A Model-Oriented Approach for Lifting Symmetry-Breaking Constraints in Answer Set Programming

Alice Tarzariol
University of Klagenfurt, Austria
alice.tarzariol@aau.at

Abstract
Writing correct models for combinatorial problems is relatively straightforward; however, they must be efficient to be usable with instances producing many solution candidates. In this work, we aim to automatically generalise the discarding of symmetric solutions of Answer Set Programming instances, improving the efficiency of the programs with first-order constraints derived from propositional symmetry-breaking constraints.

1 Introduction
Modern declarative programming paradigms allow for relatively simple modeling of various combinatorial problems. Nevertheless, solving these problems might become infeasible when the size and number of possible solution candidates start to grow [Dodaro et al., 2016]. In many cases, these candidates are symmetric, thus, encoding Symmetry Breaking Constraints (SBCs) in a program becomes an essential skill for programmers. Since identifying and removing symmetric solutions might be a time-consuming and challenging task, various tools emerged for avoiding the computation of symmetries; see [Sakallah, 2009] for an overview. Modern symmetry breaking approaches can be split into two families: instance-specific and model-oriented approaches. The former identify symmetries for a particular instance at hand by obtaining a ground program, computing ground SBCs, composing a new extended program, and solving it [Puget, 2005; Cohen et al., 2006]. Unfortunately, computational advantages do not carry forward to large-scale instances or advanced encodings. Moreover, ground SBCs generated by instance-specific approaches are (i) not transferable, since the knowledge obtained is limited to a single instance; (ii) usually hard to interpret and comprehend; (iii) derived from permutation group generators, whose computation is itself a combinatorial problem; and (iv) often redundant, resulting in a degradation of the solving performance. In contrast, model-oriented approaches aim to find first-order SBCs that depend less on a particular instance, overcoming the limitations of instance specific approaches [Devriendt et al., 2016; Mears et al., 2008]. In our work, we focus on developing a model-oriented approach for Answer Set Programming (ASP) [Brewka et al., 2011] programs based on Inductive Logic Programming (ILP) [Cropper et al., 2020].

ASP is a declarative programming paradigm that applies non-monotonic reasoning and relies on the stable model semantics. Over the past decades, it has attracted considerable interest thanks to its elegant syntax, expressiveness, and efficient system implementations, showing promising results in numerous domains [Erdem et al., 2016]. ILP is a form of machine learning whose goal is to learn a logic program that explains a set of observations in the context of some pre-existing knowledge. The most expressive ILP system for ASP is Inductive Learning of Answer Set Programs (ILASP) [Law et al., 2020; Law et al., 2021], which can be used to solve a variety of ILP tasks. A learning task \((B, E^+, E^-, H_M)\) is defined by four elements: a background knowledge \(B\), a set of positive and negative examples, respectively \(E^+\) and \(E^-\), and lastly a hypothesis space \(H_M\), which defines the rules that can be learned. The goal consists of returning an hypothesis \(H \subseteq H_M\) such that the extended program \(B \cup H\) covers each single positive example in \(E^+\) and none of the negative examples in \(E^-\).

2 Research Problem Investigated
Considering the ASP paradigm, the system SBASS [Drescher et al., 2011] implements an instance-specific approach for identifying ground SBCs. To the best of our knowledge, no model-oriented systems currently lift propositional SBCs for ASP. Therefore, our aim is introducing a novel method that generalizes the process of discarding redundant solution candidates for ASP instances of a target domain using ILP, overcoming the four limitations identified for instance-specific approaches. More precisely, we tackle the following research goals (two of which are still under development):

RG 1 Given an ASP combinatorial program and a target instances distribution, define a learning framework capable of obtaining first-order constraints that speed up the solving of satisfiable and unsatisfiable instances.

RG 2 Develop an approach capable of applying the learning framework iteratively.

1This PhD work is conducted under the supervision of professors Martin Gebser and Konstantin Schekotihin.

2See [Law et al., 2020] for the definition of coverage in ILASP.
RG 3 Investigate how the framework can be extended to enable learning first-order constraints for advanced combinatorial problems.

RG 4 Design and implement systems that automate parameter selection for the framework for guiding the learning of first-order constraints that speed up solving.

RG 5 Extend the expressiveness of the learning framework to analyse the symmetries on optimization problems.

For the research goal RG 1, we assume that the instances analyzed for a given ASP combinatorial problem follow a specific distribution. Our framework relies on SBASS [Drescher et al., 2011] to compute the SBCs of a set of small, satisfiable, and representative problem instances. Then, we encode this information as an ILP task such that ILASP [Law et al., 2020; Law et al., 2021] learns first-order constraints that remove symmetric solutions while preserving the satisfiability of the instances in the considered distribution. We analyse the framework’s application for simple ASP programs with common characteristics. This contribution is contained in our paper [Tarzariol et al., 2021], published in 2021.

The goal RG 2 consists of identifying techniques that can speed up the learning tasks analysed in RG 1. To do so, we apply our framework iteratively to learn the first-order constraints incrementally. More precisely, we outline a criterion for splitting the framework inputs to create sub-learning tasks and to obtain the first-order constraints faster. This contribution was initially suggested in [Tarzariol et al., 2021], and subsequently formalised in [Tarzariol et al., 2022].

The research goal RG 3 consists of identifying and overcoming limitations for applying the current framework to advanced combinatorial problems. By advanced, we refer to problems whose solutions rely on atoms of multi-dimensional instead of just unary predicates, so that there might be no trivial instances to analyse. For this contribution, we submitted a paper at the beginning of 2022.

For the research goal RG 4, we aim to identify appropriate inputs to our framework automatically. First, the selection method of our framework needs to assess the properties of candidate inputs. Then, the method should determine parameters leading to correct and performant first-order constraints.

Lastly, the research goal RG 5 is to extend the applicability of our framework to optimization problems. Since SBASS does not support ASP programs with weak constraints, we aim to define a reduction from them to an equivalent representation that can be processed by SBASS. Targeting optimization problems can lead to relevant results as optimization involves solving unsatisfiable subproblems on attempting (and failing) to improve an optimal answer set, where symmetry breaking is particularly crucial for the performance.

3 Conclusion

We are currently working on the last two research goals: RG 4 will be particularly useful for simplify the usage of our system to the user, while RG 5 will be a further extension of the framework. In the end, we hope to obtain a tool capable of helping non-expert ASP users to improve their encoding and possibly exploit properties of the target instances distribution to learn efficient constraints.

References

