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Abstract

Using machine-learned predictions to create al-
gorithms with better approximation guarantees is
a very fresh and active field. In this work, we
study classic scheduling problems under the learn-
ing augmented setting. More specifically, we con-
sider the problem of scheduling jobs with arbitrary
release dates on a single machine and the problem
of scheduling jobs with a common release date on
multiple machines. Our objective is to minimize
the sum of completion times. For both problems,
we propose algorithms which use predictions when
making their decisions. Our algorithms are consis-
tent – i.e. when the predictions are accurate, the
performances of our algorithms are close to those
of an optimal offline algorithm–, and robust – i.e.
when the predictions are wrong, the performance of
our algorithms are close to those of an online algo-
rithm without predictions. In addition, we confirm
the above theoretical bounds by conducting exper-
imental evaluation comparing the proposed algo-
rithms to the offline optimal ones for both the single
and multiple machines settings.

1 Introduction
Scheduling is one of the most studied problems in computer
science. In its typical setting, we have a set of jobs that need
to be executed in a set of machines. However, in the majority
of the related literature, research works share a common as-
sumption, i.e. the processing time of each job is known (clair-
voyance) either in advance or when the job becomes avail-
able. On one hand, such an assumption can lead to good, even
optimal, algorithms but on the other hand, knowing the exact
processing times is not often the case on real world systems.
The setting that tackles this issue is called non-clairvoyant
scheduling, where only the existence of a job is revealed to
the algorithm, which learns the exact processing time of that
job only after the job finishes its execution. However, nowa-
days, machine learning algorithms are being used to provide
predictions when there is not enough or accurate data. The
community has started incorporating predicted values as part

of the input in order to design algorithms with better perfor-
mance guarantees. In the scheduling framework, predictions
is a way to bridge the gap between the clairvoyant and the
non-clairvoyant setting. Ideally, we want to use the predic-
tions to produce algorithms that are consistent and robust. We
say an algorithm is consistent, when it performs close to the
best offline algorithm, if the predictor is good. In addition,
an algorithm is robust, when it performs close to the online
algorithm, without predictions. Finally, we would like the
algorithm’s performance to deteriorate smoothly as the pre-
dictions are less accurate.
Problem formulation and Contributions. In this work,
we consider a non-clairvoyant scheduling problem on one or
multiple machines. We are given a set of jobs J whose ac-
tual processing times are not known in advance. However, a
predicted value of the processing time is given for each job.
Each job is also characterized by a release time (date). In the
whole extent of this paper, preemption and migration are al-
lowed at no extra cost. In other words, jobs can be stopped
and continue execution in a later time (preemption) and even-
tually on a different machine (migration). Each machine can
execute at most one job at a time. In the first version, we
consider scheduling J on a single machine. Jobs arrive over
time, and the algorithm has no prior knowledge on the exis-
tence of a job. In the second version, we consider scheduling
J on m identical machines. In this case, we assume that all
release times are zero and the algorithm has knowledge of
the total number of jobs as well as their predicted processing
times in the beginning. The objective in both problems is to
minimize the sum of completion times. Our goal is to design
algorithms that are both consistent and robust.

A common strategy to obtain these two properties is to
construct a preferential algorithm that runs simultaneously
a consistent and a robust algorithm, getting in this way the
best of the two worlds. In this direction, we provide in Sec-
tion 3 a consistent optimal algorithm, called Shortest Remain-
ing Predicted Processing Time, when the predictions are ac-
curate for the single machine problem. By combining this
with the robust non-clairvoyant Round Robin algorithm, we
give a preferential algorithm for the problem of minimizing
the sum of completion times on a single machine with release
times. The Round Robin algorithm schedules for an equal
amount of time all the ready jobs, at any time moment. In
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Section 4 we give again a consistent optimal algorithm, called
Shortest Predicted Processing Time First, when the predic-
tions are accurate for the multiple machines problem. It is
also known that Round Robin is 2-competitive for the non-
clairvoyant problem in multiple machines [Motwani et al.,
1994]. Then, we give the first preferential algorithm for the
problem of minimizing the sum of completion times on mul-
tiple machines.

Related Work. The non-clairvoyant scheduling problem is
studied in [Motwani et al., 1994] and the authors consider
different variants. In their work, non-clairvoyant algorithms
(such as Round Robin) are compared to optimal clairvoyant
ones resulting in both randomized and deterministic lower
and upper bounds. In a very recent work, [Moseley and Vardi,
2022] study Round Robin’s performance for the ℓp-norm of
the completion times when scheduling n preemptive jobs on
a single machine. For the version of the problem without re-
lease times on a single machine, they prove Round Robin’s
approximation ratio to be p√

p+ 1, while when jobs arrive
over time, Round Robin’s competitive ratio is shown to be
at most 4 for any p ⩾ 1. Garg et al. consider the online
problem of scheduling non-clairvoyant jobs on identical ma-
chines, where jobs have precedence constraints [Garg et al.,
2019]. Their objectives is to minimize the total weighted
completion time and the total weighted flow time.

Even though the idea of using advice to obtain semi-online
algorithms is not new (see the following survey [Boyar et al.,
2017]), in a recent line of work, [Medina and Vassilvitskii,
2017] and [Lykouris and Vassilvitskii, 2018] suggested to in-
troduce machine learned predictions to improve the perfor-
mance of online algorithms. The first one use a predictor or-
acle to improve revenue optimization in auctions by setting
a good reserve (or minimum) price while the second devel-
ops the novel framework even more by introducing the no-
tions of consistency and robustness. In the second work, the
online caching problem with predictions is considered. Fol-
lowing these works, a series of learning augmented results
appeared in various fields. Problems such as caching [An-
toniadis et al., 2020; Jiang et al., 2020; Rohatgi, 2020], ski-
rental [Anand et al., 2020; Bamas et al., 2020b; Gollapudi
and Panigrahi, 2019; Wang and Li, 2020], clustering [Dong
et al., 2020] and others [Aleksandrov and Walsh, 2017;
Hsu et al., 2019; Lattanzi et al., 2020; Mitzenmacher, 2020;
Lee et al., 2021] have been studied under the new setting.
[Bamas et al., 2020a] consider the problem of speed scaling
with predictions and in a different work [Bamas et al., 2020b]
show how to incorporate predictions that advise the online al-
gorithm about the next action to take using the primal-dual
schema. [Purohit et al., 2018] applied this novel setting to the
classic ski rental problem and the non-clairvoyant schedul-
ing on a single machine without release times. For the same
problems, [Wei and Zhang, 2020] provide a set of non-trivial
lower bounds for competitive analysis using machine-learned
predictions. Focused on the single machine non-clairvoyant
scheduling problem, [Im et al., 2021] propose a new error
measure for prediction quality and design scheduling algo-
rithms under this measure.

Here, we extend the work on non-clairvoyant schedul-

ing towards the two directions proposed by [Purohit et al.,
2018] about scheduling jobs on multiple machines as well as
scheduling jobs with release times on a single machine.

2 Notations and Preliminaries
We consider a set of n jobs J to be scheduled either on a
single machine or on m parallel machines. Each job j ∈ J
is characterized by a release time rj and an actual (real) pro-
cessing time xj . We assume that xj > 1 for each job j. For
each job, we have also a predicted value of its processing
time, denoted by yj . At the release time of a job, the algo-
rithm is informed of the existence of this job as well as of the
predicted value of its processing time. The algorithm learns
the actual processing time of the job, only after assigning xj

units of time to the job and hence knows that the job has been
completed. The completion time of a job j is denoted by Cj .
In other words, our model is non-clairvoyant. We denote by
ηj the error of the prediction for job j, i.e. ηj = |yj − xj |,
and η =

∑
j ηj is the total error of the input.

It is known that the optimal strategy for the objective
of minimizing the sum of completion times in the clair-
voyant case is to follow the Shortest Processing Time First
(SPT)[Smith, 1956] rule when all release times are zero.
When arbitrary release times are introduced in the model, the
Shortest Remaining Processing Time First (SRPT) rule is op-
timal. In the SRPT algorithm, at each time t, the active job
with the shortest remaining processing time is chosen to be
executed. A job is removed from the active jobs, when it has
received xj units of processing time.

In our work, we want to find algorithms that use the predic-
tions and perform as good as the SPT and SRPT algorithms,
in other words optimal, when the predictions are accurate and
in the same time not too bad when the predictions are wrong.
A Preferential Algorithm. In order to get the best out of
each world, we will consider two algorithms. Let A be a
consistent algorithm with a competitive ratio α, and B be a
robust algorithm with a competitive ratio β. [Purohit et al.,
2018] call a non-clairvoyant scheduling algorithm monotonic
if it has the following property.
Definition 1 (Monotonicity). Given two instances with iden-
tical inputs and actual job processing times (x1, . . . , xn) and
(x′

1, . . . , x
′
n) such that xj ⩽ x′

j for all j, the objective func-
tion value found by the algorithm for the first instance is no
higher than that for the second.

[Purohit et al., 2018] give also the following lemma on how
to combine the two aforementioned monotonic algorithms
into a preferential one.
Lemma 1. [Purohit et al., 2018] Given two monotonic algo-
rithms, A and B, with competitive ratios α and β respectively
for the minimum total completion time problem with preemp-
tions, and a parameter λ ∈ (0, 1), one can obtain an algo-
rithm with competitive ratio min{α

λ ,
β

1−λ}.

In what follows, we focus on designing a consistent algo-
rithm when the predictions are good and a robust algorithm
otherwise. We will use Lemma 1 to get a preferential algo-
rithm. Proofs are omitted due to space limitation.
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3 Single Machine
In this section, we deal with the scheduling problem with re-
lease dates on a single machine. We first present the Short-
est Remaining Predicted Processing Time First (SRPPT), and
show that it is a consistent algorithm for the objective of min-
imizing the sum of completion times. In the Appendix, we
give a simple analysis showing that the Round Robin algo-
rithm 4-approximates the objective in the setting with release
dates. Our analysis is based on the dual-fitting technique as
proposed in [Garg et al., 2019]. Note that this result has been
very recently presented also in [Moseley and Vardi, 2022],
but using a more tedious analysis based on potential func-
tions. Finally, we combine the two results in Theorem 7.

3.1 A Consistent Algorithm
We distinguish jobs as overestimated, V , and underestimated
ones, U , according to their predicted and actual processing
times. More formally, a job is said to be overestimated if
yj ⩾ xj . On the other hand, a job is underestimated if yj <
xj . Finally, we denote the total error of each subset as ηV =∑

j∈V ηj for the overestimated jobs and ηU =
∑

j∈U ηj for
the underestimated ones.

Consider a schedule σ. Given a time t, we denote by e
[0,t)
j

the elapsed time of j, i.e. the amount of processing time
units received from the beginning of the schedule. We call
a job j active at time t if it has been released (i.e. t ⩾ rj),
and if its elapsed time is smaller than its actual processing
time, e[0,t)j < xj . We denote by xj(t) = xj − e

[0,t)
j the re-

maining processing time of an active job j at time t, and by
yj(t) = yj−e

[0,t)
j its remaining predicted processing time. To

distinguish the completion times of a job j in various sched-
ules we write Cj

∣∣σ
t

, where σ denotes the schedule and t the
time. When not necessary, the time subscript is omitted. In
what follows, we may have multiple schedules for a specific
time t. In such case, the schedules are created using different
instances and hence the distinction between these schedules
is clear from the context.

Algorithm
In the Shortest Remaining Predicted Processing Time First
(SRPPT) algorithm, at each time t, the active job (or one of
the active jobs) with the shortest remaining predicted process-
ing time is chosen to be executed. A job is added to the active
jobs at time rj and it is removed from the active jobs after
receiving xj units of processing time. In other words, a job
can be removed from the active jobs before receiving yj units
of processing time if it is overestimated. Similarly, if a job
is underestimated, it remains active even if it is has received
yj units of time. In this case, at the moment an underesti-
mated job receives yj units of processing time, it will be ex-
ecuted until completion, i.e. until it has received xj units of
processing time, as the job with the highest priority, having
yj(t) < 0. Only one such job can exist at each time.

To analyze this algorithm, we propose a transformation
from an optimal schedule to the schedule produced by the
SRPPT algorithm. An optimal schedule can be obtained by
running the SRPT algorithm using the actual processing times
of the jobs. The transformation consists of two steps. The

first step (Transformation step I below) takes place only once
in the beginning and its purpose is to bound the cost inflicted
by overestimated jobs in the objective function. The second
step (Transformation step II below), happens iteratively over
time starting at time 0. In this second step, we bound the cost
of the underestimated jobs and in the same time we slightly
refine the cost of the overestimated jobs in the objective func-
tion.

Transformation Step I
To bound how much overestimated jobs can increase the
value of the objective function, we create an intermediate
schedule, called σV . Consider the auxiliary instance, Iaux,
created as follows from an instance I . For the overesti-
mated jobs of I , we include the predicted processing time
in the auxiliary instance Iaux while for the underestimated
jobs of I we include the actual processing time in Iaux, i.e.
Iaux = {yj : j ∈ V} ∪ {xj : j ∈ U}. Let σ∗ be an op-
timal schedule of this instance, and let j be a job j in this
schedule. This job may be preempted several times in the
schedule. Denote by ℓ1j , ℓ

2
j , . . . , ℓ

k
j the length of the partial

execution of job j in σ∗ (with k ⩾ 1 and
∑

k ℓ
k
j = xj).

Underestimated jobs have the same length in the auxiliary in-
stance as in the optimal schedule while overestimated jobs
have bigger length in the auxiliary instance. Therefore, for
the underestimated jobs, we keep the same length for each
part. On the contrary, for the overestimated jobs, we change
the length of only the last part and we increase it by its er-
ror, i.e. ℓ′1j = ℓ1j , ℓ

′2
j = ℓ2j , . . . , ℓ

′k
j = ℓkj + ηj , such as∑

k ℓ
′k
j = yj . As a result the total length of the overesti-

mated job is equal to the predicted value of Iaux. We now
create the intermediate schedule σV , by scheduling the jobs
in the auxiliary instance in the same order as in the optimal
schedule σ∗, using the partial lengths we created above.

The following lemma gives us a relation between the inter-
mediate and the optimal schedule.

Lemma 2. We have
∑

j Cj

∣∣σV

⩽
∑

j Cj

∣∣σ∗

+ nηV .

Example of Step I
Consider the following instance. A job is described by a
triplet j = (rj , xj , yj). I = {1 = (0, 1, 3), 2 = (0, 2, 2), 3 =
(3, 5, 3), 4 = (3, 4, 4), 5 = (4, 1, 1.5), 6 = (7, 2, 2), 7 =
(7, 3, 1)}. The overestimated jobs are V = {1, 2, 4, 5, 6}
while the underestimated jobs are U = {3, 7}. In Figure 1,
you can first see the optimal schedule, σ∗, produced by the

σ∗

0

x1

↓
1

x2

↓
3

x3

↓
18

x4 x4

↓
8

x5

↓
5

x6

↓
10

x7

↓
13

σV

0

y1

↓
3

y2

↓
5

x3

↓
20.5

y4 y4

↓
10.5

y5

↓
7.5

y6

↓
12.5

x7

↓
15.5

Figure 1: An example of the first step of the transformation.
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SRPT algorithm and the values xj . Finally, you can see the
intermediate schedule, σV , created as described in step I of
the transformation.

Transformation Step II
Let σA be the schedule produced by the SRPPT algorithm
on instance I . We create an initial auxiliary schedule, σaux,
by applying the SRPT rule to the intermediate instance, Iaux,
created in step I. Then, in what follows, we will transform this
initial auxiliary schedule into the one produced by the SRPPT
algorithm (σA), in a structured way that allow us to calculate
the effect of each miss-predicted job in the objective function.

Before doing this, let us compare the sum of completion
times in σaux and in σV . We denote by Cj

∣∣σaux

init
the com-

pletion time of job j in the initial schedule σaux. Since both
schedules (σV and σaux) use the same instance, Iaux, and
since σaux uses the optimal SRPT algorithm, we have:∑

j

Cj

∣∣σaux

init
⩽

∑
j

Cj

∣∣σV

(1)

Suppose an auxiliary schedule coincides with σA until time
t. We denote such a schedule as σaux

t . We create subsets of
the jobs as follows. Denote by FV and FU the overestimated
and underestimated jobs, respectively, that finish execution in
[0, t). We also create a subset, denoted by MU , containing
the underestimated jobs that were miss-placed in [0, t) (case
3 below). We define the reduced instance at time t as Iauxt =
{yj(t) : j ∈ V} ∪ {0 : j ∈ FV} ∪ {xj(t) : j ∈ U } ∪ {0 :
j ∈ FU } ∪ {yj(t) : j ∈ MU}. The auxiliary schedule
σaux
t consists of a fixed part which coincides with σA in the

interval [0, t) and part which is produced by executing the
SRPT algorithm using the reduced instance Iauxt .

Our transformation, starting at time t = 0, checks if the
schedules σA and σaux coincide (i.e. schedule the same
tasks) until time t′ > t. If so, we augment the time until
the time moment where the two schedules have the first dif-
ference. This difference may occur for one of the three fol-
lowing reasons.

1. An overestimated job is completed in σA

2. An underestimated job is completed in σaux

3. An underestimated job is misplaced in σaux

The transformation handles each case separately. Before that,
we present Lemma 3 which has a two-fold meaning. On the
one hand, it dictates when the second case arises while on
the other hand, it rules out any other possibility for the two
schedules to differ.

Lemma 3. Let σaux
t be a schedule that coincides with σA

until time t, where t is maximal. Let i be the job that starts
or continues at time t in σA and j be the job that starts or
continues at time t in σaux

t . If i ̸= j, then i is underestimated.

Given that σaux and σA coincide in the interval [0, t), the
transformation handles the aforementioned differing reasons
accordingly.

• Case 1. For a job j ∈ V , suppose l is the largest index
of a part of a job that is executed in [0, t). If

∑l
i=1 ℓ

i
j =

xj , then remove all parts with indexes i < l ⩽ k from
the schedule. Remove job j from the overestimated set,
V , and add it to the finished overestimated set, i.e. FV .
Create a new auxiliary schedule by fixing the schedule at
time interval [0, t) and complete the rest of the schedule
using the SRPT rule with the reduced instance. In this case
the objective function decreases by at least ηj . Moreover,
each overestimated job completed by the time t with ηj > 0
will create the transformation described in case 1.

• Case 2. For a job j ∈ U . Suppose l is the largest index of a
part of a job that is executed in [0, t). If

∑l
i=1 ℓ

i
j = yj and∑

k ℓ
k
j = yj , then this is the last part of the job to be exe-

cuted in [0, t) and has finished execution using its predicted
time. We can continue the execution of this job until time
t′ = t + ηj . Remove job j from the miss-placed underes-
timated set, MU , and add it to the finished underestimated
set , i.e. FU . Create a new auxiliary schedule by fixing
the schedule at time interval [0, t′) and complete the rest
of the schedule using the SRPT rule with the reduced in-
stance. In this case the objective function increases by at
most nηj . Moreover, if an underestimated job creates this
transformation, then in latter time, it creates the transfor-
mation described in case 3.

• Case 3. The underestimated job j is scheduled in σA but
not in σaux. This case arises when another job has shorter
processing time than job j. On the other hand, SRPPT
chose to execute job j, because its predicted processing
time is shorter than any other job. Remove job j from the
underestimated set, U , and add it to the miss-placed under-
estimated set, MU . This way, we enforce the SRPT algo-
rithm to execute job j first. Create a new auxiliary schedule
by fixing the schedule at time interval [0, t) and complete
the rest of the schedule using the SRPT rule with the new
reduced instance. In this case the objective function de-
creases by at least ηj . Notice, a job that triggers this case,
has already been called by case 2, resulting in a total differ-
ence of the (n− 1)ηj in the objective function.

Example of Step II
An example of step II of the transformation is illustrated in
Figure 2. Starting from the initial auxiliary schedule, we no-
tice that it coincides with σA until time instant 3, when an
overestimated job finishes execution in σaux

init (Case 1). We
remove the part of the job corresponding to the error and cre-
ate a new auxiliary schedule, σaux

3 , using the remaining in-
stance and the SRPT rule, resulting in the third schedule of
the figure. We then observe that an underestimated job, job
3, is misplaced in σaux

3 (Case 3). In order to force the SRPT
rule to place it correctly, we add job 3 in the MU , and re-run
the SRPT algorithm resulting in the fourth schedule in the fig-
ure. We next augment the time until time instant 5, where the
schedules σaux

5 and σA stop coinciding due to Case 1 again.
By removing the error part, η5, re-running SRPT with the re-
duced instance and augmenting the time, we come up with
schedule σaux

7 . Here, we come across Case 2 where an un-
derestimated job is finished in σaux

7 . We then run job 3 until
completion, i.e. until it receives x3 units of processing time
and we augment the time resulting in σaux

9 . Notice here, an-
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σA

0

x1

↓
3

x2

↓
2

x3 x3

↓
9

x4

↓
18

x5

↓
5

x6

↓
14

x7

↓
12

σaux
init

0

y1

↓
5

y2

↓
2

x3

↓
20.5

y4
y4

↓
15.5

y5

↓
6.5

y6

↓
9

x7

↓
12

σaux
3

0

x1

↓
3

x2

↓
2

x3

↓
18.5

y4 y4

↓
8.5

y5

↓
5.5

y6

↓
10.5

x7

↓
13.5

σaux
3

0

x1

↓
3

x2

↓
2

y3 y3

↓
7.5

y4

↓
16.5

y5

↓
5.5

y6

↓
9.5

x7

↓
12.5

σaux
5

0

x1

↓
3

x2

↓
2

y3 y3

↓
7.5

y4

↓
16.5

x5

↓
5

η5
y6

↓
9.5

x7

↓
12.5

σaux
7

0

x1

↓
3

x2

↓
2

y3 y3

↓
7

y4

↓
16

x5

↓
5

y6

↓
9

x7

↓
12

σaux
9

0

x1

↓
3

x2

↓
2

x3 x3

↓
9

y4

↓
18

x5

↓
5

y6

↓
11

x7

↓
14

σaux
10

0

x1

↓
3

x2

↓
2

x3 x3

↓
9

y4

↓
16

x5

↓
5

y6

↓
12

y7

↓
10

σaux
final

0

x1

↓
3

x2

↓
2

x3 x3

↓
9

x4

↓
18

x5

↓
5

x6

↓
14

x7

↓
12

Figure 2: An example of the second step of the transformation.

other underestimated job is misplaced in σaux
9 (Case 2). We

add job 7 in MU and re-run the SRPT algorithm. Augment-
ing the time of the common schedule to time instant 10, we
observe that job 7 is finished without interruption. We arrive
again at Case 2 where we fix the schedules to coincide until
time 12. The final two jobs are correctly placed and exactly
predicted, resulting in the last schedule of the figure, σaux

final.

Lemma 4. We have
∑

j Cj

∣∣σA

⩽
∑

j Cj

∣∣σaux

− ηV + (n−
1)ηU .

Theorem 5. The SRPPT algorithm has competitive ratio at
most (1 + 2η

n ), where η =
∑

j ηj .

Lemma 6. Algorithm SRPPT is monotonic.

3.2 A Preferential Algorithm
Theorem 7. The Preferential Round Robin algorithm with
release dates and parameter λ ∈ (0, 1) has competitive ra-

tio at most min
{

1
λ (1 +

2η
n ), 4

1−λ

}
. In particular, it is 4

1−λ -

robust and 1
λ -consistent.

4 Multiple Machines
In this section, we consider the problem of scheduling jobs on
a set of m multiple machines using machine-learned predic-
tions. Let J be an instance of n jobs with the execution time
of each job being xj : 1 ⩽ j ⩽ n. Each job has also a pre-
dicted execution time, yj : 1 ⩽ j ⩽ n. Similarly to the pre-
vious section, our model is non-clairvoyant, meaning that the
actual processing time is revealed to the algorithm only when
xj units of processing time are assigned to a specific job. In
this section we consider the version of the problem where all
jobs have release dates equal to 0. In what follows, jobs can
be preempted and migrated to a different machine at no cost
at any time. Our goal is to design a learning augmented algo-
rithm taking into account the predictions under the objective
of minimizing the total sum of completion times.

We first present the consistent algorithm Shortest Predicted
Processing Time First for Multiple Machines (SPPT(m)). We
show that SPPT(m) is optimal if the predictions are accurate.
For this specific setting, Round Robin is shown to be 2- com-
petitive in [Motwani et al., 1994]. Finally, we combine the
two results in Theorem 10.

4.1 A Consistent Algorithm
We define a grouping between the jobs using their predicted
processing times.

Definition 2. Let J be any instance of size n with the pre-
dicted processing times of the jobs being such that y1 ⩾ y2 ⩾
. . . ⩾ yn and ji refer to the job with predicted processing
time yi. For 1 ⩽ k ⩽ ⌈ n

m⌉, define GPr(k) of jobs to be
GPr(k) = {ji|(k − 1)m < i ⩽ km}.

Groups give the execution ordering of the jobs in each ma-
chine. A job of group 1 is scheduled on a machine in the last
position, a job of group 2 is scheduled second to last on a ma-
chine, etc. All groups, except possibly the last one, consist of
m consecutive jobs.

Algorithm
The SPPT(m) algorithm first creates ⌈n/m⌉ groups GPr(k)
of the jobs, considering the jobs sorted in non-increasing or-
der of the predicted values of their processing times (as seen
above, GPr(1) contains the m tasks with the largest predicted
values, and so forth). Then, each machine receives (at most)
one task of each group. On each machine, the tasks are sched-
uled in a non decreasing order of their predicted values, and
the processing times of each task is its actual processing time.

Theorem 8. The SPPT(m) algorithm has competitive ratio
at most 1 + 2mη

n , where η =
∑

j ηj .

Lemma 9. Algorithm SPPT(m) is monotonic.

4.2 A Preferential Algorithm
Theorem 10. The Preferential Round Robin for multiple ma-
chines algorithm with parameter λ ∈ (0, 1) has competitive

ratio at most min
{

1
λ (1 +

2mη
n ), 2

1−λ

}
. In particular, it is

2
1−λ -robust and 1

λ -consistent.
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(a) Single machine, τ = 0.1 (b) Single machine, σ = 1000 (c) Multiple machines

Figure 3: Experimental results

5 Experimental Results
In this section we present experimental results which confirm
the bounds stated on Theorems 7 and 10 for the single and
multiple machines respectively. The code is publicly avail-
able at: https://github.com/ildoge/SUP.

We create artificial instances, each one consisting of n =
50 jobs for the single machine case, following the same ap-
proach as in [Purohit et al., 2018]. We draw the actual pro-
cessing time values, xj , independently for each job from a
Pareto distribution with a parameter α = 1.1. An error value,
ηj , is drawn from a normal distribution with mean 0 and stan-
dard deviation σ. Finally, we set the predicted processing
time of each job to be yj = xj + ηj . For the release times of
the jobs, we first set the interval [0, τ

∑
j xj ] using the actual

processing times created before, where τ ⩾ 0 is a parameter
that allows us to scale the size of the interval. We then draw
n values uniformly at random from this interval and assign
them to the n jobs. Notice that, when the release dates are
dense (jobs become available close to each other), then there
is not a lot of idle time in the schedule. On the contrary, if
jobs become available sparsely, then both the algorithm and
the optimal are forced to take similar scheduling decisions.
For this reason, we set τ = 0.1 for the first simulations.

We implement the algorithms: Round Robin (RR), Short-
est Remaining Predicted Processing Time First (SRPPT) and
Preferential Round Robin (PRR). We compare the perfor-
mance of the algorithms for different values of error by pa-
rameterizing the σ of the normal distribution. We use values
of σ that belong in [0, 5000] using a step of 50. The perfor-
mance of the algorithms is compared to the optimal Shortest
Remaining Processing Time First (SRPT) algorithm using the
actual processing values. The ratio of an algorithm is taken
as the average over 2000 independent runs. As we see in Fig-
ure 3a, the SRPPT algorithm performs really well when the
error is small enough, but deteriorates fast otherwise. We ob-
serve also the robust behavior of Round Robin independently
of the total error. In between, we have our Preferential Round
Robin algorithm, with λ = 1/2, which performs well for
small values of error while remaining competitive to Round
Robin when the error is big.

Notice that for σ = 1000, our Preferential Round Robin al-
gorithm out-performs both the SRPPT and RR. By fixing this
value of σ, we compare the performance of PRR for various

values of the parameter τ (Figure 3b). As expected, the ratio
of the algorithm deteriorates as the interval becomes smaller.
Interestingly, we observe that we get the worst case ratios
when all release times are equal to zero. On the other hand,
when the interval is big and the release times sparsely dis-
tributed in it, our algorithm is nearly optimal.

For the multiple machines setting, we implement the al-
gorithms: Round Robin (RR(m)), Shortest Predicted Pro-
cessing Time First (SPPT(m)) and Preferential Round Robin
(PRR(m)). We follow the same approach to produce the ac-
tual processing values, the error and the predicted processing
values. In this case, we have no release times. Here, we fol-
low the same framework of executions as before, however we
compare each algorithm to the optimal Shortest Processing
Time First (SPT(m)) algorithm for multiple machines. We
note that we run these experiments using m = 5 machines
and n = 250 jobs in order to maintain enough jobs and load
in each machine. The results can be seen in Figure 3c and
can be interpreted in the same way as the results of the single
machine setting.

6 Conclusion
In this work, we studied the problem of integrating predic-
tions to improve the performance of online algorithms for the
non-clairvoyant scheduling problem on a single machine with
release dates and on multiple machines without release dates.
Using predictions to improve the performance of algorithms
is a very versatile technique and can be applied to various
fields. We are actively interested to find more state of the art
algorithms that can adopt this approach. As a future work, we
would like to find more efficient ways to combine algorithms
as this will improve the trade-off between the consistent and
the robust algorithms.
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