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Abstract

Although meta-learning and metric learning have
been widely applied for few-shot node classification
(FSNC), some limitations still need to be addressed,
such as expensive time costs for the meta-train and
difficult of exploring the complex structure inher-
ent the graph data. To address in issues, this paper
proposes a new data augmentation method to con-
duct FSNC on the graph data including parameter
initialization and parameter fine-tuning. Specifi-
cally, parameter initialization only conducts a multi-
classification task on the base classes, resulting in
good generalization ability and less time cost. Pa-
rameter fine-tuning is designed to have two data aug-
mentation methods (i.e., support augmentation and
shot augmentation) on the novel classes to generate
sufficient node features so that any traditional super-
vised classifiers can be used to classify the query
set. As a result, the proposed method is the first
work of data augmentation for FSNC. Experiment
results show the effectiveness and the efficiency of
our proposed method, compared to state-of-the-art
methods, in terms of different classification tasks.

1 Introduction
As the success of deep neural networks is found to signifi-
cantly depend on the sample number, i.e., large scale amount
of samples, there has been growing interest in investigating
effective deep models with a few samples. Recently, few-shot
learning (FSL) is widely applied to classify unseen samples
by training supervised or semi-supervised models with only a
few training samples [Huang et al., 2021; Lazarou et al., 2021;
Wang et al., 2020b]. Previous FSL methods can be divided
into three categories, i.e., meta-learning methods, metric learn-
ing methods and data augmentation methods. Meta-learning
methods first use the meta-train to learn initialization parame-
ters and then apply them in the meta-test [Song et al., 2019;
Oh et al., 2020]. Metric learning methods are designed to learn
one task-invariant metric for all the tasks to conduct FSL [Hao
et al., 2019; Jiang et al., 2020]. Data augmentation methods
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augment the number of training samples to increase the shot
numbers [Zhou et al., 2021; Yang et al., 2021].

In the literature, either meta-learning methods or metric
learning methods are more popular for FSL than data augmen-
tation methods. However, meta-learning methods require each
task of the meta-train to have the same class number as the
novel classes while metric learning methods are often failed
to learn the task-invariant metric due to the issue of task diver-
gence [Cheng et al., 2019]. These issues seriously limit their
applications. On the contrary, data augmentation methods
are designed to augment the samples and thus be available to
conduct traditional supervised or semi-supervised learning as
well as avoiding the above issues. However, a few literature
have been focused on conducting FSL by data augmentation.
For example, [Xian et al., 2019] design a generative model
fusing generative adversarial network (GAN) with adversarial
autoencoder (VAE) into a unified framework to augment the
samples and [Sun et al., 2021] investigate to generate high
confidence samples within a ball generator.

Although existing FSL methods have been fast developing,
most of these work focus on Euclidean data such as image and
text whereas few attention has been paid on non-Euclidean
data such as graphs and manifolds [Zhou et al., 2019]. For
example, [Zhou et al., 2019] propose a graph meta-learning
framework to conduct few-shot node classification (FSNC)
based on graph neural networks (GNN). [Huang and Zitnik,
2020] investigate to first represent every node with a local
subgraph and then use subgraphs to train GNNs for conducting
FSL on graphs. In real applications, non-Euclidean data has
shown explosive growth, but many previous FSL methods on
non-Euclidea data focused on meta-learning. Hence, there is a
great demand of conducting FSL with data augmentation on
non-Euclidean data, aiming at dealing with the graph data as
well as avoiding the issues of meta-learning.

The challenge of conducting FSNC with data augmentation
mainly comes from the complex data structure of the graph
data. Specifically, the graph data includes feature information
and relation information between two nodes. Usually, it is
difficult to simultaneously augment these two kinds of infor-
mation [Zhou et al., 2019]. Moreover, either a few number
of samples or noise makes the data augmentation task more
challenging [Ni et al., 2021].

In this paper, we propose a novel data augmentation method
(IA-FSNC for shot) to address the above issues for conducting

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

3601



Novel classes

Noise 

Base classes

Graph 

convolution

Graph 

convolution

Parameter initialization

Parameter fine-tuning

Support node

Query node
Pseudo-labels set Support set

Graph

Class 1 Class 2 Class Y
Augmented node

Node with masked label

Graph 

convolution
Graph 

convolution
Class 1

Class 2

Class Y˝

Parameter propagation

Top k

Shot augmentation

Support  augmentation

Loss

MLP

LossClassifier

Figure 1: The proposed IA-FSNC includes two sequential modules, i.e., Parameter initialization and Parameter fine-tuning. Parameter
initialization first employs the GCN to conduct a multi-classification task on the base classes and then regards the parameters in the first layer
as the initialization parameters of the GCN on the novel classes. Parameter fine-tuning includes support augmentation and shot augmentation.
Specifically, support augmentation first employs the GCN to generate node embedding of all nodes in the novel classes and then uses the
support features to train a classifier, which further assigns pseudo-labels to the nodes (without selected by either the support set or the query
set in novel classes) with low entropy. Support augmentation is obtained by self-training, which involves to update the classifier twice. Shot
augmentation employs a multi-layer perception (MLP) on these features with random noise to generate new features.

FSNC. It involves two modules, i.e., parameter initialization
and parameter fine-tuning, using the backbone of graph con-
volutional network (GCN). To do this, we employ a GCN on
the based classes to initialize the parameters in the parame-
ter initialization module. In parameter fine-tuning module,
the initialized parameters are fine-tuned to fit the support set
by two data augmentation methods, i.e., support augmenta-
tion and shot augmentation. Specifically, the initialization
parameters are inputted to the first graph convolution layer
of a GCN model for the novel classes. The outputted node
embedding is sequentially conducted support augmentation
and shot augmentation to generate sufficient node features
so that any supervised classifiers can be used. As a result,
two GCNs used in our framework are employed to conduct
semi-supervised learning on the graph data by exploring the
complex data structure inherent the graph data and requiring
less time cost for parameter initialization, while two data aug-
mentation methods are used for achieving the effectiveness as
well as making any existing supervised classifiers be available
for FSNC.

2 Method
2.1 Motivation
Given the input graph G = (V, E) where V =
{v1, v2, · · · , vn} and E ⊆ V × V represent the node set and
the edge set, respectively, we denote X = [x1,x2, · · · ,xn]

T

and A ∈ {0, 1}n×n, respectively, as the feature matrix of all
nodes and the adjacency matrix of X.

Given a graph with node-label pairs D = {(xi,yi)}ni=1
where yi ∈ Y and Y denotes the node class set, we divide Y
into two sets, i.e., Y = Y′∪Y′′ where Y′ is the base class set
and Y′′ is the novel class set. The goal of FSNC is to first train
a model from the base classes and then to fine-tune it on a few
samples within the novel classes. For the evaluation of FSNC
models, we usually construct an N -way K-shot task, where N
is the number of novel classes and each class has only K (e.g.,
1, 3 and 5) samples. Moreover, the model is trained on the
support set S = {(xi,yi)}N×K

i=1 and is evaluated on the query
set Q = {(xi,yi)}N×b

i=N×K+1 where the literature including
this work usually set b = 12.

In the literature, Meta-GNN [Zhou et al., 2019] and its
variants [Wang et al., 2020a; Guo et al., 2021; Liu et al., 2021;
Ding et al., 2020; Ding et al., 2021] are very popular for FSNC.
To do this, in parameter initialization, they first partition the
base classes into multiple tasks where each task have the
equivalent class number as the novel classes, and then employ
model-agnostic meta-learning (MAML) [Finn et al., 2017]
to learn the initialization parameters from these tasks. In
parameters fine-tuning, these parameters are further fine-tuned
by the support set to output a model for evaluating the query
set.

However, previous works still have limitations to be ad-
dressed. First, in parameter initialization, previous meta-
learning methods for FSNC perform many tasks under the
backbone of GCNs, resulting in expensive time cost. More-
over, it is unfeasible in the real application for their assumption
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that each task has the same class number as the novel classes.
Second, in parameter fine-tuning, a number of FSL methods
ignore to use the unselected node set1, resulting in insufficient
information for parameter fine-tuning due to waiting useful
information inherent these nodes. Lastly, to the best of our
knowledge, no literature has focused on conducting FSNC
with data augmentation as it is challenging to augment the
graph data, i.e., simultaneously augmenting nodes and edges.

To address the above issues, we propose a new data augmen-
tation method (namely IA-FSNC) for FSNC, by involving two
modules shown in Figure 1. The difference between ours and
existing FSNC methods is obvious. First, similar to previous
meta-learning methods for FSNC, our method also uses the
GCN as the backbone to deal with the complex relation among
the graph data, but our method is the first work for FSNC with
data augmentation. Second, different from traditional FSNC
methods that conduct parameter initialization with multiple
tasks and each task has the same class number as the novel
classes, our method conducts one multi-class classification
task with all classes. Third, compared to previous methods
that employ the support set only to conduct parameter fine-
tuning on the GCN, our parameter fine-tuning employs the
GCN on all node features in the novel classes (including the
nodes in the support set and the query set, and the unselected
nodes) to generate their node embedding.

2.2 Parameter Initialization
In the process of parameter initialization under semi-
supervised learning, all nodes are used to learn the node
embedding. In particular, parameter initialization in meta-
learning is designed to partition all nodes into multiple tasks
and each task is further designed to use all nodes to learn their
node embedding and the classifiers are for specific classes, i.e.,
different tasks have different classes.

Obviously, in previous methods, individual tasks have the
same input but have different initialization parameters and
different outputs including node embedding of all nodes and
the classifier. To achieve this, individual tasks are usually
using the same network, e.g., a two-layer GCN. As a result,
first, the node embedding of all nodes in the first layer (i.e.,
low-level embedding) is similar for every task since they have
the same input. Second, the node embedding of all nodes in the
second layer of each task (i.e., high-level embedding) is very
different from other tasks as individual tasks have different
classes to be distinguished.

Inspired by the above observations, we propose a new
method of parameter initialization for FSNC, i.e., propagating
the parameters of the first layer in the GCN to the process
of parameter fine-tuning as well as only designing a multi-
classification task to generate the initialization parameters for
the first layer of the GCN in parameter fine-tuning. The mo-
tivation is that different tasks have similar parameters in the

1In the FSNC literature, the novel classes include the nodes in
the support sets, the nodes in the query set, and the nodes without
selected by either the support set or the query set in the novel classes
(unselected node set for shot), e.g., a green node and a yellow node in
the novel classes of Figure 1. Moreover, all of nodes in the unselected
node set are used for parameter fine-tuning under semi-supervised
learning.

first layer for learning node embedding so that the resulted
parameters are feasible for the initialization parameters to be
fine-tuned. In this way, we do not need to use a complex
meta-training mechanism for parameter initialization.

To achieve this, we follow the traditional FSNC setting to
divide the dataset into base classes and novel classes. The
base classes has M classes and novel classes has N classes.
We thus conduct a M -class classification task by a two-layer
GCN to conduct parameter initialization. Specifically, we first
define the node embedding of all nodes Z(i) in the i-th layer
of the GCN as follows:{

Z(i) = σ(ÂZ(i−1)W(i−1))

P = softmax(σ(ÂZ(i)W(i)))
(1)

where W(i) is the trainable parameter of the i-th layer and
σ is the activation function. In particular, we have Â =

D̃− 1
2 ÃD̃− 1

2 where Ã = A+ IN , d̃ii =
∑

j ãij and IN is a
diagonal matrix. After obtaining the probability matrix P, the
cross entropy loss is defined as:

L = −
∑
i∈S

c∑
j=1

yij ln pij (2)

where c represents the number of classes.
After the process of parameter initialization, we take the

first-layer parameters as the initialization parameters of the
first-layer of the GCN in the novel classes. Compared to
our parameter initialization method, traditional meta-learning
methods (1) propagate the parameters in all layers to parameter
fine-tuning but the parameters in the last layers are specified
for the classes in the base classes and thus has less useful infor-
mation for the classes in the novel classes and (2) sequentially
conduct multiple GCNs to result in expensive time cost. In
particular, traditional meta-learning methods require each task
to have the same class number of the novel classes, limiting
them in the real applications.

2.3 Parameter Fine-tuning
Different from traditional FSNC methods that parameter fine-
tuning aims at fine-tuning the initialization parameters to fit the
support set, our parameter fine-tuning is to generate sufficient
node features so that any supervised classifiers can be used to
evaluate the query set. To do this, our parameter fine-tuning
includes support augmentation and shot augmentation.

Support Augmentation by Self-training
Given initialization parameters from the process of parameter
initialization, the two-layer GCN is used to output the node
embedding of all node features in the novel classes, as well
as train a classifier between the nodes in the support set and
their labels. However, this process easily suffers from the
over-fitting issue due to limited sample number. To address
this, our first solution is to employ self-training [McClosky et
al., 2006] to add the number of node features. Specifically, we
use the classifier to classify the nodes in the unselected node
set. We expect to label some of them to add the node feature
number (i.e., support augmentation) based on the uncertainty
measurement, i.e., information entropy. That is, the lower the
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information entropy of a node is, the higher the probability of
this node is correctly classified. In this way, we select top k
nodes with the lowest information entropy for each class and
assign them with labels.

Specifically, using Eq. (1) to obtain the parameter matrix
P′ of all nodes in the novel class set can be used to calculate
the information entropy h. Assuming that we have a set of
unselected nodes, i.e., h = {h1, h2, · · · , hi, · · · , hq}, and the
information entropy of a node hi is calculated by

hi = −
c∑

j=1

p′ij log2 p
′
ij (3)

After obtaining the entropy of all unselected nodes, we rank
them by an increase order to assign reliable node features with
pseudo-labels, called them pseudo-label set.

We further update the classifier using both the node features
in the support set and the features in the pseudo-label set. As
a result, we adaptively update their features and the classifier.

Shot Augmentation
After obtaining the node features in the pseudo-label set, we
use them and the node features in the support set to generate
new node features. This is our second solution to conduct
FSNC with a few samples. Specifically, we first add random
noise into these features and then apply an MLP to generate
new features, i.e., shot augmentation. The goal of adding ran-
dom noise into the features is generating diverse features. We
further use the obtained node features to update the classifier,
which is used for evaluating the query set.

We mention that it is difficult to conduct data augmentation
for FSNC on the graph data due to the complex data struc-
ture. [Ni et al., 2021] partition data augmentation methods to
four categories, i.e., support augmentation, shot augmentation,
query augmentation and task augmentation. However, many
previous methods directly generate new nodes or samples and
few literature focused on generating new node features. In
this paper, we propose two data augmentation methods to gen-
erate the node features as the node embedding contains both
the feature information and the relation information between
two nodes. As a result, our data augmentation methods can
simultaneously augment feature information and relation in-
formation to explore the complex data structure on the graph
data and their effectiveness is verified in Sec. 3.3.

2.4 Objective Function
We conduct two sequential modules to conduct FSNC on the
graph data. Two modules employ the same backbone, i.e.,
GCN, but they have different contributions. Specifically, the
GCN in parameter initialization outputs initialization param-
eters to benefit parameter fine-tuning, i.e., information aug-
mentation. The GCN in parameter fine-tuning design two data
augmentation methods (i.e., information augmentation again)
to generate sufficient node features so that any supervised
classifiers can be used to evaluate the query set.

In parameter fine-tuning, the classifier is updated three
times. Different updates have different goals. Specifically,
the first update is used to generate the pseudo-label set, and
the second update is used to update the features of the nodes in

the support set and the pseudo-label set. The third update guar-
antees generating new features as well as is used to evaluate
the query set.

3 Experiments
3.1 Experimental Settings
Datasets
In our experiments, we use four public real-world datasets, in-
cluding two citation datasets (i.e., Cora and Citeseer [Kipf and
Welling, 2016]), one KDD challenge dataset, i.e., Coauthor
(CS) [Shchur et al., 2018], and one ecommerce dataset (i.e.,
Computers [Shchur et al., 2018]).

Comparison Methods
The comparison methods include one GCN method (i.e., GCN
[Kipf and Welling, 2016], two meta-learning methods (i.e.,
Meta-GNN [Zhou et al., 2019] and G-Meta [Huang and Zit-
nik, 2020]), two metric learning methods (i.e., Proto-GNN
[Snell et al., 2017] and GPN [Ding et al., 2020]) and two data
augmentation methods, i.e., GCN-ID [Wang et al., 2018] and
GCN-DC [Yang et al., 2021]2.

3.2 Result Analysis
Classification Result Analysis
We report the accuracy of all methods at different shot num-
bers on all datasets in Table 1. First, our proposed IA-FSNC
significantly outperforms all SOTA methods. For example,
our method averagely improves by 8.85%, 4.46%, and 3.26%,
respectively, compared to GCN, in terms of 1-shot, 3-shot, and
5-shot on all datasets. With similar competition, our method
averagely improves by 6.86%, 3.28%, and 2.41%, respectively,
compared to the best comparison method i.e., Meta-GNN. This
show the effectiveness of our proposed method.

Second, our method achieves different improvements in
terms of different shot numbers, compared to the comparison
methods. Specifically, our method achieves the improvement
by 10.35%, 7.18%, and 5.23% respectively, on all comparison
methods and all datasets, in terms of 1-shot, 3-shot and 5-shot.
The reason is that the classification model has more room for
improvement for less training samples.

(a) Accuracy (b) Time costs

Figure 2: Accuracy and time costs of our parameter initialization and
MAML in our framework.

2Since no literature focused on data augmentation for FSNC, we
adapt FSL methods (i.e., GCN-ID and GCN-DC) to conduct FSNC
by replacing their backbone CNN with GCN.
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Datasets Shot
Baseline Meta-learning methods Metric learning methods Data augmentation methods

GCN Meta-GNN G-META Proto-GNN GPN GCN-ID GCN-DC IA-FSNC

Cora
1 73.31±2.15 75.75±1.92 69.74±0.01 69.67±1.97 72.05±0.13 74.63±2.15 67.26±1.70 85.51±1.77
3 86.21±1.04 88.01±1.69 83.02±0.01 85.42±1.01 78.39±0.20 87.39±1.20 69.81±2.03 91.95±0.67
5 90.14±0.68 90.79±0.27 85.15±0.01 91.33±0.69 82.40±0.27 90.74±0.78 75.63±1.67 93.38±0.47

Citeseer
1 65.12±1.86 67.36±1.55 65.46±0.01 63.25±1.50 63.53±0.11 65.72±2.02 64.76±1.37 78.44±2.63
3 77.28±1.61 79.01±1.26 77.99±0.02 74.50±0.99 71.67±0.13 77.24±1.82 69.09±1.45 85.28±1.49
5 80.57±1.49 82.98±1.77 82.79±0.01 77.90±2.01 81.28±0.15 80.87±1.58 71.22±1.33 86.86±1.20

Coauthor (CS)
1 86.52±0.74 87.39±0.31 86.75±0.19 76.19±2.04 72.79±0.15 83.71±1.13 72.99±2.89 88.24±0.71
3 92.91±0.11 93.34±0.28 91.66±0.23 88.21±0.32 85.36±0.12 92.97±0.27 84.16±1.20 94.35±0.11
5 93.01±0.28 94.01±0.19 93.89±0.15 91.83±0.55 88.29±0.09 93.39±0.16 85.81±0.80 94.79±0.07

Computers
1 81.68±3.02 84.09±2.12 87.48±0.03 79.85±3.33 81.55±0.87 82.29±3.26 84.11±3.01 89.86±2.36
3 93.10±0.82 93.88±0.95 92.85±0.01 81.67±1.98 93.92±1.34 94.99±0.56 86.60±2.45 96.01±0.41
5 95.25±0.46 94.37±0.51 92.63±0.05 88.41±0.81 94.74±0.48 96.08±0.30 90.77±1.06 96.75±0.26

Table 1: Classification accuracy (mean and standard deviation) of all methods at different shot numbers on all datasets, where the bold number
represents the best results in the whole row.

C1 C2 C3 Cora Citeseer Coauthor (CS) Computers
✓ 87.52±1.14 77.97±1.86 92.06±0.16 95.34±0.44

✓ 90.98±0.81 83.49±1.68 93.31±0.12 93.15±0.75
✓ 84.81±1.36 76.71±1.94 93.30±0.25 93.79±1.22

✓ ✓ 92.42±0.61 85.20±1.49 93.19±0.09 95.97±0.32
✓ ✓ 90.94±0.81 83.55±0.16 93.91±0.58 93.28±0.75

✓ ✓ 87.43±0.11 77.35±1.78 92.54±0.34 94.91±0.57
✓ ✓ ✓ 91.95±0.67 85.28±1.49 94.35±0.11 96.01±0.41

Table 2: Classification accuracy (mean and standard deviation) of our method with different components at 3-shot on all datasets, where the
bold number represents the best results in the whole column.

3.3 Ablation Study
Effectiveness of Individual Components
Our IA-FSNC includes three key components, i.e., parame-
ter initialization (C1 for short), support augmentation (C2 for
short) and shot augmentation (C3 for short). We report the
classification results of their combinations on all datasets in
Table 2 to demonstrate the effectiveness of individual com-
ponents. First, each component (i.e., the first three lines in
Table 2) is effective as they output significant classification
performance, indicating the feasibility of our proposed method.
Moreover, among these components, the support augmenta-
tion achieves the best results. The reason is that the classifier
has serious issue of the overfitting with a few samples, and
there is a lot of room for adding pseudo-labels to improve per-
formance. Second, although the shot augmentation achieves
the worst improvement, compared to other two components,
the improvement is very significant while combing it with
other components. The reason is that the shot augmentation
is depended on the support augmentation. Hence, it is rea-
sonable for this work to simultaneously taking the support
augmentation and the shot augmentation into account.

Parameter Initialization Effectiveness
In the last paragraph, we verified the reasonability of our
proposed parameter initialization, and further demonstrate
its effectiveness and efficiency. To do this, we replace our
parameter initialization with MAML [Finn et al., 2017] in
our framework and report the results in Figure 2. As a result,
our parameter initialization improves by 2.72% in terms of
accuracy and nearly 10 times faster in terms of time costs,
compared to our framework with MAML. This shows that

our proposed parameter initialization has good generalization
ability and efficiency.

3.4 Parameter Sensitivity Analysis
We investigate the parameter sensitivity of our IA-FSNC, i.e.,
top k for selecting the pseudo-label set and µ for the learning
rate. To do this, we vary the values of k from 0 to 100 and
the values of µ from 0.01 to 0.2, and then report the results
in Figure 3, 4 and 5. Obviously, our method is sensitive to
the setting of k. Specifically, the accuracy increases with the
values of k from 0 to 50. However, the accuracy achieves the
peak and becomes stable while the values of k is above 50.
The reason is the information entropy has reached a critical
point for k ≥ 50. In particular, the accuracy reduces if the
value of k is too small. If the value of µ is too large (e.g.,
10 and 0.2), the accuracy is greatly reduced. Therefore, we
experimentally set k = 50 and µ = 0.02 in our experiments.

4 Conclusion
In this paper, we proposed a new FSL method with data aug-
mentation for FSNC by achieving effectiveness and efficiency.
Inspired by observing the reason that traditional parameter
initialization is time-consuming, we proposed an effective and
efficient solution and then proposed two data augmentation
methods (i.e., support augmentation and shot augmentation)
to improve the effectiveness of FSNC. As a result, this work
is the first work to conduct FSNC with data augmentation on
the graph data. Experimental results showed that our method
achieves supreme performance, compared to the state-of-the-
art methods.
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Figure 3: Results of IA-FSNC at different parameter settings (i.e., µ and k) in terms of 1-shot.

Figure 4: Results of IA-FSNC at different parameter settings (i.e., µ and k) in terms of 3-shot.

Figure 5: Results of IA-FSNC at different parameter settings (i.e., µ and k) in terms of 5-shot.
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