
A Native Qualitative Numeric Planning Solver Based on AND/OR Graph Search

Hemeng Zeng , Yikun Liang and Yongmei Liu∗

Dept. of Computer Science, Sun Yat-sen University, Guangzhou 510006, China
ymliu@mail.sysu.edu.cn

Abstract
Qualitative numeric planning (QNP) is classical
planning extended with non-negative real variables
that can be increased or decreased by some ar-
bitrary amount. Existing approaches for solving
QNP problems are exclusively based on compi-
lation to fully observable nondeterministic plan-
ning (FOND) problems or FOND+ problems,
i.e., FOND problems with explicit fairness as-
sumptions. However, the FOND-compilation ap-
proaches suffer from some limitations, such as dif-
ficulties to generate all strong cyclic solutions for
FOND problems or introducing a great many ex-
tra variables and actions. In this paper, we pro-
pose a simpler characterization of QNP solutions
and a new approach to solve QNP problems based
on directly searching for a solution, which is a
closed and terminating subgraph that contains a
goal node, in the AND/OR graphs induced by QNP
problems. Moreover, we introduce a pruning strat-
egy based on termination tests on subgraphs. We
implemented a native solver DSET based on the
proposed approach and compared the performance
of it with that of the two compilation-based ap-
proaches. Experimental results show that DSET
is faster than the FOND-compilation approach by
one order of magnitude, and comparable with the
FOND+-compilation approach.

1 Introduction
Qualitative numerical planning (QNP) is classical plan-
ning extended with non-negative real variables and non-
deterministic actions that increase or decrease the values of
these variables by some arbitrary amount. QNP was firstly in-
troduced by Srivastava et al. [2011] to model the problems of
planning with loops, where actions may have to be repeated
unknown times to reach the goal.

Recently, QNP has been widely used for generalized plan-
ning because it is decidable and provides a useful abstraction
model for generalized planning. Generalized planning stud-
ies the computation of solutions that generalize over multiple

∗Corresponding Author

planning instances [Levesque, 2005]. Some works [Bonet
and Geffner, 2018; Bonet et al., 2019] learn potential fea-
tures (numerical and boolean) and abstract actions from solu-
tions of sample instances, and then abstract the generalized
planning problems into QNP problems. Illanes and McIl-
raith [2019] consider a class of generalized planning prob-
lems called quantified planning problems, and abstract such
problems into QNP problems based on the idea of quantifying
over sets of similar objects.

Existing works for solving QNP problems are exclusively
based on compilation to fully observable non-deterministic
planning (FOND) problems. First of all, Srivastava et al.
[2011] propose a generate-and-test approach. They show that
a QNP problem Q can be easily compiled into a FOND prob-
lem P whose strong cyclic solutions that terminate are solu-
tions to Q. They introduce the SIEVE algorithm for testing
whether a solution terminates. However, the generate-and-
test method has two limitations: firstly, it is difficult to com-
pute all solutions for P by using off-the-shelf FOND plan-
ners; secondly, the generate is done independently of the test,
with the result that more solutions than necessary are gener-
ated. To save from the termination test, Bonet and Geffner
[2020] propose a translator qnp2fond to compile a QNP
problem Q into a FOND problem P ′ with extra variables and
actions. They show that if Q is solvable, then a solution π′

solves P ′. However, it remains open whether the flat solution
for π′, i.e., the solution obtained from π′ by ignoring the extra
variables and actions, is a solution to the original problem Q.
Moreover, introducing extra variables and actions increases
the search space exponentially.

Very recently, Rodriguez et al. [2021] propose the so-
called FOND+ planning, that is, FOND planning with ex-
plicit fairness assumptions. They show that QNP is a special
class of FOND+ planning, where the fairness assumption is
that for any numerical variable x, if the value of x is increased
infinitely often but decreased only finitely often, then eventu-
ally x becomes 0. They develop a FOND+ solver FOND-
ASP by reducing FOND+ planning to answer set program-
ming (ASP) [Brewka et al., 2011].

AND/OR graphs have been widely used in planning be-
cause the state spaces of many planning problems can be for-
malized as AND/OR graphs which can be traversed by off-
the-shelf heuristic search algorithms, such as AO* [Nilsson,
1982] and LAO* [Hansen and Zilberstein, 2001]. To solve

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4693

a FOND problem P , Bercher and Mattmüller [2009] intro-
duce an approach that traverses the AND/OR graph induced
by P using AO* to compute a strong solution. Mattmüller et
al. [2010] find strong cyclic solutions for FOND problems by
performing LAO* search.

In this paper, we propose a new approach to solve a QNP
problem Q based on directly searching for a solution in the
AND/OR graph induced by Q. Our approach is based on a
simpler characterization of QNP solutions and a key obser-
vation about termination of policies. Srivastava et al. [2011]
characterize a solution to a QNP problem as a strong cyclic
solution that terminates. We give a simpler characterization
that a solution to a QNP problem is a closed and terminating
policy with a reachable goal node. We make the key obser-
vation that any extension of a non-terminating policy is also
non-terminating. Thus, we search over all policies by a back-
tracking algorithm and on identifying a non-terminating one,
we prune all its extensions.

Based on the proposed approach, we implemented a QNP
solver DSET, and compared the performance of DSET with
that of the compilation-based approach of Bonet and Geffner
[2020], using two typical FOND solvers PRP [Muise et al.,
2012] and FOND-SAT [Geffner and Geffner, 2018]. Experi-
mental results show that on solvable domains, DSET is faster
than the compilation-based solvers by one order of magni-
tude; and on unsolvable domains, DSET takes a few seconds,
while the other solvers time out after 30 minutes. The main
reason behind the performance gap is that the compilation
to FOND problems introduces many extra variables and ac-
tions so that the search space for solutions is exponentially
increased. We also compared the performance of DSET with
that of FOND-ASP. It turns out that the two solvers have com-
parable performance on most domains since they consider the
same search space for QNP solutions.

2 Preliminaries
In this section, we introduce QNP problems, AND/OR
graphs, and the existing characterization of QNP solutions.

Given a set of propositional variables F and a set of non-
negative numerical variables V , we refer to p and ¬p for p ∈
F as the F -literals, and refer to v > 0 and v = 0 for v ∈ V as
the V -literals. A pair of complementary literals has the form
{p,¬p} for p ∈ F , or {v > 0, v = 0} for v ∈ V . A set
of literals is consistent if it does not contain complementary
literals. Let LX (resp. LF) denote the set of all consistent
sets of literals from F ∪ V (resp. F).
Definition 1. A QNP problem is a tuple Q = ⟨F, V, I,G,O⟩
where F and V are sets of propositional and non-negative
numerical variables, I ∈ LX denotes the initial condition,
G ∈ LX denotes the goal condition, O is a set of actions. Ev-
ery a ∈ O has a set of preconditions pre(a) ∈ LX , proposi-
tional effects eff (a) ∈ LF and numerical effects N(a) which
only contain special atoms of the form inc(v) or dec(v) (of-
ten abbreviated as v↑ or v↓) to increase or decrease v by some
arbitrary amount for v ∈ V . Actions with the dec(v) effect
must feature the precondition v > 0 for any variable v ∈ V .

We distinguish between states and qualitative states (qs-
tates): a state s̄ is an assignment of values to all variables, a

qstate s is an element of LX that contains a literal of each
variable. s̄ satisfies s if the assignment of values for variables
in s̄ satisfies all literals in s. Usually, given a QNP problem
Q = ⟨F, V, I,G,O⟩, I is an initial qstate and G is a partially
specified qstate corresponding to a set of goal qstates.

Definition 2. Given a QNP problem Q = ⟨F, V, I,G,O⟩,
an instance of Q is a quantitative planning problem whose
initial state, which specifies a non-negative real number for
each numerical variable, satisfies I , and the actions and goal
condition are the same as Q.

A simple QNP problem Qnest2 is shown as follows where
⟨C;E⟩ denotes an action with preconditions C and effects E.

Example 1. Qnest2 = ⟨F, V, I,G,O⟩ with F = ∅, V =
{x, y}, I = {x > 0, y > 0}, G = {x = 0, y = 0} and
O = {a, b, c} where a = ⟨x > 0, y = 0;x ↓, y ↑⟩, b = ⟨y >
0; y ↓⟩, c = ⟨y > 0; y ↓, x ↑⟩. An instance of Qnest2 is one
where x = 3 and y = 4 in the initial state.

An action a is applicable in a qstate if it contains pre(a).
An action a is applicable in a state s̄ if it satisfies pre(a). If
action a is applicable in state s̄, a state s̄′ is a successor state
of s̄, if the following conditions hold: s̄′ contains eff(a), for
each inc(v) ∈ N(a), s̄′(v) > s̄(v), for each dec(v) ∈ N(a),
s̄′(v) < s̄(v), and for each variable v not appearing in eff(a)
or N(a), s̄′(v) = s̄(v).

Definition 3. Given a QNP problem Q, a policy π for Q is a
partial mapping from qstates to applicable actions.

Given a policy π and a state s̄, let s be the qstate satisfied
by s̄, we use π(s), if it is defined, to represent the action a
assigned to s̄, and a(s̄) to represent the set of all possible
successor states after applying a in s̄. Given a policy π, a
sequence of states s̄0, s̄1, . . . (finite or infinite) is called a π-
trajectory if for i ≥ 0, s̄i+1 ∈ ai(s̄i) where ai = π(si).

Definition 4. For ϵ > 0, a π-trajectory is ϵ-bounded, if for
any action performed, if it decreases a numerical variable v,
then either the old value of v is < ϵ and the new value equals
0 or the amount of decrease is ≥ ϵ.

Definition 5. Given a QNP problem Q, a policy π solves an
instance of Q if for any ϵ > 0, every ϵ-bounded π-trajectory
started at the initial state is goal reaching. A policy π solves
Q if it solves every instance of Q.

A policy π that solves Qnest2 in Example 1 is given by:
π({x > 0, y > 0}) = b; π({x > 0, y = 0}) = a; π({x =
0, y > 0}) = b.

Definition 6. Given a QNP problem Q, a policy π terminates
if for any instance of Q, for any ϵ > 0, every ϵ-bounded π-
trajectory started at the initial state is finite.

The qstate space of a QNP problem can be formalized as
an AND/OR graph. We now introduce basic terminologies of
AND/OR graphs.

An AND/OR graph G = ⟨N,C⟩ consists of a set of nodes
N and a set of connectors C, where a connector is a pair
⟨n,M⟩, connecting the incoming node n ∈ N to a nonempty
set of outgoing nodes M ⊆ N . A k-connector is a connector
with exactly k outgoing nodes. Usually, G contains a distin-
guished initial node n0 ∈ N and a set of goal nodes Ng ⊆ N .

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4694

A path in G is a sequence of nodes successively linked by con-
nectors. A subgraph of G is an AND/OR graph G′ = ⟨N ′, C ′⟩
such that N ′ ⊆ N and C ′ only contains connectors from
C whose involved nodes (incoming and outgoing nodes) are
contained in N ′. Usually, we require that the initial node n0

is contained in N ′ as the initial node n′
0 and the set of goal

nodes N ′
g = N ′ ∩ Ng . In this paper, we restrict our atten-

tion to subgraphs where every non-goal node has at most one
outgoing connector.

We say a subgraph G′ is closed if every non-goal node in
G′ has exactly one outgoing connector. We say a subgraph G′
is proper if for every non-goal node n′ in G′, there is a finite
path starting at n′ and ending in a goal node.

The qstate space of a QNP problem Q can be formalized
as an AND/OR graph G = ⟨N,C⟩. Specifically, nodes in
N correspond to qstates of Q, the initial node corresponds to
the initial qstate of Q and the goal nodes correspond to the
goal qstates of Q. For an action a applicable in a qstate s,
the application of a to s results in a set of qstates, denoted
as a(s). The action with inc(v) results in a qstate with literal
v > 0. The action with dec(v) results in two qstates, one with
literal v > 0 and the other with v = 0. There is a connector
⟨s, a(s)⟩ ∈ C for each qstate s and action a applicable in s.
The AND/OR graph induced by Qnest2 is shown in Figure 1
where the two nodes s0 and sg respectively correspond to the
initial qstate and the goal qstate and the labels of connectors
correspond to the names of actions in Qnest2 .

Figure 1: The AND/OR graph induced by Qnest2

Obviously, given a QNP problem Q and the AND/OR
graph G induced by Q, there is a one-to-one correspondence
between policies for Q and subgraphs of G. Thus, in the pa-
per, we will use “policy” and “subgraph” interchangeably.

A closed and proper subgraph is called a strong cyclic so-
lution. The following result was proved by Srivastava et al.
[2011]:

Theorem 1. Given a QNP problem Q, a policy π solves Q iff
it is a strong cyclic solution that terminates.

Srivastava et al. [2011] introduce a sound and complete al-
gorithm SIEVE, that verifies whether a policy π for Q termi-
nates. Given G, the qstate transition graph induced by Q and
π, SIEVE iteratively removes edges from G until G becomes
acyclic or no additional edges can be removed as shown in
Algorithm 1. SCC is the abbreviation for the strongly con-
nected component of a graph.

Algorithm 1: SIEVE
Input: G

1 repeat
2 Compute the SCCs of G;
3 Choose an SCC g and a variable v that is

decreased but not increased in g;
4 if there is no such v to choose then
5 return “Non-terminating”;
6 Remove the edges (s, s′) such that s and s′ are in

g and π(s) has a dec(v) effect;
7 until G is acyclic;
8 return “Terminating”;

3 Theoretic Foundation
In this section, we introduce the theoretic foundation for our
algorithm, i.e., a simpler characterization of QNP solutions
and a key observation about termination of policies.

The result of Srivastava et al. [2011] characterizes a solu-
tion to a QNP problem as a proper and closed subgraph that
terminates. We now give a simpler characterization that a so-
lution to a QNP problem is a closed subgraph that contains a
goal node and terminates. Thus we replace the “properness”
condition by the much relaxed condition of “presence of a
goal node”.

Theorem 2. Given a QNP problem Q and the AND/OR
graph G induced by Q, a subgraph G′ of G is a solution to
Q iff G′ contains a goal node, is closed, and terminates.

Proof. By Theorem 1, the only-if direction is easy since
properness implies that there is a goal node. To prove the
if direction, we only need to prove every non-goal node in G′
is goal-reaching. We call nodes in G′ that cannot reach a goal
node deadends. Assume to the contrary that G′ contains some
deadends. Clearly, deadends can only reach deadends. Thus,
there exists a SCC of deadends, otherwise, we get infinitely
many deadends, contradicting that G is a finite graph. We call
a SCC g a closed one if the outgoing nodes of all connectors
in g are in g. Then there exists a closed SCC of deadends,
otherwise, we get infinitely many SCCs, or we get a cycle of
SCCs, which can be merged into a SCC, contradicting that
each on the cycle is a SCC. Let g be a closed SCC of dead-
ends. We now prove that this contradicts that G′ passes the
SIEVE test. For any variable v that is decreased in g, there is
an edge (s, s′) in g where v > 0 in s and v = 0 in s′; since
s′ is reachable from s in g, v must be increased in g. Thus no
edge can be removed from g by SIEVE, so G′ cannot pass the
SIEVE test.

Finally, we make the following observation:

Proposition 1. Given a QNP problem Q, any policy that ex-
tends a non-terminating policy is also non-terminating.

Proof. Let π be a non-terminating policy. Then there exists
an infinite ϵ-bounded π-trajectory σ for some instance of Q
and ϵ > 0. Let π′ extend π. Then σ is also a π′-trajectory.
Thus π′ is also non-terminating.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4695

4 Find Solutions for QNP Problems
With the above theoretic foundation, we propose a new ap-
proach that solves a QNP problem Q directly by searching
subgraphs of the AND/OR graph G induced by Q. It will
enumerate terminating subgraphs of G until a proper one that
contains a goal node is found. When a non-terminating sub-
graph is identified, it will not be further expanded and thus
pruning is done.

4.1 Avoid Non-terminating Solutions
An important part of our approach is to generate terminating
subgraphs, which improves the basic idea of the generate-
and-test approach by [Srivastava et al., 2011]. The basic
generate-and-test approach solves a QNP problem Q by it-
eratively generating and verifying the termination of strong
cyclic solutions (also called candidate solutions) of Q one
by one until a terminating one is found or all candidate so-
lutions are enumerated and verified to be non-terminating.
However, it is inefficient due to the independence between
the generation procedure and the termination test procedure
because candidate solutions which have been tested and fail
to terminate are not fully utilized to avoid generating non-
terminating candidate solutions. As shown by Proposition
1, any subgraph that extends a non-terminating subgraph is
non-terminating. Therefore, if the termination of subgraphs
can be verified in advance, the generation of subgraphs con-
taining non-terminating ones can be avoided.

4.2 Detailed Algorithm
The pseudocode of our approach is shown in Algorithm 2.
G is the AND/OR graph representing the qstate space of Q.
The size of G is exponential with the number of variables in
Q. s0 is the initial node. Sg is the set of goal nodes. G′ is
a subgraph corresponding to a policy for Q and initialized as
containing only s0. A node in G′ is said to be expanded if one
of its outgoing connectors is chosen and added into G′. open
is a stack storing the unexpanded nodes in G′ and every node
in open is reachable from s0. closed is an ordered list storing
the expanded nodes in G′. The nodes in closed are arranged
in the order they are expanded.

In Algorithm 2, we will repeatedly pop the top node s from
open and try to expand s until open is empty. If s is a non-
goal node, it will try to expand s. When expanding, we en-
sure that G′ is always terminating. A connector c is legal with
respect to G′ iff G′ still terminates when adding c to it. Back-
tracking will be performed when failed to expand G′ to satisfy
conditions of terminating and containing a goal node.

When trying to expand s in Algorithm 3, we examine each
unvisited connector of s, test if it is legal and mark it as vis-
ited. If a legal connector c is found, it will be added to G′.
Sc denotes the set of all outgoing nodes of c. We will add
s to the end of closed meaning that s is the latest expanded
node. In order to backtrack correctly, it is necessary to record
the incoming connector when pushing a node into open. We
record InConnector(s′) for s′ ∈ Sc if s′ has not been ex-
panded and is not in open, and then push s′ into open.

When failed to expand s, meaning that there is no legal
connector for s with respect to G′, we undo the marking of all

Algorithm 2: QNP Solver
Input: G, s0, Sg

Output: a solution graph G′ or “Unsolvable”

1 G′ ← ⟨{s0}, ∅⟩;
2 open← {s0};
3 closed← {};
4 repeat
5 if open ̸= ∅ then
6 s← open.pop();
7 if s /∈ Sg then
8 EXPAND(s);
9 if failed to expand then

10 if s = s0 then
11 return “Unsolvable”;
12 else BACKTRACK;

13 else
14 if G′ contains at least one goal node then
15 return G′;
16 else BACKTRACK;

connectors of s (to prepare for backtracking), then we back-
track or exit depending on whether s is the initial node as
shown in Algorithm 2 Line 9-12. s = s0 means that we can-
not backtrack thus we return “Unsolvable”. s ̸= s0 means
that we have to examine the next outgoing connector of the
last expanded node, which is the last node in closed. So back-
tracking will be performed as shown in Algorithm 4.

When open is empty, meaning that G′ has no unexpanded
nodes, G′ is closed. As shown in Algorithm 2 Line 13-16,
we will exit or backtrack depending on whether G′ contains
goal nodes. If G′ contains at least one goal node, it means G′
satisfies all the conditions in Theorem 2 and it is a solution of
Q. If there is no goal node in G′, we will backtrack and try to
re-expand the last expanded node as shown in Algorithm 4.

As shown by Bonet and Geffner [2020], the complexity
of solution existence for QNP problems is EXP-Complete.
However, in the worst case, the time complexity of Algorithm
2 is doubly exponential with the number of variables of the
given QNP problem since it will enumerate all subgraphs of
the induced AND/OR graph.

4.3 Soundness and Completeness
Theorem 3 (Soundness of Algorithm 2). Given a QNP prob-
lem Q, if Algorithm 2 returns a solution graph G′, then G′
corresponds to a policy that solves Q.

Proof. Proving soundness of Algorithm 2 is equivalent to
proving that the solution graph G′ returned by Algorithm 2
satisfies all three conditions in Theorem 2.

Firstly, Algorithm 2 returns G′ if the condition that G′ con-
tains at least one goal node and open = ∅ is satisfied. open
is empty means that all non-goal nodes in G′ are successfully
expanded and have exactly one connector, so G′ is closed.
Secondly, Algorithm 3 guarantees that only the legal connec-
tors can be added into G′ and thus G′ always terminates.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4696

Algorithm 3: EXPAND(s)

1 Cs ← the set of unvisited connectors of s ;
2 foreach c ∈ Cs do
3 G← Graph(G′ + c);
4 mark c as visited;
5 if SIEVE(G) = “Terminating” then
6 add c to G′;
7 add s to the end of closed;
8 Sc ← the set of outgoing nodes of c;
9 foreach s′ ∈ Sc do

10 if s′ /∈ open ∧ s′ /∈ closed then
11 InConnector(s′)← c;
12 open.push(s′);

13 return success;

14 open.push(s);
15 mark all connectors of s as unvisited;
16 return failure;

Algorithm 4: BACKTRACK
1 s← remove the last node of closed;
2 c← the assigned connector of s;
3 Sc ← the set of outgoing nodes of c;
4 foreach s′ ∈ Sc do
5 if InConnector(s′) = c then
6 InConnector(s′)← NULL;
7 remove s′ from open;

8 remove c from G′;
9 open.push(s);

Theorem 4 (Completeness of Algorithm 2). Given a QNP
problem Q, if Q is solvable, Algorithm 2 will return a solution
graph corresponding to one of the policies that solve Q.

Proof. When expanding G′ in Algorithm 3, the pruning strat-
egy is based on SIEVE. We ignore the pruning strategy since
it performs pruning only when any expanding leads to a non-
terminating G′, which can not be a part of the solution graph
of Q according to Proposition 1.

We prove that Algorithm 2 enumerates all closed sub-
graphs, in which there is exactly one outgoing connector for
each non-goal node. Algorithm 3 assigns one of the outgo-
ing connectors to s0 and add it to G′. All non-goal nodes s
reachable from s0 in G′ are pushed into open, and then will
be assigned one outgoing connector and added to the end of
closed, until G′ is closed. In this process, all outgoing con-
nectors of s are assigned to s one by one. When all outgoing
connectors of s have been enumerated, it will backtrack to
assign next outgoing connector of the last expanded node in
closed. When all connectors of s0 are enumerated and open
is empty, Algorithm 2 enumerates all closed subgraphs. If
Q is solvable, it will return a solution graph of Q, one of all
closed subgraphs that it enumerates.

Domain |fQ| |AQ| |fF | |AF | time(ms)
BlocksClear 2 4 20 16 7.2
BlocksOn 5 7 47 36 6.2
ChoppingTree 2 2 2 2 3.4
Cornera 2 4 29 23 2.9
Delivery1 4 4 54 39 4.1
Delivery2 4 5 54 40 7.3
Delivery3 4 7 54 42 3.1
Gripper1 4 5 54 44 3.3
Nest2 2 2 29 19 10.2
Nest3 3 3 47 33 3.9
Nest10 10 10 285 243 11.0
Q1 4 4 4 4 2.6
Q3 4 4 41 29 5.7
Rewards 2 2 29 19 2.9
ShovelingSnow 3 3 47 30 7.7
TestOn 3 3 35 24 24.0
Logistic1 20 12 517 439 13.4
Logistic2 20 13 517 440 14.0
Nest3u 3 3 47 36 7.8
Nest10u 10 10 285 253 13.3
Gripper1u 4 5 54 44 2.8
Q2 4 4 41 29 5.5

Table 1: The size of QNP problems and the corresponding FOND
problems obtained by qnp2fond and the time for translation. Prob-
lems in the top half part are solvable while the rest are not. |fQ| and
|AQ| are the number of variables and actions in QNP problems re-
spectively. |fF | and |AF | are the number of variables and actions in
the corresponding FOND problems respectively.

5 Implementation and Experiments
Based on the proposed approach, we implemented a QNP
solver DSET1, meaning Direct Search and Early Termination-
testing. We compared the performance of DSET with the ex-
isting compilation-based approach that compiles a QNP prob-
lem Q into a FOND problem P via a translator qnp2fond
[Bonet and Geffner, 2020], which provides a sound and com-
plete translation from QNP problems to FOND problems
without termination testing. We solve the resulting FOND
problems by two off-the-shelf FOND solvers: PRP [Muise
et al., 2012] and FOND-SAT [Geffner and Geffner, 2018].
We also compared with FOND-ASP solver proposed by Ro-
driguez et al. [2021] which solves QNP problems as FOND+

problems by providing sets of fairness assumptions. We do
not compare with the generate-and-test approach proposed
by Srivastava et al. [2011] because there are no off-the-shelf
FOND solvers that can enumerate all strong cyclic solutions
and it is not simple to amend one solver to do so.

All the experiments were conducted on a Linux machine
with a 2.9GHz Intel 10700 CPU and 4GB of memory.

5.1 Experimental Domains
We adopt the following domains:

• ChoppingTree, Nest2, Nest3 and ShovelingSnow are
from Srivastava et al. [2011]. BlocksOn, Delivery2,

1DSET is available at https://github.com/sysulic/DSET

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4697

https://github.com/sysulic/DSET

DSET FOND-SAT PRP FOND-ASP
Domain time(s) Policy size time(s) Policy size time(s) Policy size time(s) Policy size
BlocksClear 0.0158 2 0.1007 4 0.1067 4 0.0440 2
BlocksOn 0.0117 7 1.9778 11 0.2253 11 0.0471 7
ChoppingTree 0.0127 2 0.0658 3 0.0617 3 0.0430 2
Cornera 0.0165 2 0.2008 6 0.0875 5 0.5200 2
Delivery1 0.0139 6 2.3177 11 0.2658 16 0.0523 6
Delivery2 0.0217 6 2.1919 11 0.4689 16 0.1010 6
Delivery3 0.0287 6 2.3840 11 0.4873 16 0.0586 6
Gripper1 0.0174 10 114.9385 16 0.2463 28 0.1030 10
Nest2 0.0140 3 0.3720 9 0.1621 7 0.0450 3
Nest3 0.0179 7 3.5786 14 0.6258 15 0.0777 7
Nest10 5.1119 1023 – – – – – –
Q1 0.0126 4 0.0735 4 0.0833 4 0.0465 3
Q3 0.0144 6 0.3989 6 0.1260 7 0.0437 4
Rewards 0.0155 2 0.1886 6 0.1475 5 0.0408 2
ShovelingSnow 0.0116 4 1.0984 11 0.2461 10 0.0436 4
TestOn 0.0122 3 0.3167 7 0.1058 6 0.0433 3
Logistic1 15.6873 105 – – – – 58.2216 127
Logistic2 – – – – – – – –
Nest3u 0.0147 – – – 22.0863 – 0.0460 –
Nest10u 2.0198 – – – – – 21.2016 –
Gripper1u 0.0187 – – – 743.6844 – 0.0586 –
Q2 0.0097 – – – 1200.2490 – 0.0430 –

Table 2: Summary of the results for QNP problems by four solvers. The dashed line in the columns of time denotes out of time or memory
while in the columns of size denotes “not applicable”.

Gripper1 and Rewards are from Bonet et al. [2019].
BlocksClear, Delivery1, Delivery3, Q1, Q2 and Q3 are
from Bonet and Geffner [2020] and Q2 is an unsolvable
domain.

• To test the performance of DSET on domains of larger
size, we design three new solvable domains: Nest10 with
a 10-fold nested loop, which is similar to Nest2 and
Nest3, Logistics1, which is a QNP abstraction of the
classical Logistics problem by grouping indistinguish-
able objects, and Logistics2, which adds to Logistics1 an
extra action.

• Considering that a QNP solver means that it not only re-
turns a solution for solvable problems, but also informs
about unsolvability for unsolvable problems, just like
SAT solvers, we add three unsolvable domains Nest3u,
Nest10u and Gripper1u by modifying the corresponding
domains. More specifically, the preconditions and ef-
fects of some actions are rewritten so as to make the do-
mains unsolvable.

Table 1 shows the size of the benchmark QNP prob-
lems and the corresponding FOND problems generated by
qnp2fond and the time for translation. In most cases, the
corresponding FOND problems P have a much larger size
than the original QNP problems Q because qnp2fond adds
many extra variables and actions involving the stack opera-
tions for each numerical variable to guarantee that the solu-
tion of P corresponds to a solution of Q. Generally speaking,
the number of stack-related variables and actions in P is cu-
bic polynomial in the number of numerical variables in Q.

5.2 Main Results
We compared the performance of the four solvers, each of
which is evaluated in terms of solving time (the running time
needed to solve a problem) and policy size (the number of
qstate-action pairs in the solution) as shown in Table 2. The
timeout is set to 1800 seconds to prevent a solver from run-
ning indefinitely. To eliminate the interference of background
processes, for each problem, we run each solver 10 times,
which is an empirical value, and take the average as the re-
ported running time. The running time in the columns of
FOND-SAT and PRP is the sum of the running time of the
translator qnp2fond and the FOND solver.

The solving time of DSET is less than that of FOND-SAT
and PRP by more than an order of magnitude on most solv-
able QNP problems. The reason is that DSET searches for
solutions in a much smaller qstate space and performs prun-
ing when a non-terminating subgraph is found, while FOND-
SAT and PRP struggle with a much larger qstate space, es-
pecially for those hard problems like Nest10, Logistic1 and
Logistic2. The running time of DSET increases with the size
of QNP problems. Logistic1 can be solved within 16 seconds;
however, with just one extra action, Logistic2 makes DSET
run out of time. Since DEST is a naive enumeration method,
these two domains are designed to test the border of scalabil-
ity. When QNP problems are unsolvable, DSET returns “Un-
solvable” within seconds while PRP and FOND-SAT usually
take a much longer time and even timeout. For most QNP
problems, solvable or unsolvable, the running time of DSET
is comparable with that of FOND-ASP since they search or
compute solutions in the same qstate space. When computing

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4698

Nest10, FOND-ASP runs out of memory.
The policies returned by DSET usually have a smaller size.

A smaller policy is not necessarily more efficient, but it is
more succinct. The reason why PRP and FOND-SAT re-
turn larger policies is that the FOND problems generated by
qnp2fond require that a numerical variable v can be de-
creased only after v is pushed into the stack and v can be
increased if v is not in the stack. If a numerical variable is in
the stack, it must be popped before it can be increased. With
this mechanism, PRP and FOND-SAT will return policies of
larger size since some Push or Pop actions must be applied
before a numerical variable is decreased or increased.

In the following part, we focus on the analysis of one typ-
ical unsolvable QNP problem to illustrate why DSET returns
“Unsolvable” much more quickly than PRP and FOND-SAT.

Example 2. Q2 = {F, V, I, O,G} is an unsolvable QNP
problem where F = {p, g}, V = {x, y}, I = {p,¬g, x >
0, y > 0}, G = {g} and O = {a1, a2, a3, a4} where
a1 = ⟨p, x > 0;¬p, x ↓⟩, a2 = ⟨¬p; p, x ↑⟩, a3 = ⟨x = 0; g⟩
and a4 = ⟨y = 0; g⟩.

Figure 2: The Qstate Transition Graph of Q2

As shown in Figure 2, a4 is inapplicable in any qstates
reachable from s0 since there is no action with the effect y ↓
and thus the precondition of a4 will never be satisfied. More-
over, it can be easily verified that Q2 has no solution because
the action a2, which must be used to restore the precondition
of a1 in the loop, increases x at the same time. Therefore, x
will be decreased and increased in the loop forever and the
policy will not terminate.

It took DSET 0.0097 seconds to return “Unsolvable” for
Q2, which is negligible compared with the running time
of PRP and FOND-SAT. It took PRP 1200.2490 seconds
to return “Unsolvable” because the corresponding FOND
problem of Q2, has a much larger size and makes it time-
consuming for PRP. Specifically, PRP can prune the qstate
space significantly by locating and propagating the deadends,
which is based on the relevance between qstates. However,
qnp2fond introduces a lot of stack-related variables and
thus results in weaker relevance between qstates.

5.3 Evaluation of the Pruning Strategy
Considering that the dataset shown in Table 1 is limited,
to measure the impact of pruning non-terminating policies
ahead of time, we set the number of numeric variables M and
the number of actions N , randomly generate a set of 500 QNP
problems Q = ⟨F, V, I,G,O⟩ where |F | = 3, |V | = M ,
|O| = N , as follows. I contains a literal of each variable
in F ∪ V ; G and pre(a), a ∈ O, contain a literal of each

variable in F ∪ V with probability 0.5; eff (a) contains a lit-
eral of each variable in F with probability 0.5, and contains
the atom inc(v) or dec(v) of each variable in V with prob-
ability 0.5. Each literal in I , G and O is produced by ran-
domly choosing from a pair of complementary literals of the
corresponding variable. Each atom in eff (a) is produced by
randomly choosing from a pair of inc(v) and dec(v) of the
corresponding variable v.

Domain |VQ| |AQ| pruning(s) no pruning(s)
Random1 8 12 0.3594 0.0753
Random2 10 20 1.3115 8.8865

Table 3: Additional experiments. |VQ| and |AQ| are the number of
numeric variables and actions in QNP problems respectively.

As shown in Table 3, we randomly generate 2 sets of 500
QNP problems using the method described above; compute
the average running time of DSET on each set and com-
pare the results with and without the pruning strategy. It
turns out that there is a trade-off between pruning but do-
ing termination-testing on non-closed subgraphs and non-
pruning but only doing termination-testing on closed sub-
graphs. On Random1, the pruning strategy does not pay
off; however, pruning shows its significant advantage on
Random2.

6 Conclusions
In this paper, we first propose a simpler characterization that a
QNP solution is a closed and terminating policy with a reach-
able goal node, and make the observation that any extension
of a non-terminating policy is also non-terminating. Based
on the above characterization and observation, we propose
a native QNP solver DSET, which works by formalizing the
qstate space of a QNP problem Q into an AND/OR graph G
and performing a subgraph search algorithm on G for solu-
tions with a pruning strategy that involves termination tests
of subgraphs. Experimental results show that on solvable
QNP problems, the running time of DSET is less than that
of the compilation-based approach proposed by Bonet and
Geffner[2020] using FOND solvers PRP and FOND-SAT by
more than an order of magnitude. For unsolvable QNP prob-
lems, DSET returns “Unsolvable” much more quickly than
PRP and FOND-SAT. Meanwhile, DSET is comparable with
the FOND+ solver FOND-ASP by Rodriguez et al. [2021].

However, DSET is a naive enumeration method and thus
suffers from scalability as shown by the Logistic2 domain
and classical planning instances since QNP extends classi-
cal planning. In the future, We will try to improve scalabil-
ity of DSET with heuristic search. We are also interested
in expanding the work presented in this paper to solve QNP
problems where numeric variables are increased or decreased
by restricted amounts rather than by some arbitrary amount.
Such problems can function as better abstraction models for
generalized planning.

Acknowledgments
We acknowledge support from the Natural Science Founda-
tion of China under Grant No. 62076261.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4699

References
[Bercher and Mattmüller, 2009] Pascal Bercher and Robert

Mattmüller. Solving non-deterministic planning problems
with pattern database heuristics. In KI 2009: Advances in
Artificial Intelligence, pages 57–64, 2009.

[Bonet and Geffner, 2018] Blai Bonet and Hector Geffner.
Features, projections, and representation change for gener-
alized planning. In Proceedings of the 27th International
Joint Conference on Artificial Intelligence (IJCAI), pages
4667–4673, 2018.

[Bonet and Geffner, 2020] Blai Bonet and Hector Geffner.
Qualitative numeric planning: Reductions and complexity.
J. Artif. Intell. Res., 69:923–961, 2020.

[Bonet et al., 2019] Blai Bonet, Guillem Francès, and Hector
Geffner. Learning features and abstract actions for com-
puting generalized plans. In Proceedings of the 33rd AAAI
Conference on Artificial Intelligence (AAAI), pages 2703–
2710, 2019.

[Brewka et al., 2011] Gerhard Brewka, Thomas Eiter, and
Miroslaw Truszczynski. Answer set programming at a
glance. Commun. ACM, 54(12):92–103, 2011.

[Geffner and Geffner, 2018] Tomas Geffner and Hector
Geffner. Compact policies for fully observable non-
deterministic planning as SAT. In Proceedings of the 28th
International Conference on Automated Planning and
Scheduling (ICAPS), pages 88–96, 2018.

[Hansen and Zilberstein, 2001] Eric A. Hansen and Shlomo
Zilberstein. LAO*: A heuristic search algorithm that finds
solutions with loops. Artif. Intell., 129(1-2):35–62, 2001.

[Illanes and McIlraith, 2019] León Illanes and Sheila A.
McIlraith. Generalized planning via abstraction: Arbi-
trary numbers of objects. In Proceedings of the 33rd AAAI
Conference on Artificial Intelligence (AAAI), pages 7610–
7618, 2019.

[Levesque, 2005] Hector J. Levesque. Planning with loops.
In Proceedings of the 19th International Joint Conference
on Artificial Intelligence (IJCAI), pages 509–515, 2005.

[Mattmüller et al., 2010] Robert Mattmüller, Manuela Or-
tlieb, Malte Helmert, and Pascal Bercher. Pattern database
heuristics for fully observable nondeterministic planning.
In Proceedings of the 20th International Conference on
Automated Planning and Scheduling (ICAPS), pages 105–
112, 2010.

[Muise et al., 2012] Christian J. Muise, Sheila A. McIlraith,
and J. Christopher Beck. Improved non-deterministic
planning by exploiting state relevance. In Proceedings of
the 22nd International Conference on Automated Planning
and Scheduling (ICAPS), 2012.

[Nilsson, 1982] Nils J. Nilsson. Principles of Artificial Intel-
ligence. Springer, 1982.

[Rodriguez et al., 2021] Ivan D. Rodriguez, Blai Bonet, Se-
bastian Sardiña, and Hector Geffner. Flexible FOND plan-
ning with explicit fairness assumptions. In Proceedings of
the 31st International Conference on Automated Planning
and Scheduling (ICAPS), pages 290–298, 2021.

[Srivastava et al., 2011] Siddharth Srivastava, Shlomo Zil-
berstein, Neil Immerman, and Hector Geffner. Qualita-
tive numeric planning. In Proceedings of the 25th AAAI
Conference on Artificial Intelligence (AAAI), pages 1010–
1016, 2011.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4700

	Introduction
	Preliminaries
	Theoretic Foundation
	Find Solutions for QNP Problems
	Avoid Non-terminating Solutions
	Detailed Algorithm
	Soundness and Completeness

	Implementation and Experiments
	Experimental Domains
	Main Results
	Evaluation of the Pruning Strategy

	Conclusions

