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Abstract
Multi-agent literature explores personifying artifi-
cial agents with personality, emotions or cognitive
biases to produce “typical”, believable agents. In
this study, we demonstrate the potential of endow-
ing artificial agents with a motivation, using human
implicit motivation psychology theory that intro-
duces 3 motive profiles - power, achievement and
affiliation, to create diverse, risk-aware agents. We
first devise a framework to model these motivated
agents (or agents with any inherent behavior), that
can activate different strategies depending on the
circumstances. We conduct experiments on a fire-
fighting task domain, evaluate how motivated teams
perform, and draw conclusions on appropriate team
compositions to be deployed in environments with
different risk levels. We find that motivational di-
versity within teams is beneficial in dynamic col-
laborative environments, especially as the task risk
level increases. Furthermore, we observed that the
best team composition in terms of the performance
metrics used to evaluate teams, does not remain the
same as the collaboration level required to achieve
goals changes. These results have implications for
future designs of risk-aware autonomous teams and
Human-AI teams, as they highlight the prospects
of creating better artificial teammates and perfor-
mance gains that could be achieved through anthro-
pomorphized motivated agents.

1 Introduction
With the continuous advancements in Artificial Intelligence
(AI), autonomous agents have become a ubiquitous part of
the workforce, rising up from being mere subordinate tools
to equal fellow teammates of humans [Schelble et al., 2020;
O’Neill et al., 2020]. Recent advancements in research
have been invested to identify what makes an autonomous
agent, not just a viable teammate, but also a good teammate.
This compendium of research has shown that a good au-
tonomous teammate engenders factors beyond accuracy, such
as trust [McNeese et al., 2021], team cognition [Cooke et al.,
2013], situation-awareness [Gorman et al., 2006] and most
importantly, a sense of predictability [Bansal et al., 2021;

Siu et al., 2021]. Siu et al. [2021] empirically demonstrate
that humans prefer predictable agents with rule based sys-
tems, over learned agents even when both models have the
same accuracy. Therefore, in the pursuit of building pre-
dictable autonomous agents, we explore the potential of hu-
man motivation psychology theory to personify autonomous
agents to create effective teams.

Three Needs Theory, a popular motivation psychology the-
ory defines three implicit motives that drive human decisions
[McClelland and Mac Clelland, 1961]. These three motive
profiles are affiliation, achievement and power. While hu-
mans possess these three motives in varying forms, they are
involuntarily guided by one dominant motive when making
decisions thus, leading to behavioral diversity [McClelland
and Mac Clelland, 1961]. Based on the dominant motive,
certain unique characteristics can be attributed to individuals
forming three distinct archetypes. Power motivated individ-
uals prefer taking high risks, targeting high incentive goals,
and prefer working alone. They are highly concerned about
status and recognition and attempt to influence others as pos-
itively as mentors or as negatively as oppressors [Magee and
Langner, 2008; Merrick, 2016]. Achievement motivated indi-
viduals also prefer working alone. They like challenging yet
achievable goals, hence they tend to take moderate risks. On
the other hand, affiliation motivated individuals place more
importance in social relationships, so they voluntarily seek
opportunities to form affiliations and alliances. They are also
characterized to prefer low risk goals and prefer collaboration
while avoiding conflicts [Merrick, 2016].

Analyzing these three archetypes, we observe that they
mainly distinguish from each other in two aspects; risk pref-
erence and social preference. Based on this observation,
we conjecture that endowing agents with these three motives
would help create social, risk-aware agents making them pre-
dictable, explainable autonomous agents. Risk-aware agents
are vital for the exploration of extreme/hazardous environ-
ments that are too dangerous and uncertain for humans to
explore [Hunt et al., 2021; Vielfaure et al., 2022]. Inspired
by the behavior of the social spider, Hunt et al. [2020] have
designed adaptive risk-taking swarms to explore similar set-
tings. Therefore, by using computational models of implicit
motives [Merrick and Shafi, 2011], we intend to add an in-
nate behavior to agents making them predictable, risk-aware
agents that can be effective teammates in Human-AI teams
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deployed in hazardous environments.
We experiment on an inherently risky task domain - a fire-

fighting task. We first devise a framework that can model
rule based agents with an inherent behavior but can also adopt
other strategies appropriately based on the defined rules. We
created different heterogeneous teams of agents with different
motives and analyzed their goal selection behavior, team dy-
namics and performance using appropriate metrics. Further-
more, we explored the same statistics for homogeneous teams
with new motive profiles created by perturbing the three orig-
inal motives. The use of an established psychology theory
paves the path for personality profiling when putting together
organic teams to meet motivational needs and increase pro-
ductivity.

In summary, the contributions of this work include:
1. Proposing a framework to model rule based agents with

probabilistic goal-selection capabilities, with an innate
behavior (implicit motivation) which can be overridden
by other strategies/rules appropriately when required.

2. Conducting experiments in a hazardous domain that re-
quire different levels of collaboration, and empirically
demonstrate performances of different team composi-
tions on a range of task risk levels.

3. Demonstrating the suitability of a well-established hu-
man motivation psychology theory to create risk-aware
agents with the ultimate vision of synergized human-AI
teaming.

2 Computational Models of Motivation
The three motive profiles affiliation, achievement and power
are characterised under incentive-based motivational psy-
chology. Incentives are situational characteristics that drive
behavior to satisfy a motive [Heckhausen and Heckhausen,
2008]. Incentives are inversely proportional to the probabil-
ity of achieving a goal [Merrick, 2016]. This implies that a
goal easily achievable with a high probability of success will
be associated with a low incentive value. On the other hand,
a goal that is much harder to achieve, meaning with a low
probability of success, will have a high incentive value.

The three motive profiles are modeled based on their char-
acteristic aspirations towards different incentive ranges. Indi-
viduals with high power, achievement and affiliation motives
will prefer high, moderate and low incentive goals respec-
tively. To further explain how these computational models
could create diverse risk-aware agents, power motivated indi-
viduals prefer high-risk goals by nature. A high risk goal can
be attributed to having a low probability of success of achiev-
ing. Therefore, power motivated agents are computationally
modeled such that they will have a high tendency to select
high incentive goals. In contrast, since affiliation motive pre-
fer low risks, agents endowed with an affiliation motive will
have a high tendency to pick low incentive goals; achieve-
ment motivated agents who prefer moderate risks will have
a high tendency to prioritize and select goals with moderate
incentive values.

These motivation tendencies driven by incentives (T (I)),
are modeled as a sum of 3 inverted U-shaped curves [Mer-
rick, 2016], where each curve represent the strength of each

motive. Therefore, a motive profile can be represented as the
sum of the three motives as provided in Equations 1 and 2.

T (I) = Tach(I) + Taff (I) + Tpow(I) (1)

T (I) =
Stach

1 + e−ρ+
ach((1−I)−M+

ach)
− Stach

1 + e−ρ−
ach((1−I)−M−

ach)

+
Staff

1 + e−ρ+
aff (M

+
aff−I)

− Staff

1 + e−ρ−
aff (M

−
aff−I)

(2)

+
Stpow

1 + e−ρ+
pow(I−M+

pow)
− Stpow

1 + e−ρ−
pow(I−M−

pow)

I is the incentive, ρ+aff , ρ+ach, and ρ+pow control the gradi-
ent of approach of each motive while ρ−aff , ρ−ach, and ρ−pow
control the gradient of avoidance of the 3 motives. Staff ,
Stach, Stpow are the relative strengths of each motive. M+

defines the turning point of success approach and M− defines
the turning point of failure avoidance for each motive which
are represented by the turning points of the sigmoid curves.

Equation 3 models the 3 motive profiles using only the
dominant motive component of Equation 2. In this equa-
tion, mot in the parameters Stmot, ρmot, Mmot represent mo-
tive profiles which could bear the values pow, ach or aff to
model power, achievement or affiliation motive respectively.
These equations are discussed at length by Merrick [2016].

T (I) = Stmot

1+e−ρ
+
mot(I−M

+
mot)

− Stmot

1+e−ρ
−
mot(I−M

−
mot)

(3)

3 Methodology
3.1 Task Domain
The hazardous domain of our choice is a fire-fighting sce-
nario. To create our task domain, we took inspiration from
C3Fire microworld [Granlund, 2003], a popular experimental
platform to analyze distributed team decision making. C3Fire
defines certain roles, a hierarchy of individuals within a team,
resource constraints etc., making the abstraction of real-world
fire outbreak as realistic as possible. However, we need a
team of agents that are homogeneous excluding their mo-
tivation, to observe their collective goal selection behavior.
Hence, we adopted the terrain, its content, possible actions
of an agent, resource types on the terrain, proposed in an ex-
ample simulation of C3Fire microworld 1 and created a more
simplified fire-fighting scenario including selectable goals for
the motivated agents. Our task domain is a toroidal world
in a 20x20, discrete 2D grid, with houses (property), fast-
burning trees and slow-burning trees (vegetation) randomly
distributed on the grid. A team of 12 fire-fighting agents with
perfect vision that behave according to the proposed frame-
work, are spawned in random locations in the grid, and their
overall task is to save the village from fire. In the beginning,
fire is spawned in two random cells, and based on the defined
fire-spreading likelihood (FSL), fire spreads to its 4 neigh-
bouring cells recursively. That is, if a cell cij is burning at

1http://c3learninglabs.com/w/index.php/Doc/Simulation
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time step t, at t + 1, its neighboring cells (ci+1,j , ci−1,j ,
ci,j+1, ci,j−1) catch fire, gradually engulfing the entire vil-
lage. A cell with or without a resource is “unharmed” at the
beginning. If an agent has removed inflammable fuel (by per-
forming a “fire-break” action) from a goal proactively, the
goal is in the state “protected”. Once it it is caught on fire,
a cell’s state changes to “on-fire”. If an ignited cell is not
extinguished before its burn-out time, the cell is considered
“burnt-out” as it has run out of fuel. Fast-burning trees burn
out after 3 time steps, slow-burning trees after 5 and houses
and bare cells burn out after 10 time steps. These values were
selected through pilot experiments in order to keep the simu-
lations simple yet with adequate fidelity. Agents move hori-
zontally or vertically one cell at a time. Whenever a goal is
picked by an agent, it takes a single step towards the goal in
the dimension with the least distance to the goal [Barrett et
al., 2011]. The order in which agents move in a single sim-
ulation tick is determined randomly in our simulation imple-
mentation (equivalent to a central moderator). If two agents
can achieve the same goal without the help of the other in
the current time tick, the agent that is selected to move first
achieves the goal and the other agent is made to take a step
in a random direction. Agents can perform two operations on
a goal. They can put out fire (reactive measures) or they can
“fire-break” (proactive measures). As the fire spreads engulf-
ing the village, fire-fighters are faced with 7 types of goals
listed in Table 1. The proposed framework defines how the
motivated agents prioritize and select goals, based on various
goal-selection strategies. Simulation ends when all the burn-
ing cells/resources are put-out and unharmed resources are
protected or the maximum number of time steps (max time)
per simulation (100) ends. If everything burns out at time t
before reaching max time (i.e t < max time), our design
choice was to end the simulation and collect the evaluation
metrics at time t. We designed two variations of this task.

1. Collaborative Task - In this task, all resources (prop-
erty and vegetation) need at least two agents to surround
the resource by occupying 2 neighbouring cells, to extin-
guish or fire break. However, an agent can put out bare
cells that are on fire by simply moving on to that cell.

2. Non-Collaborative Task - In this task, any cell or re-
source can be extinguished or proactively protected by
an agent without the support of the other agents by sim-
ply moving on to the cell with the target goal.

Time taken for a fire-breaking or extinguishing action is inde-
pendent of the number of agents working on the task. In both
tasks, an action can be performed in 1 time step.

3.2 Proposed Framework
The proposed framework defines how an agent with an inher-
ent behavior (motive) can probabilistically select goals while
accommodating other goal-selection strategies that can super-
sede the inherent behavior, based on the level of importance
of a particular strategy, at appropriate circumstances. Figure
1 depicts this framework.

First, the goal selection criteria/strategies are identified
(S∗, S2, .. Sk). The strategy that defines the characteristic

Figure 1: Goal selection process in the proposed framework.

behavior is S∗. Next, each available goal is scored by cal-
culating the tendency of an agent to select that goal based
on each strategy. As the third step, the highest tendency val-
ues obtained for each strategy is identified (highest tendency
recorded by an agent to select a goal based on strategy Ss is
Tmax
Ss

). The strategies are weighed based on their importance.
Higher the priority, higher the weight assigned (w1, w2, ..
wk). In order to have a default behavior, the expected value
of that default strategy (w∗) is denoted by its weight, while
the expected value of other strategies is the product of highest
tendencies and their weights [w∗, w2T

max
s2 , ..wnT

max
sk

]. This
vector of expected values constitute the alpha vector which is
the a priori to the Dirichlet Distribution. Sampling a distribu-
tion from this, would give us which strategy should be used to
pick a goal. Then we probabilistically pick the final goal us-
ing the selected strategy. As a design rule we recommend the
use of soft-max functions to model the activation of a strategy
other than S∗, such that values close to 1 are returned when
the criteria for a strategy to be activated are met, and values
closer to 0 are returned when those strategies should not be
applied.

In our implementation, the agents are inherently motivated
(S∗). They will always attempt to select goals that satisfy
their motives. Assuming these agents all have similar self-
less and self-interest levels, we model that they will also use
2 other goal selection strategies - greedy goal selection (S2),
selfless goal selection (S3), by disregarding their implicit mo-
tivational needs for other situational needs. Following are the
three goal selection strategies used in our experiments.

Goal Selection Based on Individual Motivation
This inherent strategy of goal selection based on individual
motivation is represented by S∗. As the three motive profiles
have three distinct risk preferences and social preferences,
risk and an opportunity to affiliate, become the 2 situational
characteristics that an agent considers when selecting a goal
based on its motivation. To represent the risk level of each
possible goal on the arena, we assigned a significance value
sig (Table 1).

Protecting a fast-burning tree has a higher-incentive value
than a slow-burning tree, as the damage caused if a fast-
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Goal Significance
(sig)

Fire-break slow-burning tree 1
Fire-break fast-burning tree 2
Fire-break house 3
Extinguishing ignited cell 4
Extinguishing ignited slow-burning tree 5
Extinguishing ignited fast-burning tree 9
Extinguishing ignited house 13

Table 1: Significance values assigned to goals based on their risk
and incentive in ascending order

burning tree is caught on fire, is higher. Furthermore, fire-
fighters prioritize property over vegetation, hence protecting
a house has a higher significance value. The risk is increased
when the mentioned three types of goals are on fire, hence
goals related to extinguishing fire are assigned higher incen-
tive values as shown in Table 1. These significance values
were chosen based on the above logic for demonstration pur-
poses. Researchers adopting the framework should define
them appropriately, based on their application domain.

To demonstrate how agents are incentivized by opportu-
nities to collaborate, we calculate the number of agents in a
defined vicinity of a goal which we represent by a. For our
experiments, we consider agents that are within a range of 2
units to a goal. In their work [Hardhienata, 2015], the authors
have proposed a generalized function to model the three mo-
tive profiles using the same two situational characteristics -
risk and social preference (Equation 4).

I(sig, a) = c1 + c2 ∗ e−(1−(sig/sigmax)) ∗ eα(1−(a/amax))

(4)
sig/sigmax is the relative significance value of a goal

based on its risk and importance. sigmax is the highest sig-
nificance value assigned to a goal. a/amax represents the rel-
ative affinity of a goal. While a is the number of agents in the
vicinity of a goal, it is normalized by the maximum number
of agents that could occupy the defined vicinity of the goal
amax. α gives the required curvature to the graph.

Equation 4 proposed by Hardhienata [2015] is adopted so
that, a power motivated agent will have a high tendency to
pick goals with a high significance value and have 0 number
of agents in the goal’s vicinity (a = 0), achievement moti-
vated agents would have a high tendency to pick goals that
have a moderate significance value and have 1 or 2 agents in
the vicinity, and affiliation motivated agents who characteris-
tically prefer collaboration and low risk goals, will pick goals
with a low incentive value and have more than 2 agents in
the vicinity of a goal. The equation adjusted to model this
behavior is visualized in Figure 2.

Tendency To Select Greedy Goal
In a dynamic fire-fighting domain, an agent moving towards
a selected goal may encounter important, easily achievable
goals that take precedence over its motivational needs. In our
fire-fighting domain, if an agent observes a nearby goal on
fire, it will prioritize and tend to choose that goal. This greedy

Figure 2: Individual incentive graph based on Equation 4

behavior is the second goal-selection strategy S2 employed,
common to all agents regardless of their motivation. In our
implementation, only the goals that were on fire and are in an
immediate cell (Manhatten distance to the goal = 1) is prior-
itized by a greedy agent. When these conditions are met, the
greedy strategy returns a high tendency value (1), and when a
goal is not preferable based on the greedy criteria, we return a
tendency value as low as 0.001, a value selected empirically.

Tendency To Select a Selfless Goal
We give agents a sense of selflessness where they pick goals
that they could tackle by helping or with the help of another
agent. This means, when an agent sees a house/tree that needs
multiple agents to extinguish/protect, it will assist its fellow
agents by disregarding a different goal that would have been
preferable based on the other two strategies (S∗ or S2). In
the task that requires collaboration, at least two agents are re-
quired to protect or extinguish a house. Therefore, when a
fire-fighting agent sees a goal that has more than 1 and less
than 3 agents in the goal’s vicinity, this strategy S3 is acti-
vated returning a high tendency value (1) to select this goal.
If there are more than 2 agents or less than 1 agent in a goal’s
vicinity, S3 returns a tendency value as low as 0.001. Agent
counts 1 and 3 were identified empirically as appropriate cri-
teria to activate this strategy.

Effective Tendency To Select a Goal in a Collaborative
Dynamic Environment
The motivated agents modeled in this work are differently
motivated, yet equally selfish and selfless. Hence, we de-
fine a logical priority ordering an agent assigns to the three
strategies used in our experiments. We define the weights
w1, w2 and w3 as 1, 2, and 3 respectively to the three strate-
gies so that majority of the time, an agent is driven to se-
lect a goal based on its motivation (S∗), but if the condition
to select a greedy goal (S2) is activated, greedy goal strat-
egy is prioritized over motivation strategy. Moreover, if the
right conditions are met and the selfless strategy is activated
(S3), S3 will have a high probability for being the strategy to
pick a goal. For the collaborative task we use all 3 strategies
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Resource Score

Cell (Land) 4
Slow-burning tree 8
Fast-burning tree 12
House 16

Table 2: Score assigned for each resource

while for the non-collaborative task only S∗ and S2 are used
because the defined selfless strategy (S3) is not required for
non-collaborative goal achievement.

4 Experimental Settings and Results
In order to analyze the performance of a team composition,
we considered 3 metrics. First being the Total Steps, which
is the minimum of either the total step count to finish achiev-
ing all the goals or the maximum step count for a simulation.
Secondly, we defined a metric that calculates the number of
agents per step that pick goals based on a strategy other than
motivation. This metric is called Perceived Tension and it
tracks how often agents in a team have to suppress their inher-
ent motivation behavior in order to pick goals that are deemed
easier (S2) or are helpful (S3) for other agents. This metric
resembles the frustration level of an agent, as in real-world,
inhibition of one’s true drives causes tension and frustration.
Thirdly, we defined scores to each resource on the village to
get a final valuation of the damage caused to the village at
the end of the simulation. Table 2 defines the scores allocated
for each resource type on the grid if they found in their orig-
inal/unharmed state. If a resource is on-fire at the end of the
simulation, 50% of its value is reduced and if its burnt-out
by the end, 100% of its value is reduced. This valuation is
represented by the metric Saved Score.

While both Total Steps and Saved Score represent a team’s
performance, we use the latter to identify which team compo-
sition is the best, as having a high saved score indicate teams
with a better resource prioritization strategy with better dam-
age control.

We conduct experiments with both heterogeneous teams
and homogeneous teams. In these experiments, a heteroge-
neous team is a team with agents with different motives. In
a heterogeneous team, each agent’s motive is modeled using
Equation 3 and the parameter values used by Hardhienata et
al., [2012]. We conducted experiments for 28 randomly se-
lected team compositions of 12 agents, and plotted the three
metrics on Ternary plots with 3 axes named Aff, Ach and
Pow to represent the composition of the motives Affiliation,
Achievement and Power in a team. These results were in-
terpolated to obtain the metric values for other team com-
positions that were not explicitly experimented on, to show
the distribution of the metric values across all possible team
compositions that could be created with the 3 different mo-
tives. For each team composition, 20000 simulations were
run to obtain representative averages of the three metrics.
Furthermore, a non-parametric Kruskal-Wallis H test (one-
way non-parametric ANOVA), followed by Conover’s post-
hoc test were conducted to identify the best performing teams

based on each metric. In a heterogeneous team, an agent has
a dominant motive of either affiliation, achievement or power.
However, as provided in Equation 2, motivation can be rep-
resented as a sum of these three motives. Hence, we cre-
ated homogeneous teams of 12 agents and created 28 differ-
ent motive compositions perturbing the three motive strengths
(of Equation 2) to sum up to 6 (Staff + Stach + Stpow =
6). Then, using the same Ternary plots, we represented the
value distribution of 3 metrics for each motive-profile compo-
sition obtained by running simulations with the homogeneous
teams.

We refer to Figures 3 and 4 for the results obtained for the
two tasks with and without collaboration for heterogeneous
teams.

When the task is collaborative, we observe that the cluster
of heterogeneous teams with the lowest Total Steps changes
as FSL increases (Figures 3a - 3e). When the task is rela-
tively simple and less risky (FSL < 0.3), we observe that
predominantly affiliation motivated teams complete the task
faster (lower step count). This is because such teams prior-
itize low incentive goals and prefer cooperating. Therefore,
they succeed in proactively protecting goals collaboratively
while putting out the slowly spreading fire fast. However,
when FSL gradually increases, we observed that teams that
are heterogeneous and contain all three types of agents with
a slight majority of affiliation motivated agents, complete the
task faster. Hence, for collaborative tasks, the existence of
motivational diversity is important. When the task requires
no collaboration (Figures 4a - 4e) and FSL is increased grad-
ually, predominantly power and achievement motivated teams
complete the task faster than all-affiliation motivated teams.
This is because as FSL increases, the number of high in-
centive goals increase. Teams with a majority of power and
achievement agents prioritize such goals and contain the fire
more strategically, making such teams beneficial for tasks
with high severity but requires less collaboration. Although
our observations are such, it was also observed that when FSL
is high (FSL ≥ 0.4), the simulation ends before reaching its
maximum step count, as the fire has engulfed the entire vil-
lage. Therefore, we cannot make concrete conclusions about
the teams that finish the task efficiently at high FSLs, by rely-
ing on the Total Steps metric. This is why the best teams are
ranked based on the Saved Score metric.

Analyzing the Perceived Tension plots for heterogeneous
teams in Figures 3f - 3j and 4f - 4j, we observe that the clus-
ter of teams with the least tension behave the same way for
both collaborative and non-collaborative tasks. For tasks that
are relatively less risky (FSL < 0.3), teams with a major-
ity of achievement and affiliation motives have the least ten-
sion. This indicates that achievement and affiliation agents
appropriately pick moderate incentive goals and low incen-
tive goals as such goals are abundant in low to moderately
risky environments. Hence, more opportunities for achieve-
ment and affiliation agents to pursue goals in line with their
motivation exist, making such teams less tensed. As FSL in-
creases, when the task is collaborative, results show that the
cluster of teams with the highest tension move to the center of
the plot making all-affiliation and all-power motivated teams
relatively less tensed teams. This indicates that when the task
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Figure 3: Ternary plots with the distribution of scores obtained for metrics Total Steps and Perceived Tension of each team composition for
the collaborative task, when FSL (fire-spreading likelihood) vary between 0.1 - 0.5.
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Figure 4: Ternary plots with the distribution of scores obtained for metrics Total Steps and Perceived Tension of each team composition for
the non-collaborative task, when FSL (fire-spreading likelihood) vary between 0.1 - 0.5.

risk-level is high, teams that have similar motives experience
less tension rather than teams that have diverse, conflicting
motives.

In the non-collaborative task (Figures 4f - 4j), we hypothe-
sized that power motivated agents will be the least tensed, es-
pecially in high FSLs, considering their characteristic affinity
towards high incentive goals. However, this was not the case
and they reported high motivation inhibition. This is intro-
duced from the design of our incentive function. While the
incentive function drives power motivated agents to pick high

incentive goals, it also drives agents to explore goals that are
isolated. When the fire is spreading fast, new goals are dy-
namically generated in close proximity. Hence, agents who
are exploring goals away from other agents suffer and they
resort to other goal picking strategies such as greedy/selfless
strategies, causing high tension/inhibition.

Next, we analyze how the Saved Score metric increases
with FSL in experiments with heterogeneous teams and ho-
mogeneous teams. Figures 5a and 5b summarize how the cen-
ter of gravity of the cluster of best team compositions, with
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Figure 5: Team compositions with the highest Saved Score shift as
FSL increases in experiments with heterogeneous teams
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Figure 6: Best motive profile compositions based on the Saved Score
shift as FSL increases in experiments with homogeneous teams

respect to Saved Score metric, shift as FSL increases from
0.1 to 0.5 in heterogeneous teams. The size of the circles
are proportionate to the number of team compositions that
are statistically identified as equally performing at a given
FSL. Arrows guide how the affiliation, achievement, power
ratios of agents in the teams with the least damage changes
when FSL increases. From these plots it is evident that all-
affiliation teams have the best strategy when FSL is low. A
higher number of power agents and an even higher number
of achievement agents are required for a team to perform
more risky tasks in a collaborative setting. In contrast, we
observe that in a non-collaborative task, best team composi-
tions contain more power motivated agents, a moderate num-
ber of achievement agents and a lower number of affiliation
agents. However, as FSL increases even further, teams with
a combination of achievement and power becomes more ro-
bust. These observations align with the innate risk and social
collaboration preferences of three motive archetypes, validat-
ing the proposed framework’s ability to model agents with an
inherent behavior while facilitating other strategies.

Figure 6 visualizes how the best motive profile for Saved
Score changes as FSL increases in homogeneous teams in the
two tasks (collaborative, non-collaborative). Arrows guide
how affiliation (Staff ), achievement (Stach) and power
(Stpow) strengths of motive profiles in the best teams change
as FSL increases. Although the plots pertaining to Total Steps
and Perceived Tension for experiments with homogeneous
teams are not depicted, it was observed that they follow a
similar trend to the results obtained for the same metrics with
heterogeneous teams. Analyzing the plots for Saved Score in
Figures 6a and 6b, we observe how teams with high Staff
perform the best in both tasks, making them robust in low
risk levels regardless of the level of collaboration the task

needs. However, as FSL increases, the motive profiles that
perform well require high Stach and Stpow strengths. When
the task is collaborative, having a high Stach and a moder-
ately high Stpow is more suitable. In non-collaborative tasks,
teams with high Stpow motives excel by adopting effective
strategies and minimizing harm to the village. High Stpow in-
dicates a focus on high incentive goals. These teams thrive in
non-collaborative tasks since they have a preference for work-
ing independently. Consequently, teams with high Stpow
demonstrate superior performance in non-collaborative tasks
compared to collaborative tasks.

5 Conclusion and Future Work

This paper applies a well-established human motivation psy-
chology theory to create predictable artificial agents making
risk-aware decisions. We present a framework for modeling
agents with inherent predictability while allowing for vari-
ous behavior strategies. Two tasks, one collaborative and
one non-collaborative, were designed to analyze team perfor-
mance and motive profile compositions across different risk
levels. The results were evaluated using three metrics. Our
experiments have shown that teams thrive when they consti-
tute a portfolio of diverse motive profiles, especially in collab-
orative tasks, establishing the importance of functional het-
erogeneity in teams; an observation aligning with the work of
O’Shea-Wheller, Hunt, and Sasaki [2021]. It also highlights
the importance of adjusting team composition based on task
risk levels to enhance performance. We found that a com-
bination of affiliation and achievement agents is optimal for
low-risk tasks, while a combination of power and achieve-
ment agents is more suitable for high-risk tasks. This ob-
servation is consistent with the findings of Di Pietrantonio et
al. [2019], validating our framework’s ability to model innate
team behavior through incentive functions. Consequently,
teams with the most effective strategies for different risk lev-
els align with the characteristic preferences of their motives,
resulting in predictable agents and laying the groundwork for
enhancing Human-AI teams. In their research, [Noeldeke
et al., 2022] compare different decision-making models of
humans using agents, ranging from Rational Choice Theory
to Random choice models. Our proposed model aligns with
the Theory of Planned Behavior, accommodating motivation,
greediness, and selflessness as antecedents of behavioral in-
tentions. Meanwhile, [Azaria, 2022] propose 7 solution con-
cepts for modelling agents that can work with humans, from
non-adaptive rule-based agents to an ensemble of models.
Our work offers a new solution concept, allowing agents to
select a strategy from a range of strategies and adapt to the sit-
uation, making it more mathematically versatile than previous
work. Creating complementary agents with diverse risk and
collaboration preferences improves predictability, perception,
and team performance. Our findings on perceived tension in-
form the creation of organic teams with minimal motive in-
hibition. Initial experiments involve rule-based probabilis-
tic goal-selection agents, but future research aims to extend
these motives to learning agents, enabling adaptive risk-aware
teams as the environment evolves.
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