search
the label’s true branch vectors from a crowd of wrong ones.

On the CS task, HIME and Lorentz are the two best meth-
ods, followed by Poincaré and JOIE. These methods preserve
the parent-child relationships by either defining an asym-
metric score for the directed relationships or generating a
more hierarchical embedding in hyperbolic spaces. Com-
pared with HIME, EUHIME is less capable of generating an
accurate taxonomy in Euclidean space, especially on DBLP-
ACM with dense node-label links which dilute the effect of
its symmetric label refinement on the label vectors.

Hierarchical Classification
Given a node, Hierarchical Classification (HC) is to predict a
correct label path with the knowledge of the taxonomy. Start-
ing from the root label, if a label is correctly predicted from
its siblings, then the classification will continue to its child
labels, otherwise it will stop. Acc is computed for each node
as the ratio of the accurate predicted labels to the whole label-
path. Acc evaluates the performance on all nodes.

On the HC task, EUHIME, HIME and TaxoGAN are the
three leading methods.The good performance of TaxoGAN
on HC is mainly due to the fact that it is specialized in pre-

dicting a node’s label from the label’s siblings by embed-
ding them into a separate space. This ensures a more precise
embedding but also sacrifices the universality of the vectors,
which accounts for its notably poor performance on NS. Sur-
prisingly, EUHIME is more capable than HIME of predicting
a correct label path for a node, which can be explained by
its inner-product score function: a branch vector can simulta-
neously increase the inner-product scores of all the labels in
a path by increasing its norm or decreasing the angle to the
label’s directions. However, EUHIME also fails on the NS
tasks as discussed before. Besides, its embedding provides
less visual information compared with HIME that optimizes
vectors according to their space distances.

Link Prediction
Link prediction tests a method’s ability to predict potential
node-node links. A method predicts unseen links from the
negative ones by ranking the scores of node pairs. AUPRC
and AUROC are calculated to evaluate the ranking.

Table 3 displays the results on link prediction. HIME
has the highest AUPRC and AUROC compared with other
methods, with EUHIME being the second and GraphGAN
the third. RHIME has a relatively poor performance com-
pared with HIME, indicating the effectiveness of using la-
bel information in predicting node-node links. Although the
node vectors in other methods also contain label information,
the abundant node-label links actually impose burdens on the
node vectors other than providing information for predicting
unseen node-node links, while these burdens are taken off by
the multiple branch vectors in HIME.

6 Conclusions
The extensive experiments show the outstanding performance
of HIME compared with existing methods. The ablation stud-
ies reveal the effectiveness of the Poincare ball in preserv-
ing the hierarchical taxonomy and the usefulness of branch-
dependent root vectors in preserving the network proximity.
HIME can be easily extended to diverse manifolds by equip-
ping different distance functions. Techniques used by tradi-
tional methods such as random walks on meta-paths can be
also applied by HIME.
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