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Abstract
This paper proposes an Efficient Multi-view Graph
Clustering with Comprehensive Fusion (EMGC2F)
model and a corresponding efficient optimization
algorithm to address multi-view graph clustering
tasks effectively and efficiently. Compared to ex-
isting works, our proposals have the following
highlights: 1) EMGC2F directly finds a consistent
cluster indicator matrix with a Super Nodes Sim-
ilarity Minimization module from multiple views,
which avoids time-consuming spectral decompo-
sition in previous works. 2) EMGC2F compre-
hensively mines information from multiple views.
More formally, it captures the consistency of mul-
tiple views via a Cross-view Nearest Neighbors
Voting (CN2V) mechanism, meanwhile capturing
the importance of multiple views via an adaptive
weighted-learning mechanism. 3) EMGC2F is a
parameter-free model and the time complexity of
the proposed algorithm is far less than existing
works, demonstrating the practicability. Empirical
results on several benchmark datasets demonstrate
that our proposals outperform SOTA competitors
both in effectiveness and efficiency.

1 Introduction
Multi-view clustering is a fundamental task in machine learn-
ing that aims to seek for a consistent clustering decision via
fusing the information of multiple views [Chao et al., 2021;
Xu et al., 2013]. As an important branch of multi-view clus-
tering, multi-view graph clustering (MGC) focuses on seek-
ing for clustering decision from linkages of multiple graphs,
and has become more popular in recent years. Existing
multi-view graph clustering models can be briefly catego-
rized into three types based on the learning scheme. The first
type of models (two-stage) aim to learn a consistent spec-
tral embedding from multi-view similarity matrices or spec-
tral embeddings [Belkin and Niyogi, 2003], then the clus-
tering results can be obtained via K-means or other clus-
tering procedure based on the learned spectral embedding.

∗ Equal contribution † Corresponding author

To be specific, the learning schemes mainly include ker-
nel approximation [Kumar et al., 2011; Dong et al., 2021;
Wu et al., 2021b], manifold approximation [Wu et al., 2020;
Dong et al., 2014] and graph reconstruction [Nie et al., 2016;
Nie et al., 2017a]. The second type of models (one-stage)
aim to learn a block-diagonal similarity matrix from multi-
view similarity matrices, in which the learned block-diagonal
similarity matrix directly indicates the clustering result. Ex-
isting learning schemes of this type mainly include Frobe-
nius norm minimization [Nie et al., 2017b; Li et al., 2020;
Huang et al., 2021] and inner product minimization [Zhan
et al., 2018]. The third type of models (one-stage) aim to
learn the consistent clustering (soft) indicator matrix from
multi-view spectral embeddings, and the learning schemes
include factorization approximation [Hu et al., 2020; Liu et
al., 2021], adaptive Procrustes [Nie et al., 2018], etc.

However, the three types of existing models cannot avoid
spectral decomposition operator that needs O(n3) (n is the
number of samples) time complexity for accurate calcula-
tions, which is too time-consuming in practice. In this pa-
per, we consider breaking out the traditional spectral-based
form and handling multi-view graph clustering comprehen-
sively to enhance both its effectiveness and efficiency as il-
lustrated in Figure 1. To be specific, we propose an Effi-
cient Multi-view Graph Clustering with Comprehensive Fu-
sion (EMGC2F) model to directly optimize cluster indicator
via integrating information from multiple views. EMGC2F
first adopts a super-nodes similarity minimization strategy to
establish a novel cluster indicator learning paradigm with-
out spectral decomposition. Afterwards, EMGC2F considers
two multi-view fusion mechanisms as follows. 1) To cap-
ture the consistency among multiple views, EMGC2F con-
siders confirming the credible nearest neighbors relationship
for each node via voting from multiple views, and constrain
each pair of nodes to the same cluster if they are credible
nearest neighbors. 2) To capture the importance of differ-
ent views, an adaptive-weighted learning strategy is intro-
duced. Besides, a vital transformation is proposed to trans-
form EMGC2F into a two-stage scaled form, i.e., graph coars-
ening and clustering on coarsened graph, which provides
the possibility to perform multi-view graph clustering effi-
ciently. To handle the calculation and optimization problem
of the two-stage EMGC2F form, an efficient alternative al-
gorithm with O(|E| + m2)(|E| < n2,m < n) time com-
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Figure 1: EMGC2F and three different types of existing multi-view graph clustering models. Left: two-stage models that learn a consistent
spectral embedding from multiple views and obtain clustering results via K-means. Middle: one-stage models that learn a block-diagonal
similarity matrix from multi-view similarity matrices and obtain clustering result from its connectivity. Right: one-stage models that learn
consistent clustering (soft) indicator matrix from multi-view spectral embeddings, and our proposed EMGC2F that directly learns clustering
labels from input multi-view graphs.

plexity is proposed, where |E| is the number of edges and
m is the number of nodes of the coarsened graph. More im-
portantly, EMGC2F is a parameter-free model, and the suc-
cinct parameter-free form guarantees the availability in prac-
tice. We conduct extensive experiments on several multi-view
benchmark datasets, and the experimental results demonstrate
that EMGC2F outperforms SOTA competitors on MGC tasks
in terms of both effectiveness and efficiency. In a word, it is
worthwhile summarizing the main highlights of this paper as
the following two sides:

• Effectiveness: The proposed EMGC2F model is a novel
and systematic model to handle MGC tasks. 1) The
designed super-nodes similarity minimization strategy
contains rich theoretical meaning with several fields.
2) The designed Cross-view Nearest Neighbors Vot-
ing (CN2V) and adaptive-weighted learning mechanism
comprehensively mine the multi-view information. In
experiments, EMGC2F outperforms SOTA competitors
on MGC tasks.

• Efficiency: The objective problem of EMGC2F can
be equivalently transformed into a two-stage scaled
form which can be efficiently solved within O(|E| +
m2)(|E| < n2,m < n) via the proposed alternative
algorithm. Its time complexity is far less than previous
works based on O(n3) spectral decomposition. In ex-
periments, the efficiency of EMGC2F with proposed al-
gorithm is ahead of current competitors on MGC tasks.

Notations. For a matrix X ∈ Rn×d, xi,j denotes the ⟨i, j⟩-
th element, xi ∈ Rn and xi ∈ R1×d denote the i-th column
and i-th row respectively; For a vector x ∈ Rn, xi denotes
the i-th element, ∥x∥1 =

∑n
i=1 |xi| and ∥x∥0 denotes the

number of non-zero elements in x. For a set Q, |Q| denotes
its cardinality; Suppose Qk ⊂ Q is a subset of Q, we denote
Q̄k as the complement of Qk in Q. Besides, in multi-view
graph clustering, we denote the undirected weighted graph of
s-th view by W(s) = (V,E(s),W(s)), where V is the set of
nodes, E(s) is the set of edges, W(s) ∈ Rn×n is the similar-

ity matrix; D(s) ∈ Rn×n (diagonal) is the degree matrix of
W(s), where d

(s)
i,i =

∑n
j=1 w

(s)
i,j ; L(s) = D(s) −W(s) is the

Laplacian matrix of W(s). Moreover, δ(c, n) ∈ Rn denotes
the vector whose c-th element is 1 and the rest elements are
0. For a scalar x ∈ Z and x ∈ [1, n], we utilize the notation
x ∈ Z[1,n] for convenience. For scalars x and y, x ∝ y means
that x is positive correlational to y.

2 EMGC2F: Efficient Multi-view Graph
Clustering with Comprehensive Fusion

In this section, we propose an Efficient Multi-view
Graph Clustering with Comprehensive Fusion (EMGC2F)
model to seek for a consistent clustering decision from
multi-view graphs {W(1), . . . ,W(s)}, where 1W(s) =

(V,E(s),W(s)), s ∈ Z[1,v] is the graph of s-th view. For
convenience, we introduce EMGC2F model with the follow-
ing three folds and summarize the workflow in Figure 2.

2.1 Super-Node Similarity Minimization Module
We first consider a single view form and start describing with
set operator. Suppose Q is the set of all samples, Qk is the set
of the samples within k-th cluster, and Q̄k is the complement
of Qk in Q. Considering the definition of graph clustering,
an obvious observation can be obtained that the similarity be-
tween sets (Qk, Q̄k) should be as small as possible. Inspired
of data hierarchical clustering [Reddy and Vinzamuri, 2013],
on s-th view, we consider (Qk, Q̄k) as two super nodes, and
then establish the similarity between (Qk, Q̄k) as the average
pairwise similarities (average-link) as follows:

sim(Qk, Q̄k) =

∑
i∈Qk

∑
j∈Q̄k

(w
(s)
i,j + w

(s)
j,i )

2|Qk||Q̄k|
. (1)

1 In this paper, we also allow W to be an asymmetric translation
matrix such as W(s)

rw = D−1W(s), thus we consider w(s)
i,j and w

(s)
j,i

separately in this paper.
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Figure 2: Workflow of the proposed EMGC2F model. A CN2V
module is adopted to construct credible nearest neighbors via voting
of multiple views, from which a 1NN graph is constructed and nodes
in the same connected components are constrained to be in the same
cluster. Each cluster is regarded as a super node, and we minimize
similarities among different super nodes to obtain good clusters.

Then considering all clusters, the clustering model for s-th
view can be written as

min
{Qk}c

c∑
k=1

∑
i∈Qk

∑
j∈Q̄k

(w
(s)
i,j + w

(s)
j,i )

2|Qk||Q̄k|

s.t.
c⋃

k=1

Qk = Q, ∀r, d ∈ Z[1,c], Qr

⋂
Qd = ⊘.

(2)

For better illustration, we introduce an indicator matrix Y ∈
{0, 1}n×c,Y1 = 1 to replace the set operator {Qk}ck=1, and
rewrite problem (2) as follows:

min
Y∈{0,1}n×c, Y1=1

c∑
k=1

∥L(s)yk∥1
2∥yk∥0(n− ∥yk∥0)

(3)

Afterwards, we consider the multi-view formulation of prob-
lem (3). To present the importance of each view, we con-
sider learning an adaptive weight α(s) for s-th view and prob-
lem (3) can be improved as

min
Y,{α(s)}v

v∑
s=1

α(s)
c∑

k=1

∥L(s)yk∥1
2∥yk∥0(n− ∥yk∥0)

s.t. Y ∈ {0, 1}n×c, Y1 = 1, ∀s ∈ Z[1,v],
v∑

s=1

1

α(s)
= 1, {α(s)}v ⪰ 0,

(4)

where
∑v

s=1
1

α(s) = 1 is a scale constraint to guarantee that
the solution (α(s))∗ and y∗

k satisfy the following criterion:

(α(s))∗ ∝ 1/
c∑

k=1

∥L(s)y∗
k∥1

2∥y∗
k∥0(n− ∥y∗

k∥0)
. (5)

In Eq. (5), since the weight (α(s))∗ is negative correlational to
the loss of y∗

k, (α(s))∗ can be seen as importance of s-th view.
Furthermore, we consider mining the consistent information
among multiple views in the following part.

2.2 Cross-view Nearest Neighbors Voting Module
This part aims to find the credible consistency information
among multiple views. To this goal, we first define a coeffi-
cient matrix E(s) ∈ Rn×n to describe the nearest neighbors
relationship in s-th view as follows

e
(s)
i,j =

{
1, If i = ϖ

(s)
j or j = ϖ

(s)
i ,

0, Otherwise,
(6)

where e(s)i,j is the (i, j)-th element of E(s) and i = ϖ
(s)
j means

that node i is the nearest neighbor of node j in W(s). Since
the nearest neighbor information for each pair of nodes may
be inconsistent among different views, we define B ∈ Rn×n

to describe cross-view nearest neighbors via voting as:

bi,j =

{
1, If

∑v
s=1 e

(s)
i,j > ⌊ v

2 ⌋,
0, Otherwise,

(7)

where bi,j = 1 means that i and j are cross-view nearest
neighbors if they are nearest neighbors (e(s)i,j = 1) in more
than half of the views. Afterwards, we hope to generate some
credible pairwise labels (whether node i and j belong to same
cluster) from B. Formally, we construct a graph B associated
with adjacency matrix B and find the connected components
via Tarjan’s algorithm [Tarjan, 1972], then we generate a pair-
wise label matrix T as follows:

ti,j =

{
1, If (i, j) ∈ same component in B,

0, Otherwise.
(8)

T provides consistent pairwise label information via summa-
rizing consistent cross-view nearest neighbors information.
Furthermore, we add a 2pairwise label constraint for Y via
T and improve problem (4) as follows:

min
Y,{α(s)}v

v∑
s=1

α(s)
c∑

k=1

∥L(s)yk∥1
2∥yk∥0(n− ∥yk∥0)

s.t. Y ∈ {0, 1}n×c, Y1 = 1, YYT ◦T = T,
v∑

s=1

1

α(s)
= 1, {α(s)}v ⪰ 0,

(9)

where the constraint YYT ◦ T = T guarantees that ti,j =
1 ⇒ yi = yj . In summary, problem (9) mines the im-
portance among different views via weights {α(s)}vs=1 and
mine the consistent information among multiple views via
constraint YYT ◦T = T, which preforms a comprehensive
fusion among multi-view graphs.
2 In fact, the cross-view information in T can be also utilized as
regularization to emphasize on the nearest neighbors relationship,
such as maximizing sum of yT

k Tyk. In this paper, we consider the
simplest form that utilizing this information as constraint and the
empirical results demonstrate its effectiveness.
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3 Optimization
Problem (9) is hard to solve due to the highly non-convex con-
straints. In this section, we propose an effective and efficient
algorithm to deal with it.

At first, we handle the constraint YYT ◦T = T with some
equivalent transformations. To this goal, we need to reuse the
set operator in Eq. (1). Suppose T has m diagonal blocks, i.e.,
graph B has m connected components, we define Pr as the set
of samples within r-th component. Recall that Qk is the set
of samples within k-th cluster of W(s), its obvious that Qk

is composed of several different Pr according to problem (9),
i.e., Qk =

⋃
r∈Ik

Pr where Ik as the corresponding indices.
Based on the above definitions, we have

∥L(s)yk∥1
∥yk∥0(n− ∥yk∥0)

=

∑
i∈Qk

∑
j∈Q̄k

(w
(s)
i,j + w

(s)
j,i )

|Qk||Q̄k|

=

∑
r∈Ik

∑
d∈Īk

∑
i∈Pr

∑
j∈Pd

(w
(s)
i,j + w

(s)
j,i )

(
∑

r∈Ik
|Pr|)(n−

∑
r∈Ik

|Pr|)
. (10)

Then for s-th view, we construct a graph Z(s) of m nodes
associated with a similarity matrix Z(s) where z

(s)
r,d =∑

i∈Pr

∑
j∈Pd

(w
(s)
i,j + w

(s)
j,i ) and define a vector σ ∈ Rm

where σr = |Pr|. Substituting them into Eq. (10) results in

∥L(s)yk∥1
∥yk∥0(n− ∥yk∥0)

=

∑
r∈Ik

∑
d∈Īk

z
(s)
r,d

(
∑

r∈Ik
σr)(n−

∑
r∈Ik

σr)
. (11)

Similar to transformation from problem (2) to (3), we intro-
duce a new indicator matrix H ∈ {0, 1}m×c, H1 = 1 and
rewrite problem (9) as follows from the perspective of coars-
ened multi-view graphs {Z(1), . . . ,Z(v)}:

min
{α(s)}v,H

v∑
s=1

α(s)
c∑

k=1

∥L̃(s)hk∥1
2hT

kσ(n− hT
kσ)

(12)

s.t. H ∈ {0, 1}m×c, H1 = 1,

v∑
s=1

1

α(s)
= 1, {α(s)}v > 0,

where L̃(s) is Laplacian matrix of Z(s). Then we solve prob-
lem (12) w.r.t. variables {α(s)}v and H alternatively.

1) {α(s)}v-subproblem. For better illustration, we denote

∆(s) =
∑c

k=1
∥L̃(s)hk∥1

2hT
k σ(n−hT

k σ)
. Then when H is fixed, prob-

lem (12) w.r.t. {α(s)}v can be expressed as

min
{α(s)}v

v∑
s=1

α(s)∆(s) s.t.
v∑

s=1

1

α(s)
= 1, α(s) ⩾ 0. (13)

According to Cauchy-Schwarz inequality [Garling, 2005] and
the constraint

∑v
s=1

1
α(s) = 1, we have

∑v
s=1 α

(s)∆(s) =
(∑v

s=1 α
(s)∆(s)

) (∑v
s=1

1
α(s)

) (i)

⩾
(∑v

s=1

√
∆(s)

)2

where the equality in (i) holds when
√
α(s)∆(s) = r

√
1

α(s)

with constant r. Combing with
∑v

s=1
1

α(s) = 1, we have

√
α(s)∆(s) = r

√
1

α(s)
⇒ 1

α(s)
=

√
∆(s)

r

⇒
v∑

s=1

1

α(s)
=

v∑
s=1

√
∆(s)

r
⇒ r =

v∑
s=1

√
∆(s), (14)

Then α(s) can be calculated as

α(s) =

∑v
s′=1

√
∆(s′)

√
∆(s)

. (15)

2) H-subproblem. When {α(s)}vs=1 is fixed, problem (12)
w.r.t. H can be written as

min
H∈{0,1}m×c, H1=1

v∑
s=1

α(s)
c∑

k=1

∥L̃(s)hk∥1
2hT

kσ(n− hT
kσ)

(16)

For convenience, we denote Ẑ =
∑v

s=1 α
(s)(Z(s)+(Z(s))T ),

then we have
∑v

s=1 α
(s)∥L̃(s)hk∥1 =

∑v
s=1 α

(s)hT
k (Z

(s) +

(Z(s))T )hk = hT
k Ẑhk, then problem (16) can be written as

min
H∈{0,1}m×c, H1=1

c∑
k=1

hT
k Ẑhk

2hT
kσ(n− hT

kσ)
. (17)

Considering that the constraint H1 = 1 is row-independent,
coordinate descend algorithm [Wright, 2015] can be utilized
directly to handle problem (17). To be specific, suppose cur-
rent solution is H. When we seek for the solution h̄r ∈ R1×c

to update r-th row hr, it can be chosen from c alternatives,
including {h[1],h[2], . . . ,h[c]}, where h[i] = δ(i, c), ∀i ∈
Z[1,c]. For better illustration, we let h[0] ∈ R1×c be a zero
vector, and H[i], ∀i ∈ Z[0,c] be a matrix whose r-th row is
h[i] and the others are same as H. Based on these definitions,
h̄r can be calculated as h̄r = δ(t, c) where

t = argmin
i∈Z[1,c]

c∑
k=1

(h
[i]
k )T Ẑh

[i]
k

2(h
[i]
k )Tσ(n− (h

[i]
k )Tσ)

, (18)

However, calculating Eq. (18) is time-consuming due to sev-
eral redundant calculations. To accelerate it, we define

Ji,k =
(h

[i]
k )T Ẑh

[i]
k

2(h
[i]
k )Tσ(n− (h

[i]
k )Tσ)

, i ∈ Z[0,c], k ∈ Z[1,c]

and propose the following equivalent transformations:

t = argmin
i∈Z[1,c]

c∑
k=1

Ji,k = argmin
i∈Z[1,c]

c∑
k=1

Ji,k −
c∑

k=1

J0,k

= argmin
i∈Z[1,c]

c∑
k=1

(Ji,k − J0,k)
(ii)
= argmin

i∈Z[1,c]

Ji,i − J0,i, (19)

where the equality (ii) holds since Ji,k = J0,k, ∀i ̸= k. Then
Eq. (18) can be improved as

t = argmin
i∈Z[1,c]

Ji,i − J0,i. (20)
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Algorithm 1 The Algorithm for Problem (9)

Input: {W(1), . . . ,W(s)}
Output: {α(s)}vs=1,Y

1: Calculate Z ∈ Rm×m and σ ∈ Rm in Eq. (10).
2: Initialize H.
3: while not converge do
4: ∀s ∈ Z[1,v], update α(s) via Eq. (15).
5: Calculate Ẑ =

∑v
s=1 α

(s)(Z(s) + (Z(s))T ).
6: ∀i ∈ Z[1,c], calculate hT

i Ẑhi and hT
i σ.

7: while not converge do
8: for r = 1 to n do
9: Find the index of 1 in hr and save as j.

10: ∀i ∈ Z[0,c], calculate H[i].
11: Calculate t via Eqs. (20) to (22) and h̄r = δ(t, c)

12: Update hr as h̄r. ∀i ∈ Z[1,c], update hT
i Ẑhi and

hT
i σ via Eqs. (23) and (24).

13: end for
14: end while
15: end while
16: Calculate Y via Eq. (25).

Obviously, calculating Ji,i−J0,i is dominated by repeatedly
calculating (h

[i]
i )T Ẑh

[i]
i and (h

[i]
i )Tσ for different i, which

is expensive yet redundant. For further acceleration, we pro-
pose to calculate them based on hT

i Ẑhi, hT
i σ and H obtained

from the last iteration. Concretely, we denote the index of 1
element in hr as j and discuss the strategies for the following
two cases:
a) When i = j, it’s obvious that h[i]

i = hi and h
[0]
i =

hi − δ(r,m), then Ji,i − J0,i can be calculated as:

hT
i Ẑhi

2hT
i σ(n− hT

i σ)
− hT

i Ẑhi − 2hT
i ẑi + ẑi,i

2(hT
i σ − σr)(n− hT

i σ + σr)
. (21)

b) When i ̸= j, it’s obvious that h[i]
i = hi + δ(r,m) and

h
[0]
i = hi, then Ji,i − J0,i can be calculated as:

hT
i Ẑhi + 2hT

i ẑi + ẑi,i
2(hT

i σ + σr)(n− hT
i σ − σr)

− hT
i Ẑhi

2hT
i σ(n− hT

i σ)
. (22)

t can be efficiently calculated by substituting Eqs. (21)
and (22) into Eq. (20) and we obtain the optimal h̄.

Afterwards, we need to calculate h̄T
i Ẑh̄i and h̄T

i σ for use
when updating hr+1. Concretely, we denote the index of 1
element in h̄ as p, and then discuss the calculations of h̄T

i Ẑh̄i

and h̄T
i σ as the following two cases. When i = p, it is easy

to observe that h̄i = h
[i]
i , then

h̄T
i Ẑh̄i = (h

[i]
i )T Ẑh

[i]
i , h̄T

i σ = h
[i]
i σ. (23)

When i ̸= p, it is obvious to obtain that h̄i = h
[0]
i , then

h̄T
i Ẑh̄i = (h

[0]
i )T Ẑh

[0]
i , h̄T

i σ = h
[0]
i σ. (24)

Notice and all terms on the right hand side have been calcu-
lated, so no additional calculation is needed in this step.

Datasets COIL20 DIGIT10 MSRC ORL
Samples 1440 10000 210 400
Clusters 20 10 7 40
View-1 INTE(1024) ISO(30) CM(24) GIST(512)
View-2 LBP(3304) LDA(9) HOG(576) LBP(59)
View-3 GABOR(6750) NPE(30) GIST(512) HOG(864)
View-4 — — LBP(256) CENT(254)
View-5 — — CENT(254) —

Table 1: Dataset descriptions. The numbers in parentheses indicate
the dimension of corresponding features.

Updating {α(s)}vs=1 and H alternatively until convergence,
we can obtain the optimal H. So far, the optimization of prob-
lem (12) is completed, and the whole optimization procedure
is summarized into Algorithm 1. Afterwards, the indicator
matrix Y of problem (9) can be inferred as

i ∈ Pr ⇒ yi = hr, ∀i ∈ Z[1,n]. (25)

Convergence analysis. Algorithm 1 optimizes {α(s)}v and
H alternatively, and the corresponding sub-problems have
been solved. Thus, we can conclude that the objective value
of problem (12) will decrease until Algorithm 1 converges.

Time complexity. The time complexity of the proposal can
be divided into two parts. 1) The time complexity of Eqs. (6)
to (8): O(|E|). 2) The time complexity of Algorithm 1: Lines
1–2 cost O(|E|); In the outer-loop, Lines 4–6 cost O(m2v)
(v ≪ m in most cases). In the inner-loop, Line 11 costs
O(m) to calculate hT

i ẑi (considering the sparsity of hi), so
the total time complexity of Algorithm 1 is O(m2vt) where t
is the number of total iterations. In summary, the time com-
plexity of the whole proposal is O(|E|+m2vt).

4 Experiment
To evaluate the performance of our proposals, we employ
4 popular benchmark datasets including COIL20 [Nene et
al., ], DIGIT10 [Wu et al., 2021a], MSRC [Lee and Grau-
man, 2009], ORL [Samaria and Harter, 1994] and they
are summarized into Table 1. 10 SOTA multi-view clus-
tering competitors are employed, including AMGL [Nie et
al., 2016], SwMC [Nie et al., 2017b], MLAN [Nie et al.,
2017a], MVGL [Zhan et al., 2018], AWP [Nie et al., 2018],
MEA [Wu et al., 2020], SFMC [Li et al., 2020], NESE [Hu et
al., 2020], CDMGC [Huang et al., 2021], OP-LFMVC [Liu et
al., 2021]. All the experiments are implemented in MATLAB
R2020b on a desktop with Intel i7-7700k @ 4.2GHz CPU
and 32GB RAM. Following [Nie et al., 2017b], we construct
KNN graph and set the number of nearest neighbors as 10.
For AMGL and MEA that need K-means as post-processing,
we run K-means 100 times and record results with minimum
objective value. For OP-LFMVC, we utilize the multi-view
spectral embeddings as input pre-processed matrix.

Effectiveness evaluations. We evaluate the effectiveness
of EMGC2F with 4 popular clustering metrics, including
ACC, NMI, F1-Score and ARI. The clustering results are
recorded in Table 2, from which we observe that the proposed
EMGC2F outperforms all SOTA competitors on all four
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Method Metric AMGL SwMC MLAN MVGL AWP MEA SFMC NESE CDMGC OP-LFMVC EMGC2F

COIL20
ACC 0.8340 0.8542 0.8424 0.7854 0.7299 0.8549 0.8069 0.7278 0.8757 0.7069 0.9250
NMI 0.9125 0.9429 0.9250 0.9130 0.8975 0.9240 0.9197 0.8617 0.9450 0.8647 0.9696
F1 0.7756 0.8410 0.8135 0.7867 0.7597 0.8324 0.8197 0.7070 0.8547 0.7135 0.9244

ARI 0.7621 0.8318 0.8025 0.7739 0.7449 0.8233 0.8098 0.6902 0.8462 0.6947 0.9203

DIGIT10
ACC 0.8683 0.6148 0.5913 0.8458 0.6502 0.7067 0.7803 0.8711 0.8440 0.6851 0.8793
NMI 0.7712 0.6094 0.6181 0.7639 0.6497 0.6833 0.7190 0.7743 0.7620 0.6628 0.7836
F1 0.7664 0.5444 0.5395 0.7443 0.5725 0.6064 0.6821 0.7713 0.7472 0.6001 0.7845

ARI 0.7403 0.4739 0.4736 0.7149 0.5198 0.5558 0.6416 0.7457 0.7183 0.5511 0.7605

MSRC
ACC 0.8571 0.7619 0.6952 0.8714 0.8952 0.8714 0.8238 0.7667 0.8286 0.8952 0.9143
NMI 0.7623 0.7355 0.6565 0.7731 0.7921 0.7951 0.7539 0.7170 0.7642 0.7921 0.8329
F1 0.7494 0.7138 0.6089 0.7560 0.8050 0.7730 0.7398 0.6944 0.7407 0.8050 0.8364

ARI 0.7081 0.6619 0.5332 0.7152 0.7734 0.7354 0.6937 0.6433 0.6952 0.7734 0.8099

ORL
ACC 0.8325 0.8200 0.7600 0.8250 0.8000 0.7625 0.7875 0.8075 0.8250 0.7850 0.8725
NMI 0.9273 0.9258 0.8716 0.9351 0.9142 0.9079 0.9039 0.9114 0.9320 0.9145 0.9522
F1 0.7846 0.7416 0.6550 0.7993 0.7691 0.7130 0.6883 0.7512 0.7815 0.7576 0.8547

ARI 0.7791 0.7347 0.6460 0.7942 0.7632 0.7053 0.6796 0.7449 0.7758 0.7513 0.8511

Table 2: Clustering results on 4 real-world datasets. Best results are in bold.
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Figure 3: The precision of cross-view nearest neighbors being in the
same ground truth cluster and the reduced ratio (n−m)/n of CN2V.

datasets. Specifically, EMGC2F exceeds the best com-
petitor by 0.0400(ACC), 0.0171(NMI), 0.0554(F1),
0.0569(ARI) on ORL dataset, and 0.0493(ACC),
0.0246(NMI), 0.0697(F1), 0.0741(ARI) on COIL20
dataset. Furthermore, the CN2V module seeks for a part
of (the number is adaptive) credible pairwise pre-labels,
so the precision (the proportion of correct pairwise labels
in predicted pairwise labels) is vital. We summarize the
pairwise precision on 4 datasets into Figure 3, from which we
observe that the precision of pairwise labels is 1 on MSRC,
ORL, COIL20 datasets and 0.9581 on DIGIT10 dataset.
Meanwhile, 998 nodes on COIL20 dataset and over 20%
nodes on DIGIT10, ORL datasets are successfully reduced.
These promising results indicate that CN2V is extremely
effective at extracting consistent information from multiple
views and thus beneficial for subsequent procedures.
Efficiency evaluations. In this part, we aim to evaluate
the efficiency of the optimization (Algorithm 1) of EMGC2F
model. For each model, we run it for 5 times and report the
averaged execution time in Table 3. From the results, we can
observe that the optimization efficiency of EMGC2F is far
ahead of other models, which matches the theoretical analy-
sis that the O(|E|+m2vt) complexity of EMGC2F optimiza-
tion is much more efficient than O(n3) of current works that
depend on spectral decomposition in pro-processing or (and)
learning procedure. The convergence curves on 2 benchmark
datasets are plotted into Figure 4, from which we observe that
Algorithm 1 can converge rapidly.

Algorithm COIL20 DIGIT10 MSRC ORL
AMGL 1.2397 515.5103 0.2326 0.4684
SwMC 323.7284 — 5.9962 11.8308
MLAN 8.4658 — 0.1022 0.2913
MVGL 91.3807 — 0.7722 2.9360
AWP 0.5025 169.6220 0.0169 0.0713
MEA 9.3117 — 0.3328 1.0009
SFMC 7.1074 — 0.7504 2.0840
NESE 3.9386 183.4303 0.1025 0.4033
CDMGC 10.8803 — 0.5603 1.2253
OP-LFMVC 0.9626 228.9462 0.1272 0.4398
EMGC2F 0.0136 0.4829 0.0121 0.0090

Table 3: Mean execution time (s) of 5 runs. > 1000 s are omitted.
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Figure 4: The convergent curves on 2 real datasets.

5 Conclusion

This paper proposes an EMGC2F model for MGC, which
learns consistent clustering labels from multiple views di-
rectly and avoids time-consuming spectral decomposition in
current works. Through our model, the importance and cred-
ible consistent information is captured comprehensively. An
efficient discrete algorithm of O(|E|+m2vt) time complex-
ity is provided. Empirical results demonstrate the effective-
ness and efficiency of our proposal. Besides, EMGC2F ex-
ploit credible consistent information as a constraint directly,
which is the simplest way. In the future, how to use the infor-
mation more flexibly and deeply may require more concern.
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