Gigs with Guarantees: Achieving Fair Wage for Food Delivery Workers

Ashish Nair, Rahul Yadav, Anjali Gupta, Abhijnan Chakraborty, Sayan Ranu and Amitabha Bagchi

Dept. of Computer Science and Engineering, Indian Institute of Technology Delhi, India.
{Ashish.R.Nair.cs517, Rahul.Yadav.cs517, anjali, abhijnan, sayanranu, bagchi}@cse.iitd.ac.in

Abstract

With the increasing popularity of food delivery platforms, it has become pertinent to look into the working conditions of the ‘gig’ workers in these platforms, especially providing them fair wages, reasonable working hours, and transparency on work availability. However, any solution to these problems must not degrade customer experience and be cost-effective to ensure that platforms are willing to adopt them. We propose WORK4FOOD, which provides income guarantees to delivery agents, while minimizing platform costs and ensuring customer satisfaction. WORK4FOOD ensures that the income guarantees are met in such a way that it does not lead to increased working hours or degrade environmental impact. To incorporate these objectives, WORK4FOOD balances supply and demand by controlling the number of agents in the system and providing dynamic payment guarantees to agents based on factors such as agent location, ratings, etc. We evaluate WORK4FOOD on a real-world dataset from a leading food delivery platform and establish its advantages over the state of the art in terms of the multi-dimensional objectives at hand.

1 Introduction and Related Work

Food delivery platforms like Swiggy, Zomato, GrubHub or Deliveroo have become an extremely popular choice among customers to order and get food delivered to them. Alongside offering increased business to the restaurants, they also provide a livelihood to thousands of delivery agents, who pick the ordered food from the restaurants and deliver them at the customers’ doorsteps. In developing countries with high unemployment rates, despite the ‘gig’ nature of delivery jobs, these platforms have become the only source of income for the majority of delivery agents [Fairwork, 2021; Khumalo, 2022]. However, a range of issues are presently plaguing the food delivery industry – poor working conditions of the agents, pressure of on-time delivery while navigating heavy traffic, opaque job assignments, etc. [Zhou and others, 2020]. Specifically, a major concern of the delivery agents is their inadequate income against the backdrop of rising cost of fuel and maintenance¹, forcing many agents to go on repeated strikes to demand better pay [Mitra, 2022; Wilks, 2022]. In fact, a non-profit labor watchdog organization Fairwork (fair.work) found that none of the food delivery platforms in India ensures legal minimum wage, even if an agent works for 10+ hours a day [Fairwork, 2021].

Earlier works in this space have mostly attempted to minimize the order delivery time alone [Kottakkki et al., 2020; Ulmer et al., 2021], by pre-placing delivery agents in different parts of the city anticipating demand [Xue et al., 2021], or by minimizing delivery agents’ waiting time [Weng and Yu, 2021]. FOODMATCH [Joshi et al., 2022; Joshi et al., 2021] overcame many simplifying assumptions made in prior works (e.g., perfect order arrival information [Yildiz and Savelsbergh, 2019], neglecting the road network [Reyes et al., 2018] and food preparation time [Zeng et al., 2019]), and proposed a realistic and scalable solution. While FOODMATCH minimized the delivery time, FAIRFOODY [Gupta et al., 2022] showed that such one-sided optimization leads to unfair work distribution among delivery agents, resulting in unequal incomes. They further proposed a multi-objective algorithm FAIRFOODY to provide fair distribution of income opportunities among the agents, while ensuring minimal increase in

¹A delivery agent typically gets a small delivery fee per order, except occasional tips and incentives [Sodhi, 2021].
Table 1: Performance of FairFOODY, FoodMATCH, and our proposal Work4Food in city B of the dataset. An order’s delivery time is the time between the order being placed and delivered. We measure inequality among agent incomes (per unit of log-in time) with Gini scores. The lower the Gini score, the better the fairness. \(p \) is the pay of an agent per hour worked. Cost for Work4Food includes handouts \(= 0.21 \times 10^6 \) (Def. 5). For FairFOODY and FoodMATCH, cost here is the total payment for work.

<table>
<thead>
<tr>
<th>Property</th>
<th>FAIRFOODY</th>
<th>FOODMATCH</th>
<th>WORK4FOOD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(g = \omega)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg. Delivery Time</td>
<td>16.08 mins</td>
<td>15.91 mins</td>
<td>16.68 mins</td>
</tr>
<tr>
<td>Gini Income/log-in Time</td>
<td>0.09</td>
<td>0.63</td>
<td>0.11</td>
</tr>
<tr>
<td>Avg. Work per Agent</td>
<td>3.26 hrs</td>
<td>2.31 hrs</td>
<td>2.19 hrs</td>
</tr>
<tr>
<td>Cost (in 10^6 units)</td>
<td>2.46</td>
<td>1.75</td>
<td>1.85 = 1.64 + 0.21</td>
</tr>
</tbody>
</table>

Table 2: Overview of the dataset.

<table>
<thead>
<tr>
<th>City</th>
<th># Restaurants (avg./day)</th>
<th># Vehicles (avg./day)</th>
<th># Orders (avg./day)</th>
<th># Nodes</th>
<th># Edges</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2085</td>
<td>2454</td>
<td>23442</td>
<td>39k</td>
<td>97k</td>
<td>>5M</td>
</tr>
<tr>
<td>B</td>
<td>6777</td>
<td>13429</td>
<td>159160</td>
<td>116k</td>
<td>299k</td>
<td>>8M</td>
</tr>
<tr>
<td>C</td>
<td>8116</td>
<td>10608</td>
<td>112745</td>
<td>183k</td>
<td>460k</td>
<td>>8M</td>
</tr>
</tbody>
</table>

agents to on-board so that the income guarantee can be met, which includes the provision of agent-personalized guarantees (§ 2).

- **Algorithm design:** We design an algorithm called Work4Food, which allows us to set a payment guarantee that is *provably optimal* for minimizing cost for the platform. Powered by a novel combination of *minimum weight bipartite matching with Gaussian process regression*, Work4Food analyzes the demand-supply dynamics in the system and generates an allocation that balances the *triple* needs of minimizing delivery time, minimizing cost for the platform, and ensuring payment guarantees for the delivery agents (§ 3).

- **Evaluation:** We evaluate Work4Food on a real food delivery dataset from a large food delivery platform. Our experiments reveal that Work4Food ensures the minimum wage guarantee with high probability, improves cost margin of the platform and achieves fairness without inflating work per unit time. More importantly, Work4Food empowers policymakers with a tool that can be deployed to regulate this business (§ 4).

More detailed version of this work is available in ArXiv [Nair et al., 2022].

2 Preliminaries and Problem Formulation

The food delivery problem involves four parties: customers, restaurants, delivery agents, and the delivery platform (a.k.a. the ‘system’). The platform receives a stream of orders, which it then assigns to the agents. While doing so, we keep a few constraints in mind – agents have a fixed capacity to carry orders, and the platform does not assign orders that cannot get delivered within the service level agreement (SLA). The SLA is the maximum delivery time that the platform promises customers. Each agent logs into the platform and informs how long they plan to stay.

2.1 Dataset

We use a licensed food delivery dataset released by [Joshi et al., 2021]. The dataset is sourced from a leading food delivery service in India and consists of eighteen days worth of delivery data from three large metropolitan cities. Table 2 provides a summary of the same. Further details are available in [Nair et al., 2022].

2.2 Formulation

We now define some terms useful for our proposal.

Definition 1 (Delivery Times – EDT, SDT, XDT). The expected delivery time \(\mathbb{E}(o, v) \) of an order \(o \) is the expected time it would take to be delivered if it is assigned to agent \(v \).
The shortest delivery time $SDT(o)$ of order o is the fastest it can be delivered if some vehicle could serve it with no wait time or other detour delays. It is the sum of the food preparation time and the shortest travel time between the restaurant and customer’s location.

The excess delivery time $XDT(o,v)$ of an order o with respect to an agent v is the difference between $EDT(o,v)$ and $SDT(o)$. We compute these delivery times using standard graph algorithms as in [Joshi et al., 2021].

Problem 1 (Minimizing delivery time). Given a set of agents V^t and unallocated orders O^t at timestamp t, find an allocation of orders to agents so that $\sum_{o\in O^t} XDT(o, A(o))$ is minimized. $A(o)$ denotes the agent allocated to order o.

FOODMatch [Joshi et al., 2021] studies the above problem and proposes an effective solution.

Definition 2 (Work and Active Times). Work time W_v^t is the time spent by a delivery agent v till time t servicing orders, i.e., either traveling or waiting for assigned orders. The active time A_v^t (in hours) of the agent is the time for which they get enough work.

In all of the models we compare, the agent incomes are proportional to their work times. Therefore, to guarantee income to agents, our new proposed algorithm guarantees that they get enough work.

Definition 3 (Work Guarantee Ratio). The work guarantee ratio g_v of a delivery agent v is the amount of work time guaranteed by the system to agent v per unit active time. Note a work guarantee naturally translates into an income guarantee since the payment is a function of the work.

Definition 4 (Work Guarantee). The work guarantee G_v^t for a delivery agent v is the amount of work (in hours) the platform guarantees to the agent till time t, i.e., $G_v^t = g_v \times A_v^t$. The total work guarantee G_v of agent v is given by $G_v = g_v \times A_v$.

Definition 5 (Work Payment, Handout and Platform Cost). In our models, every agent is paid the same rate of the work guarantee comes at no extra cost to the platform, as any work below the work guarantee is turned off, i.e., each agent has a capacity of only one active vehicle.

We envision a system where the platform hands out money to agents in lieu of any unmet work guarantees. So, the handout H_v for any agent v is given by:

$$H_v = p \times \max(0, G_v - W_v)$$

The platform cost C is the total money the platform has to pay the agents for their work and any unsatisfied work guarantee. It is given by:

$$C = \sum_v pW_v + \sum_v H_v$$

Problem 2 (Minimize Platform Cost), Find order to vehicle allocation such that C is minimized. Note that due to the handout component in C (Eq. 2), all agents are guaranteed to get their promised income.

In this work, we propose to not only minimize food delivery time (Prob 1), but also the cost to platform (Prob 2).

Problem 3 (Work Guarantee Problem). Find order to vehicle allocation such that both platform cost C and total excess delivery time are minimized while ensuring guaranteed income to all agents.

The proposed problem is therefore a multi-objective optimization problem. Moreover, Prob 3 is NP-hard since Prob 1 is NP-hard [Joshi et al., 2021]. Hence, we explore heuristics in the form of bipartite matching.

3 WORK4FOOD: Proposed Algorithm

WORK4FOOD aggregates all incoming orders in a window of size $\Delta = 3$ minutes and any unassigned orders from past windows. As in **FOODMatch**, we batch orders together if they can be picked and delivered efficiently by the same agent. We use the same batching algorithm as in **FOODMatch**. We then assign each batch to an active agent. The pseudocode of **WORK4FOOD** is provided in Alg. 1 in [Nair et al., 2022].

3.1 Order Matching

To assign orders to agents, we perform matching on a weighted bipartite graph between order batches B^t and active vehicles V^t in the current window using the Hungarian algorithm [Kuhn, 1955; Munkres, 1957].

Edge weights in matching graph: The weight of the edges in the bipartite matching graph at time t between order batches $b \in B^t$ and vehicles $v \in V^t$ is given by

$$e(v, b) = \left\{\begin{array}{ll}
max \{W_v^t + w_v^b - G_v^t, 0\} & \text{if } G_v^t > W_v^t \\
G_v^t & \text{if } G_v^t \leq W_v^t
\end{array}\right.$$ (3)

w_v^b denotes the extra work agent v will do to deliver batch b.

The edge weight captures the additional cost to deliver batch b using agent v given the work guarantee. Any work below the work guarantee comes at no extra cost to the platform, as it needs to pay unmet guarantees through handouts. Thus, the edge weights equal the extra work beyond the guarantee.

The above edge weight does not explicitly optimize delivery times, so we add an extra term corresponding to **FOODMatch**’s edge weight [Joshi et al., 2021].

If O_v is the batch (set) of orders already being carried by agent v, then the edge weight in **WORK4FOOD** is given by

$$e_{fm}(v, b) = \sum_{o \in b} XDT(o, v) + \sum_{o' \in O_v} \Delta XDT(v, o', b)$$

where $\Delta XDT(v, o', b)$ is the change in XDT of order $o' \in O_v$ if batch b is assigned to agent v.

Theorem 1 (Equivalence to **FOODMatch**). When batching is turned off, i.e., each agent has a capacity of only one order, and the platform provides no work guarantee to the agents, then **FOODMatch** and **WORK4FOOD** compute the same batch-agent assignments.

Proof. Provided in [Nair et al., 2022].
3.2 Setting the Work Guarantee Ratio

A key component in determining the edge weights of the bipartite graph is the work guarantee to be provided to delivery agents (Eq. 3). This guarantee needs to be determined based on the demand-supply dynamics. To determine this guarantee, we initiate our analysis under the equitability assumption that the same guarantee is provided to all agents, i.e., the guarantee is a function of only the demand-supply and does not depend on the attributes of the agent. We discuss agent-personalized guarantee in the subsequent section.

Let us denote the fixed work guarantee ratio by \(g \) (Def. 3), pay per active hour by \(p \), and hourly minimum wage guarantee by \(P_{\text{min}} \). Thus, we want \(p \times g \geq P_{\text{min}} \). For every \(g \), platform can set an appropriate hourly pay \(p = p(g) = P_{\text{min}} / g \) such that the wage guarantee is met with minimum cost.

Theorem 2 (Optimal value of \(g \)). If \(\omega = \frac{\sum_v W_v}{\sum_v A_v} \) is the ratio of the total work time to the total active time of the system with the current set of orders and agents, then we claim that \(g = \omega \) minimizes the platform cost \(C \).

Proof. This choice of \(g \) is explained by analysing the platform cost \(C \) for different \(g \) values. We can rewrite Eq. 2 as:

\[
C(g) = \frac{P_{\text{min}}}{g} \sum_v W_v + \sum_v \max(0, gA_v - W_v)
\] (5)

We consider two cases, \(g \leq \omega \) and \(g > \omega \) assuming WORK4FOOD works ideally, i.e., (i) the total work in the system \(\sum_v W_v \) does not depend on \(g \); (ii) WORK4FOOD meets guarantees whenever there is sufficient work; (iii) when work is scarce, agents are not assigned more work than the guarantee as agents with unmet guarantees are preferred by Eq. 3.

Case 1: \(g \leq \omega \). Here, there is enough work available for all the agents to be able to meet the fixed work guarantee since \(\sum_v gA_v \leq \omega \sum_v A_v = \sum_v W_v \). So, the second term in Eq. 5 would be equal to zero and we have \(C(g) \propto 1/g \). Hence, \(C(g) \) is minimized when \(g = \omega \).

Case 2: \(g > \omega \). As there is not enough work for all guarantees to be met, agents will not cross their guarantees, and Eq. 5 would reduce to:

\[
C(g)_{g>\omega} = \frac{P_{\text{min}}}{g} \sum_v W_v + \frac{P_{\text{min}}}{g} \sum_v (gA_v - W_v)
\] (6)

\[
= P_{\text{min}} \sum_v A_v
\] (7)

So, if \(g > \omega \) then, \(C \) is independent of \(g \). However, in this case, the distribution of work for the agents may be unequal even though they end up earning equally (proportional to their active times). This is not desirable. Hence, we set \(g = \omega \). \(\square \)

An empirical substantiation of the above theorem is provided in [Nair et al., 2022].

3.3 Estimating \(\omega_v \) for Each Agent

From Theorem 2, setting \(g = \omega \) is the optimal choice when all agents get the same guarantee. However, the total work time to total active time varies with time of the day (See Fig. 2), since it is a function of several variable factors such as the location of agents, number of agents in the system, and order-density. Hence, it is important to predict \(\omega_v \), i.e., the ratio of expected work to active time when an agent \(v \) wants to on-board. Towards that end, we use Gaussian Process Regression [Rasmussen and Williams, 2006] to model available work \(W_v \) of agent \(v \). As input, the agent provides its active time \(A_v \) on joining the system. So, we have \(\omega_v = W_v / A_v \) and the work guarantee ratio is set as \(g_v = \omega_v \) to provide a dynamic guarantee.

Gaussian Process Regression

Gaussian process regression (GPR) is a Bayesian regression model used in geo-spatial and time series interpolation tasks. It makes predictions based on the similarity between known points and unknown points.

For a given train dataset \((X, Y) \) and test points \(X_* \), GPR predicts the underlying function \(f \). In the basic GPR model, we have:

\[
\begin{bmatrix}
 f(X) \\
 y(X) \\
\end{bmatrix}
\sim
\mathcal{N}
\begin{bmatrix}
 0, I \\
 k(X, X) + \sigma^2 \eta^2 \mathcal{I} \\
\end{bmatrix}
\] (prior)

\[
y(X) \sim \mathcal{N}(f(X), \eta^2 I)
\] (likelihood)

\(y(X) \) and \(f(X) \) are random variable vectors. Training data \(Y \) is modeled as samples of \(y(X) \), \(k(x, x') = \sigma^2 \cdot \exp(-\frac{(x-x')^2}{\eta^2}) \) is the kernel function and \(\eta^2 \) is the noise covariance. \(\sigma, \lambda \) and \(\eta \) are model parameters learned using gradient descent to best explain the training data \((X, Y)\). The predictions of the GPR model are made by computing \(p(f(X_*) | X, y) \) by marginalizing \(f(X) \) from \(p(f(X_*) , f(X) | y) \).

We use the Sparse Variational version of the GPR (with Cholesky Variational Distribution) for better running times on the large dataset. Variational inference uses a new distribution \(q(f(X_*), f(X)) \), called the variational distribution, to approximate \(p(f(X_*), f(X) | y) \). In Sparse GPR, inducing locations \(X_* \) are found to summarize the training data.

In our setting, the GPR predicts the total work \(W_v = X_* \) for an agent \(v \) will get during its active time, which is used for getting \(\omega_v \). We characterize each agent \(v \in V' \) with the feature set \(X = \{ X_v | v \in V' \} \), where \(X_v \) is a vector containing log-in/log-off time, log-in location coordinates in terms of latitude and longitude, number of agents currently in the system, and the number of orders per window. Other features may also be used based on the factors influencing allocation (ex. driver rating).
We note that we only need an estimate of the available work to provide a guarantee that can be met. Getting the prediction exactly correct is not required. Hence, GPR is an appropriate choice. In addition, GPR does not require us to set the functional form of the prediction model or to tune any hyper-parameters.

Balancing agent-order dynamics: FOODMATCH [Joshi et al., 2021] shows that platforms tend to engage more agents than required particularly, on slots that do not correspond to lunch and dinner hours. Over-provisioning drivers results in lower guarantees and consequently may violate the minimum wage guarantee as mandated by law. The prediction from GPR enables platforms to on-board the optimal number of drivers. Specifically, the system would on-board drivers as long as the expected pay per hour, i.e., $\omega \times p$, is higher than the minimum pay per hour.

4 Empirical Evaluation

In this section, we benchmark WORK4FOOD against the baselines of FOODMATCH [Joshi et al., 2021] and FAIRFOODY [Gupta et al., 2022] and establish that:

- **Practicality:** Compared to FOODMATCH and FAIRFOODY, WORK4FOOD provides a more practical balance between delivery times and cost-efficiency of the platform.
- **Fairness and sustainability:** WORK4FOOD generates fair allocations without the pitfalls of strenuous work distribution among agents or additional greenhouse emissions.

More experiments on running time efficiency and ratings-based work guarantee can be found in [Nair et al., 2022]. Our codebase is available at https://github.com/idea-iitd/Work4Food. Setup details is provided in [Nair et al., 2022].

4.1 Cost to Platform

Fig. 3 analyses the monetary cost of each baseline and WORK4FOOD under several payment guarantees across all three cities. The work guarantees (and therefore payment guarantee) used to evaluate FAIRFOODY (FF) and FOODMATCH (FM) are set to $g_c = \omega$ (Recall Theorem 2). Hence, the “total guarantee” bars for the first three algorithms are the same in Fig. 3. Recall, any unmet payment guarantees are compensated through handouts.

The platform cost (red bar) is up to 25% lower with WORK4FOOD (with $g = \omega$) compared to FOODMATCH and FAIRFOODY. This highlights the efficacy of WORK4FOOD in keeping platform cost low through explicit modeling of pay gap in edge weights (Eq. 3). The cost is highest in FOODMATCH since its allocations are skewed towards a minority of agents resulting in large handouts to the remaining agents.

We next focus on the variations of WORK4FOOD where agents are rejected if payment guarantees are predicted to not be met (reject) as per GPR and setting ω dynamically through GPR. We note that when driver rejection is allowed, the handout component decreases by up to 70%, and thereby making the system even more cost-efficient. When g is set dynamically based on demand and supply, the income for agents increases. While this naturally leads to an increase in cost to platform (although remains substantially lower than FOODMATCH and FAIRFOODY), dynamic guarantees provide a more transparent working environment for agents.

4.2 Delivery Times, Equitability and Environmental Impact

Table 3 evaluates WORK4FOOD and baselines on the above mentioned metrics. The below analysis establishes that WORK4FOOD provides the best balance between cost-efficiency, delivery time, equitability of work and income, and environmental impact.
We calculate Gini across two component distributions: Gini score. Lower the Gini, better the equality among agents.

Results reveal several interesting insights. First, FOOD agents to get to the minimum payment guarantee. The re-

Worktime per unit active time and

of W

from the Gini Scores. The Gini income per active time scores

has a highly unequal distribution of work and pay, as seen

to earn minimum wage.

Environmental Impact:

Even as FAIRFOODY fairly distributes work, it forces agents to work 30-40% more on average than FOODMATCH, thus making the system highly inefficient. It also leads to higher fuel costs for agents and causes a negative environmental impact. We measure the environmental impact using CO2 emissions calculated from the total distance traveled by agents [Moran, 2018]. WORK4FOOD, on the other hand, does not lead to higher work times or CO2 emissions to achieve better wage fairness and guarantees.

Delivery time: FOODMATCH has the lowest delivery times since it specifically minimizes this factor. However, WORK4FOOD does not perform poorly. Specifically, all of its variations across all cities are within 1.5 mins of FOODMATCH. The agent reject versions of WORK4FOOD have only slightly higher delivery times, even with a reduced set of agents available for delivery. It points to how the platform keeps under-worked agents in the system even when there is no real impact on customer experience.

Typically, the food delivery platform provides service level agreements (SLAs), which mandate the time within which each order must be delivered. In our dataset, the SLA was 45 minutes. We measure the number of SLA violations by various agents. While the excellent Gini of WOOD ensures that the work they do to earn minimum wage.

Fairness: The work to active time ratio on average in FAIRFOODY is 4/3 times that of WORK4FOOD. We run WORK4FOOD at $g = 4\omega/3$ and compare the results with FAIRFOODY in Table 4 (Recall ω from Theorem 2). We observe that WORK4FOOD at $g = 4\omega/3$ not only provides better income equality, but also more relaxed agent workload. These benefits of WORK4FOOD do not come at the cost of delivery time as it only increases by a minuteck 9 seconds.

Platform Cost: What happens if we provide no work guarantee, i.e., $g = 0$. Fig. 4 answers the question. With no guarantees, WORK4FOOD is 20% cheaper than FOODMATCH but has 1 min 45 s higher average delivery time. This variation of the algorithm can reduce the platform cost and is the cheapest of all algorithms compared.

5 Conclusion

WORK4FOOD provides a mechanism for food delivery platforms to control and guarantee agent wages while at the same time optimizing their costs and maintaining reasonable delivery times. Optimizing platform cost also leads to more efficient system with agents not being forced to work more to earn fair wages. It leads to savings in fuel costs and avoids negative environmental impact in order to provide better wages to agents. We also show that by tuning the work guarantee parameter g allows customization of WORK4FOOD towards various needs. In the next discussion, we highlight some of these aspects.
References

