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Abstract
Decarbonization of global power systems signif-
icantly increases the operational uncertainty and
modeling complexity that drive the necessity of
widely exploiting cutting-edge Deep Reinforce-
ment Learning (DRL) technologies to realize adap-
tive and real-time emergency control, which is the
last resort for system stability and resiliency. The
vulnerability of the DRL-based emergency control
scheme may lead to severe real-world security is-
sues if it can not be fully explored before imple-
menting it practically. To this end, this is the
first work that comprehensively investigates adver-
sarial attacks and defense mechanisms for DRL-
based power system emergency control. In par-
ticular, recovery-targeted (RT) adversarial attacks
are designed for gradient-based approaches, aim-
ing to dramatically degrade the effectiveness of
the conducted emergency control actions to prevent
the system from restoring to a stable state. Fur-
thermore, the corresponding robust defense (RD)
mechanisms are proposed to actively modify the
observations based on the distances of sequential
states. Experiments are conducted based on the
standard IEEE reliability test system, and the re-
sults show that security risks indeed exist in the
state-of-the-art DRL-based power system emer-
gency control models. The effectiveness, stealth-
iness, instantaneity, and transferability of the pro-
posed attacks and defense mechanisms are demon-
strated with both white-box and black-box settings.

1 Introduction
To facilitate the transition to a secure, smart, and low carbon
power system, the increasing penetration of renewable en-
ergy sources, the widespread deployment of power electronic
devices, and the integration of cyber and physical spaces
bring about unprecedented challenges for Transmission Sys-
tem Operators to maintain the reliability and resilience of
power systems. For example, the UK suffered its most sig-
nificant power outage in over a decade in 2019 because of
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the generator faults, lasting more than 1.5 hours and caus-
ing widespread disruption to the traffic signal network, af-
fecting about 1 million people. As a last resort, power system
emergency control is of great importance for real-time op-
eration to diminish the occurrence frequency and severe im-
pact of power outages or blackouts. In particular, emergency
control includes Under Voltage Load Shedding (UVLS), Un-
der Frequency Load Shedding (UFLS), generation redispatch
or tripping, dynamic braking, and controlled system separa-
tion [Kundur et al., 2000], which are highly dependent on
power system physical models and their abilities are limited
to deal with complex and rapidly changing dynamic con-
ditions [Zhang et al., 2018]. For example, although there
are some adaptive schemes of UFLS [Banijamali and Am-
raee, 2018] based on system behavior that have been investi-
gated, these approaches exhibit limited efficiency and effec-
tiveness in guaranteeing the stability for the unknown failures
as the parameters for calculating integral are almost off-line
designed based on the specific failure set. To this end, it is
imperative to develop a new paradigm of adaptive and real-
time emergency control schemes by employing cutting-edge
Deep Reinforcement Learning (DRL) technologies.

In the literature, the DRL algorithm, which makes use of
the advantages of Reinforcement Learning (RL) in sequen-
tial decision-making problems and combines with the idea
of Deep Learning (DL) to improve the limitations of slow
convergence of RL [Mnih et al., 2015], has shown to be
well suitable for power system emergency control, which
is a dynamic, sequential decision-making problem under-
uncertainty. For example, the Deep Q Network (DQN) algo-
rithm [Huang et al., 2019] and the Deep Deterministic Policy
Gradient (DDPG) algorithm [Chen et al., 2020] have been ex-
ploited to enhance the adaptiveness and timeliness of genera-
tor dynamic braking under-voltage load shedding, and emer-
gency frequency control. Moreover, multi-agent DDPG al-
gorithms are used to conduct load frequency control of the
multi-area power system in the continuous action domain,
and the experimental results demonstrate the superior perfor-
mance of the multi-agent framework [Yan and Xu, 2020]. In
addition, a meta-learning method combined with DRL algo-
rithms is applied to solving emergency control problems in
the context of extremely limited data availability [Nikoloska
and Simeone, 2021].

Although the DRL-based emergency control schemes have
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shown dominant performance compared to conventional
model-based approaches, with the integration of information
and communication technologies, modern power systems are
facing potential threats (e.g., cyber-attacks), and thus, it puts
forward higher requirements for the security and reliability of
the DRL model itself. For the machine learning community,
the vulnerability of DRL algorithms has been preliminarily
studied via developing various attack methods. Huang et al.
[Huang et al., 2017] altered the observation by the Fast Gra-
dient Sign Method (FGSM), which resulted in a significant
performance decline of the DRL algorithms. Moreover, Lin
et al. [Lin et al., 2017] implemented Carlini & Wagner (CW)
attack to generate adversarial samples, which disturbed obser-
vations only at 25% of time steps but produced the same result
as FGSM. On the other hand, machine learning algorithms for
the regression and classification tasks in power systems have
been recognized. Chen et al. [Chen et al., 2018] first showed
the impacts of adversarial attacks against ML-based power
system tasks, including classification of power quality distur-
bances and forecast of building loads. In addition, the adver-
sarial attack methods proposed in [Li et al., 2021] success-
fully decrease the accuracy of Deep Neural Networks-based
false data detection approaches and thus may cause signifi-
cant security issues.

However, there is no research about the vulnerabilities
of DRL-based emergency control systems in the literature,
which is of great importance to be investigated before using
the system in practice. Therefore, designing adversarial at-
tacks against the DRL-based emergency control system and
analyzing their system impacts is essential to assess its vul-
nerability. After that, the corresponding defense mechanisms
against adversarial attacks for DRL-based emergency control
schemes are also critical problems to ensure the stability of
cost-effective operation in the power system.

To this end, this paper aims to fill the knowledge gap
and investigate the fundamental limitations of existing ap-
proaches through the following novel contributions:

–To the best of the authors’ knowledge, this is the first
work that comprehensively investigates the vulnerability of
the DRL-based power system emergency control schemes.
In particular, this paper focuses on the potential threats in
the test phase. Five recovery-targeted (RT) adversarial attack
methods are designed for gradient-based approaches that aim
to prevent the system from restoring to a stable state effec-
tively.

–Based on the explored vulnerabilities, two distance-based
robust defense mechanisms are proposed to enhance the ro-
bustness of the DRL-based emergency control model under
various adversarial attacks. Furthermore, four evaluation in-
dicators are designed to assess the effectiveness, stealthiness,
instantaneity, and transferability of the tested attacks as well
as the performance of the defense methods.

Experiments are conducted based on the world’s first open-
source platform, Reinforcement Learning for Grid Control
(RLGC), which was designed to develop and benchmark
DRL algorithms for power system control. The proposed
attacks and defense mechanisms against SAC-, PPO- and
DQN-based emergency control models are tested with both
white-box and black-box settings.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces power system emergency control and for-
mulates the problem as an MDP model; Section 3 explains
the proposed RT adversarial attacks and robust defense (RD)
mechanisms in detail; Section 4 demonstrates the perfor-
mance of the proposed approaches based on the platform of
RLGC; Concluding remarks are provided in Section 5.

2 Background and Problem Definition
2.1 Power System Emergency Control
Power system security control, including the two main stages
of preventive and emergency control before and after contin-
gencies occur, plays a key role in maintaining the safety and
stability of power system operation. The target of emergency
control is to restore the system state from an unstable to a sta-
ble one. For large-scale power systems, the emergency con-
trol problem is a highly non-linear and non-convex optimal
decision-making problem [Huang et al., 2019], which can be
expressed as:

min
at

∫ Tc

T0
F (xt, at) dt

s.t. g (xt, at) = 0,
h (xt, dt, at) ≤ 0,
amin
t ≤ at ≤ amax

t ,
t ∈ [T0, Tc]

(1)

where F (·) is the cost function of the power grid emergency
control; g(·) and h(·) represent the constraint relationships;xt

represents state vector of the power system, consisting of
voltage magnitudes and angles; at represents the vector of
controls available to the operator, such generator speed; dt
represents disturbance vector that could occur in the grid. In
this problem, the main objective function is to minimize cost
during the time horizon Tc − T0 by at.

For this nonlinear time-varying system, traditional emer-
gency control methods can not achieve real-time, and are dif-
ficult to obtain the optimal decision, especially in the context
of a large-scale power system with high renewable energy
penetration. To this end, the DRL algorithms are considered
one of the most effective solutions in the literature to address
these issues.

2.2 Emergency Control as an MDP
In this work, we focus on one of the emergency control tech-
nologies, UVLS, which has been implemented in the open-
source platform RLGC. For the ULVS, load shedding is the
ultimate countermeasure to prevent widespread outages and
recover the power system from an insecure state to a nor-
mal one. The UVLS scheme reduces the load percentage
of the high load area on the bus by a set of distributed con-
trollers. In this study, the UVLS problem can be formulated
as a Markov Decision Process (MDP) consisting of four parts
< S,A,R,P >, where S , A, R, P represent the state space,
the action space, the reward function, and the state transition
probability, respectively. In an MDP, the agent takes observa-
tions of environment states and executes actions generated by
its policy π to the environment; in turn, the environment pro-
vides feedback rewards to the agent. During the interaction
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with the environment, the agent constantly adjusts its policy
to achieve the best decision according to rewards. Given that
the state transition probability is unknown, the state, reward,
and actions can be defined as:

Observation and State. The voltage amplitude on the ob-
servation bus, represented by V (t), and the remaining load
percentage on the control bus, represented by L(t), are se-
lected as the observation ot; and the last T simulation steps’
observations are regarded as the states, that is, the input of
DRL agent’s network:

ot = {V (t), L(t)},
st = {ot−T+1, ot−T+2, ..., ot} (2)

Action. The action is selected as the percentage of load
shedding on the control bus, which quantity decides the di-
mension of at. The action can be discrete or continuous:

at =
{
a1t , a

2
t , ..., a

i
t, ..., a

N
t

}
, i ∈ 1, 2, ..., N (3)

where i represents the ith control bus, N is the number of
control buses and ait is the control action of the ith bus. In
the discrete action space, ait is set as a value at a fixed inter-
val, and in the continuous space, ait is a arbitrary value of a
reasonable range.

Reward. Given the state st and action at, the reward func-
tion is a feedback from the environment that can be repre-
sented as:

rt =

{ −C, if Vi(t) < 0.95
and t > Tpf + 4

r(Vi(t),∆Pj , uivld), otherwise
(4)

where C is a large penalty given to the reward in this step
if the limit of Transient Voltage Recovery Criteria (TVRC)
(i.e., the voltage recovery to 0.95 within 4s) can not be satis-
fied; Tpf refers to the instant of fault clearing; Vi(t) is the bus
voltage amplitude of bus i in the power grid; ∆Pj(t) refers
to the total load shedding of load bus j at time t; uivld rep-
resents a penalty when the load on a specific bus has been
reduced to zero at the previous moment, but the DRL agent
still provides load shedding action. Note that the reward is
always negative and will get a great penalty when the action
violates constraints. The specific definitions are illustrated in
[Huang et al., 2019].

Overall, the DRL-based UVLS problem can be formulated
as an optimization problem to find the optimal control policy
π, which gets maximum cumulative expected rewards during
time horizon Tc − T0, as shown below:

max
θ

EP,π

[
Tc∑

t=T0

r (st, at)

]
(5)

2.3 Adversarial Attack Against the UVLS
Adversarial attacks against the DRL-based UVLS model aim
to influence the effectiveness of the control action via manip-
ulating the states in the test phase. Let πθ denote the policy.
The target of an adversarial attack at every time step is to find
an adversarial example sadvt in the ϵ neighborhood of st (use

lp norm to define the distance between them) that can mini-
mize the reward, which can be formulated as an optimization
problem as follows:

min
sadv
t

r
(
st, a

adv
t

)
(6)

To solve the above optimization problem (6), we use the
gradients descent method to minimize the loss function. In a
white-box attack, the loss function J of the adversarial state
sadvt is designed to realize the optimization objective:

min
∥sadv

t −st∥
p
<ϵ
J
(
sadvt ; st, at, θ

)
(7)

Similarly, the transfer-based black-box attack is also devel-
oped to generate the adversarial sample that minimizes J .
Nevertheless, it uses the network parameters of the known
DRL model θ to generate sadvt against the unknown DRL
model with parameters θ′.

3 Proposed Attacks and Defense Mechanisms
For the application of DRL-based UVLS, there are significant
differences in adversarial examples generation mechanisms
between pixel values investigated in the ML community and
power system observations for the following reasons. First,
the objective function of adversarial attack against the DRL-
based UVLS attempts to influence the decisions of the per-
centage of load shedding on the control buses during test pe-
riods so as to induce more severe stability issues such as cas-
cading failure or even widespread blackout. However, most
adversaries against classification models in the ML commu-
nity aim to misclassify images. Second, observations in the
DRL-based UVLS model are not as unified as pixel infor-
mation but rather the voltage and load percentage informa-
tion with more complex physical meanings. For example, bus
voltages are mutually restrained, making it more challenging
to manipulate observations considering stealthiness.

On this basis, integrated with the characteristics of power
systems, we propose the concept of recovery-targeted adver-
sarial attacks for the DRL-based emergency control schemes
as well as the corresponding distance-based robust defense
mechanisms to improve the robustness of the model. An
overview of the RT-attacks and DB-defense mechanisms for
the DRL-based emergency control scheme proposed in this
paper is outlined in Fig.1.

Figure 1: An overview of the proposed RT-attacks and DB-defenses
for the DRL-based emergency control schemes.
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3.1 Recovery-Targeted Adversarial Attacks
In the DRL-based UVLS scheme, the output of DRL models
is the action, which refers to the percent of load shedding on
control buses. To this end, the targeted adversarial action aadv
that the attacker would like the system operator to execute
should realize the following optimization objective:

aadv = argmina∈A r(s, a) (8)

Note that in this work, we simplify the procedure to calculate
the optimal targeted adversarial action via solving the above
problem and directly consider the actions of no load shedding
for UVLS, denoted by anls, to ensure that the system will not
recover to a stable state after an emergency.

On this basis, we propose adversarial attacks against
the UVLS scheme, including the recovery-targeted FGSM
(RT-FGSM) family and recovery-targeted Jacobian-based
Saliency Map Attack (RT-JSMA) family.

RT-FGSM Family
FGSM [Goodfellow et al., 2014] is one of the simplest and
fastest gradient-based attack methods that crafts adversarial
examples by calculating gradients of model outputs to inputs
[Wang and He, 2021]. For the UVLS, the objective functions
J1 of the proposed RT-FGSM can be defined as:

J1 =
1

N

N∑
i=1

(
ait − anls

)2
(9)

Then, the FGSM adversarial example can be designed by
minimizing J1 with a one-step update:

sadvt = f (st − ω · sign (∇stJ1)) , (10)

where f(·) is a function to keep state satisfy physical con-
straints of power systems, such as load constraints and volt-
age constraints; ω denotes a small positive value. On this ba-
sis, the proposed RT loss function J1 can be employed in all
FGSM families, such as Iterative Fast Gradient Sign Method
(I-FGSM) [Kurakin et al., 2016], Momentum Iterative Fast
Gradient Sign Method (MI-FGSM) [Dong et al., 2018].

RT-JSMA Family
Different from the FGSM, the JSMA algorithm [Papernot et
al., 2016] is a targeted attack. Meanwhile, JSMA pursues
to reduce the number of modified input dimensions as much
as possible. Thus, we attempt to make agents’ actions on a
particular control bus more prone to decision errors than other
buses through JSMA attacks. The JSMA algorithm [Papernot
et al., 2016] is another type of gradient-based attack, which
uses l0 norm as the distance metric.

Aiming at the DRL-based UVLS scheme, the implemen-
tation process of the proposed RT-JSMA algorithm can be
divided into the following three steps. First, we define the
loss function as the l1 norm between the action at time t and
no load shedding action anls, then calculating the forward
derivative as the Jacobian matrix:

∂J i
2

∂sjt
=

[
∂||ait − anls||1

∂sjt

]
i ∈ 1, ..., N ; j ∈ 1, ...,M (11)

where sjt is the jth value of the state st, M is the dimension
of the state. Then, the second step is to construct adversarial
saliency graph Gb

st :

Gb
st [j] =

 0, if ∂Jb
2

∂sjt
< 0 or

∑
i̸=b

∂Ji
2

∂sjt
> 0 or j /∈ Γ

∂Jb
2

∂sjt

∣∣∣∑i̸=b
∂Ji

2

∂sjt

∣∣∣ , otherwise
(12)

where b is the targeted attack bus; Γ is a searching domain,
Γ = {1, ..., T}. Then, we find two states dimensions, sm1

t ,
sm2
t , which have the greatest impact on the objective func-

tion Jb
2 for the current st. Note that searching domain Γ will

remove m1, m2, if sm1
t , sm2

t are beyond limits f(·).

m1 = argmaxGb
st ,

m2 = argmaxm2 ̸=m1
Gb

st

(13)

The adversarial state is iteratively updated until it reaches the
maximum distortion γ. During the iteration, sm1

t , sm2
t are

modified with an appropriate disturbance β.

sadvt (0) = st,

sadvt (k + 1) = f
(
sadvt (k), sadv,jt (k)− β

)
,

j ∈ {m1(k),m2(k)} ,
k < γM

(14)

It is imperative to highlight that, in this study, we propose a
new adversarial attack called recovery-targeted Momentum-
JSMA (RT-MJSMA) that combines RT-JSMA with the idea
of momentum. Different from RT-JSMA, RT-MJSMA uses
the previous gradient information to modify the state at each
iteration step k and calculates the adversarial saliency graph
Gb

st defined by Eq.16 , where gij is jth row, ith column el-
ement of g defined by Eq.15. The whole algorithm of the
proposed RT-MJSMA is given in Appendix B.2.

g(0) = 0,

g(k + 1) = µ · g(k)−
∇sadv

t (k)J2∥∥∥∇sadv
t (k)J2

∥∥∥
1

(15)

Gb
st [j] =

{
0, if gbj < 0 or

∑
i̸=b g

i
j > 0 or j /∈ Γ

gbj

∣∣∣∑i̸=b g
i
j

∣∣∣ , otherwise
(16)

Note that all the above-proposed approaches can be directly
used as transfer-based attacks for the black-box settings.

3.2 Distance-based Robust Defense Methods
To mitigate the threats arising from the attacks mentioned
above, it is of great importance to investigate the correspond-
ing defense mechanisms to enhance the robustness of the
DRL-based UVLS model so that it can still produce reliable
control actions under various types of attacks. To this end, we
propose two distance-based robust defense methods, named
the distance-based robust defense padding method (DB-RDP)
and the distance-based robust defense translate method (DB-
RDT), which utilize the characteristics of historical states to
modify inputs st. The detail can be seen in Appendix B.3.
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DB-RDP
The key idea of the proposed DB-RDP method is to pad the
last observation ot with historical observation. If st is at-
tacked, the attacker is more likely to modify the recent obser-
vation ot, especially in iterative attacks and local attacks. This
observation has the greatest influence on action decisions, and
its value is also an important indicator of the reward function.
Meanwhile, the historical observation is similar with ot if the
state is not attacked due to the short simulation sample time.
Thus, the furthest observation from oadvt is more likely to be
the nearest true value of ot and l2 norm is selected as the dis-
tance metric in order to find the furthest observation ot−T+d1,
as shown below:

d1 = argmax ∥ot − ot−T+j∥2 , j ∈ 1, ..., T (17)
Then we pad ot with ot−T+d1 and the defense observation
can be represented as:

sdeft = {ot−T+1, ot−T+2, ..., ot−1, ot−T+d1} (18)

Moreover, if no attack is applied in the DRL model, sdeft is
similar to st, which makes the DRL-based UVLS scheme still
perform well in no attack setting.

DB-RDT
The proposed DB-RDT method differs from the distance-
based padding method in constructing the defense observa-
tion. More specifically, it exchanges ot with ot−T+d1:

sdeft = {ot−T+1, ..., ot, ..., ot−1, ot−T+d1} (19)
To study the feasibility of proposed defensive methods, we
use parameter p to control the percentage of our defense
methods in the test episode.

D
(
sadvt ; p

)
=

{
D

(
sadvt

)
with probability p

sadvt with probability 1− p
(20)

where D(·) is the function corresponding to our defense
methods.

Note that this work proposes two distance-based robust
defense methods, which utilize the characteristics of histor-
ical states to modify inputs states. If the attacker is aware
of the proposed attack mitigation scheme and factors this in
the attack planning, one possibility is that the attacker will
choose to reduce the attack preference and make more uni-
form changes to all state variables, resulting in a significant
decline in attack performance; another possibility is that the
attacker will make more preferred changes to a historical ob-
servation, but the modified observations may not influence
the performance of our methods. Moreover, the design of de-
fense probability p also ensures the dynamic characteristics
and makes it difficult for the attackers to bypass it.

4 Experiments and Analysis
This section discusses results related to the proposed adver-
sarial attack and defense methods on three DRL-based emer-
gency control schemes (i.e., SAC-, DQN- and PPO-based)
with four designed evaluation indicators. All the experi-
ments have been conducted based on the RLGC open-source
platform [Huang et al., 2019] with the IEEE 39-bus system
[Athay et al., 1979]. The detailed information is shown in
Appendix A and C.

4.1 Experiment Setup
Baselines
We use three DRL baselines exposed by OpenAI Lab, includ-
ing DQN for the discrete action space, PPO and SAC for the
continuous action space. All networks are publicly available1.
In our setting, the state includes voltage magnitudes at buses
4, 7, 8, 18, and the percentage of remaining load served by
buses 4, 7, and 18. The action is load shedding percentage at
buses 4, 7, and 18. The model output is a binary vector in the
discrete action space, where 0 represents no load shedding
actions, and 1 represents 20% load shedding actions at cor-
responding buses. In the continuous action space, the action
value is within −0.5 to 0, meaning the specific load shedding
percentage value. It should be noted that simulations will
break early when the voltage in observation buses is below
the standard recovery for more than 4 seconds.

Evaluation Metrics
Considering the perspectives of effectiveness, stealthiness,
and instantaneity of our adversarial attack methods, four eval-
uated metrics are given as follows: (1) Average Episodes Re-
ward (AER). It represents the average cumulative rewards
under the attack within test episodes; (2) Bad Recovery Ra-
tio (BRR). It compares the voltage recovery with the standard
recovery [Huang et al., 2019]. We record the duration if the
voltage recovery line is lower than the standard recovery line;
(3) Average Modification of Observation (AMO). It evalu-
ates the stealthiness of adversarial attacks. We calculate the l1
norm between the adversarial state sadvt and the original state
st; (4) Average Time Consumption (ATC). It evaluates the
instantaneity of adversarial attacks. Because DRL decision-
making in emergency control is real-time, adversarial exam-
ple generations can not be time-consuming. Therefore, we
introduce this indicator to evaluate the average time to make
adversarial samples in each test step.

4.2 Adversarial Attacks Performance
This subsection aims at analyzing: 1) the influence of white-
box attack on SAC model; 2) the influence of transfer-based
black-box attack on PPO and DQN models.
White-box Attacks. In the white box cases, the severe im-
pacts of the proposed RT-adversarial attacks and their com-
parison with existing un-targeted attacks are given in Table
1. As can be seen, compared with the case of no attack, in-
jecting the adversarial examples generated via the proposed
RT-methods can significantly decrease the effectiveness of
the executed control actions, indicated by approximately nine
times lower and 35.78% higher metrics values in terms of the
average AER and average BRR across all five RT-attacks. In
particular, the RT-IFGSM and RT-MJSMA methods have re-
duced their AER metric values by more than ten times. Mean-
while, conventional attacks only result in the reduction of
AER by between 1.5 and 3 times, and the BRR almost no
change. Nevertheless, the metric values of average pertur-
bation AMO and generation time ATC for the proposed RT-
attacks and conventional attacks can be retained at the same
level. To sum up, it can be demonstrated that our RT-attacks

1https://github.com/hill-a/stable-baselines
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Attack Methods Attack Performance DB-RDP Defense Performance DB-RDT Defense Performance
AER BRR AMO ATC AER BRR AMO ATC AER BRR AMO ATC

no attack -2301.33 0.007 0.000 0.000 -2414.66 0.007 0.000 0.000 -2414.66 0.007 0.000 0.000

FGSM -5778.01 0.009 0.060 0.001 -5230.06 0.007 0.059 0.001 -3974.78 0.007 0.067 0.001
IFGSM -5718.77 0.009 0.060 0.001 -5171.41 0.007 0.062 0.003 -4515.40 0.007 0.065 0.001

MIFGSM -7113.66 0.009 0.060 0.003 -5867.57 0.007 0.061 0.003 -4623.80 0.007 0.062 0.003
JSMA -9538.21 0.009 0.060 0.075 -7102.08 0.007 0.060 0.075 -6638.73 0.008 0.060 0.077

MJSMA -9538.57 0.009 0.060 0.077 -7651.68 0.007 0.060 0.077 -7023.86 0.008 0.060 0.078

RT-FGSM -17201.57 0.269 0.060 0.001 -5409.06 0.007 0.057 0.001 -11904.38 0.143 0.059 0.001
RT-IFGSM -27157.80 0.394 0.060 0.003 -8709.32 0.159 0.052 0.003 -2778.83 0.032 0.044 0.004

RT-MIFGSM -22988.47 0.369 0.060 0.003 -6626.75 0.132 0.056 0.008 -10273.40 0.145 0.056 0.003
RT-JSMA -23470.70 0.362 0.060 0.077 -2594.81 0.082 0.060 0.073 -10297.06 0.176 0.060 0.078

RT-MJSMA -23461.20 0.361 0.060 0.076 -2648.40 0.083 0.060 0.077 -11741.90 0.177 0.060 0.082

Table 1: Performances of white-box attacks and defense methods in the SAC-based UVLS model.

Figure 2: Attack and defense results in the black-box setting for the
DQN- and PPO-based UVLS models. The values on each square
represent the decline multiple of AER compared with no attack.

have more practical significance in exploring the vulnerabili-
ties of the DRL-based emergency control model.

Black-box Attacks. To study transferability, we use RT-
attack examples generated based on the SAC model (continu-
ous action space) into the DQN model (discrete action space)
and the PPO model (continuous action space). As shown in
Fig.2, black-box RT-attacks still perform pronounced attack
effects in DQN and PPO with an average of 8.46 times and
3.71 times decreasing rewards of AER. In addition, the BRR
of them are increased by average 27.25% and 14.98%, respec-
tively, when compared with the cases of no attack. One of the
key conclusions stemming from the results is: black-box at-
tacks against DQN are more severe than PPO, indicating that
the transferability of continuous transfer into discrete action
space is higher than the opposite. Furthermore, the proposed
RT-JSMA family exhibits stronger transferability with aver-
age 2.692 higher rewards decreasing than the RT-FGSM fam-
ily. The performances of RT-attacks in the DQN model under
one test episode are presented in Figure 3 (a) and (b). From

Figure 3: Recovery lines under black-box attacks (a,b) and defense
(DB-RDP) (c,d) in the DQN-based UVLS model.

the recovery line, the black-box attack effect is not up to the
white-box attack, which is consistent with common sense.

4.3 Defense Methods Performance
This part aims to evaluate the performance of the proposed
defense mechanisms under both the white-box and black-box
RT-attacks. As indicated in Table 1, the metric values of AER
have significantly improved after applying the DB-RDP and
DB-RDT methods with about 3.75 and 3.08 times average in-
creases across different attacks, respectively. Moreover, Fig.
2 shows that the proposed DB-RDP successfully mitigates the
impacts of all RT-attacks in the black-box setting, as indicated
by the approximately 7.76 and 3.81 times decreased AER val-
ues for the DQN- and PPO-based UVLS models, respectively.
In addition, we observe that all recovery lines are all over the
blue standard recovery line from Fig. 3 (c) and (d). Overall,
the above results illustrate that the proposed defense mech-
anisms can enhance the robustness of the DRL-based emer-
gency control model to obtain an effective control action to
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Figure 4: BRR results with different defense application probabili-
ties p under different white-box attacks.

recover the power system back to a stable state.
Ablation Study. Furthermore, we conduct a series of abla-
tion experiments to study the impact of defense application
proportion p on white-box adversarial attacks. The defense
results of DB-RDP and DB-RDT on the SAC model are pre-
sented in Fig. 4 (a) and (b), respectively. As the proportion of
defense application p increases, attacks’ effectiveness gradu-
ally weakens or is even invalid. For the DB-RDP method, the
BRR of the DRL-based UVLS scheme drops to less than 5%
when it is fully applied (i.e., p = 1).

5 Conclusion and Future Work
This paper explores the vulnerability of DRL-based emer-
gency control for low carbon power systems, which aims to
fill the knowledge gap between the ML and power system
communities. In particular, we design five recovery-targeted
adversarial attacks against the DRL-based UVLS scheme,
named RT-FGSM family and RT-JSMA family. Consider-
ing characteristics of observations in the power system, we
propose two distance-based robust defense methods, namely
DB-RDP and DB-RDT. Based on the open-source platform,
RLGC, case studies are conducted to evaluate the perfor-
mance of the proposed adversarial attacks on the SAC model
with the white-box setting and, the DQN model, the PPO
model with the black-box setting. The key insights observed
from the experiment results include: (1) DRL-based emer-
gency control scheme indeed has security risk, and the pro-
posed RT-attack algorithms can lead to more severe impacts
regarding their effectiveness, stealthiness, instantaneity, and
transferability; (2) the proposed active defense mechanisms
can alleviate the vulnerability brought by the attacker, and at
the same time, these defense mechanisms do not weaken the
model performance in the attack-free DRL model.

In the future, we will explore the vulnerability consider-
ing power system physical constraints and extend to a wider
range of power system applications. Furthermore, the pro-
posed approaches can also be generalized to other complex
domains (e.g., smart manufacturing systems, intelligent trans-
portation systems) by considering their physical dynamics or

characteristics.
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