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Abstract
We design online algorithms for the fair allocation
of public goods to a set of N agents over a se-
quence of T rounds and focus on improving their
performance using predictions. In the basic model,
a public good arrives in each round, and every agent
reveals their value for it upon arrival. The algo-
rithm must irrevocably decide the investment in this
good without exceeding a total budget of B across
all rounds. The algorithm can utilize (potentially
noisy) predictions of each agent’s total value for
all remaining goods. The algorithm’s performance
is measured using a proportional fairness objec-
tive, which informally demands that every group of
agents be rewarded proportional to its size and the
cohesiveness of its preferences. We show that no
algorithm can achieve better than Θ(T/B) propor-
tional fairness without predictions. With reason-
ably accurate predictions, the situation improves
significantly, and Θ(log(T/B)) proportional fair-
ness is achieved. We also extend our results to a
general setting wherein a batch of L public goods
arrive in each round and O(log(min(N,L) ·T/B))
proportional fairness is achieved. Our exact bounds
are parameterized as a function of the prediction
error, with performance degrading gracefully with
increasing errors.

1 Introduction
In classic online algorithms, the input is presented in stages
and the algorithm needs to make irrevocable decisions at each
stage without knowing the input from future stages. Its per-
formance, called the competitive ratio, is measured by com-
paring the worst-case ratio of the achieved solution qual-
ity to the optimal solution quality in hindsight [Borodin and
El-Yaniv, 2005]. The uncertainty regarding the future often
forces such algorithms to make overly cautious decisions, re-
sulting in unappealing competitive ratios.

An emerging line of research asks whether one can uti-
lize the progress in machine learning (ML) to augment online
algorithms with machine-learned predictions regarding the
future [Mitzenmacher and Vassilvitskii, 2021]. Ideally, one

would hope for bicriteria guarantees, ensuring that the com-
petitive ratio is improved when the predictions are reasonably
accurate but remaining robust even when they are not. More
generally, one can hope to express the competitive ratio of the
online algorithm in terms of the error in the predictions. This
powerful paradigm has received significant attention, includ-
ing from the machine learning community, for problems such
as caching [Lykouris and Vassilvtiskii, 2018; Rohatgi, 2020;
Jiang et al., 2020], the secretary problem [Dütting et al.,
2021; Antoniadis et al., 2020a; Antoniadis et al., 2020b],
scheduling [Lattanzi et al., 2020], the ski rental problem
[Purohit et al., 2018; Wang et al., 2020], set cover [Bamas
et al., 2020], and other problems [Almanza et al., 2021;
Antoniadis et al., 2021; Dinitz et al., 2021],

However, these works are all limited to single-agent
decision-making problems. Recently, Banerjee et al. [2022a]
applied this paradigm to design online algorithms for a multi-
agent resource allocation problem, in which a set of private
goods (which can only be allocated to and enjoyed by a sin-
gle agent) need to be divided amongst a group of agents
in a fair manner. Using the Nash welfare from bargaining
theory [Nash, 1950] as their notion of fairness, Banerjee et
al. [2022a] show that predictions about agents’ total value can
be utilized to achieve significantly improved approximations.

The solutions proposed by Banerjee et al. [2022a], how-
ever, do not capture resource allocation settings involving
public goods, i.e., goods whose benefit can be enjoyed by
multiple agents (e.g., a highway or a park). In many important
problems, like participatory budgeting, committee selection,
or shared memory allocation, some scarce resources need to
be dedicated to make each public good available, and an al-
gorithm needs to decide which goods to invest in, aiming to
make the agents happy. In participatory budgeting, it is com-
mon to include projects such as installation of bike racks or
public restrooms, road maintenance, or renovation of public
school facilities, where partial investment is also possible and
can lead to meaningful progress towards the ambitious goals.

Fairness in these settings is often captured by notions like
the Nash welfare and the core [Foley, 1970]. Yet, despite
the significance of its applications, only a few papers have
successfully studied the fair allocation of public goods [Fain
et al., 2016; Kunjir et al., 2017; Friedman et al., 2019;
Conitzer et al., 2017; Fain et al., 2018; Peters et al., 2020;
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Munagala et al., 2021] (relative to the extensive literature on
private goods; see [Brandt et al., 2016]), even fewer have
provided online algorithms for this problem [Freeman et al.,
2017], and none utilize predictions. We address this gap
by designing online algorithms for fair allocation of public
goods using predictions about how agents value the goods.
The key research questions we address are:

How can we allocate public goods online in a fair
manner? Can predictions about agent preferences
help improve fairness guarantees?

1.1 Our Results
We study online algorithms for the fair allocation of public
goods arriving over a sequence of T rounds based on the pref-
erences of N agents. In the basic model a new public good
arrives in each round t (referred to as good t), and the al-
gorithm learns the value vi,t of each agent i for this good.
Using this information, the algorithm needs to make an irre-
vocable decision regarding an amount xt ∈ [0, 1] to invest in
this good. Each agent i then receives value vi,t · xt from this
investment, with the total utility of an agent being the sum of
the values gained across rounds. While the algorithm would
like to increase the xt’s as much as possible, it is limited by
a total budget constraint:

∑
t xt ⩽ B, where B is given. In-

formally, the budget constraint encourages the algorithm to
invest more in goods that are highly valued by many agents.
However, this is challenging since the agents’ values for fu-
ture goods are unknown. To deal with this uncertainty, we
assume the algorithm has access to predictions regarding the
total value of each agent i: this prediction Ṽi provides an es-
timate on the total value Vi =

∑
t vi,t of agent i for all goods

to arrive. We discuss a bit more on why predictions can be
reasonable to obtain in practice in Section 4.1.

We focus on a quantitative fairness objective, called pro-
portional fairness (Definition 1), which is stronger than previ-
ously considered objectives of the Nash welfare and the core
(see Section 2.1). Lower objective values indicate better fair-
ness, with 1 indicating perfect proportional fairness.

In Section 3, as a warm-up, we consider the setting where
agent values are binary (i.e., vi,t ∈ {0, 1} for all agents i and
goods t) and the budget is B = 1. Binary values correspond
to approval voting – where agents either like a good or not;
the unit budget forces

∑
t xt ⩽ 1, meaning that xt can also

be viewed as the fraction of an available resource invested
in good t. For this special case, we show that it is already
possible to achieve O(logN) proportional fairness without
using any predictions and this is optimal even if the algorithm
had access to perfect predictions (Ṽi = Vi for each agent i).

In Section 4, we consider general values and budget, and
show that without predictions, no algorithm can achieve
o(T/B) proportional fairness even when there is N = 1
agent. In contrast, by using the predictions, we can achieve an
exponential improvement to O(log(T/B)) proportional fair-
ness for N agents, as long as the predictions are reasonably
accurate (constant multiplicative error). We also show this to
be optimal given predictions.

Finally, in Section 5 we extend our model even further by
allowing a batch of L public goods to arrive in each round

t and achieve O(log(min(N,L) · T/B)) proportional fair-
ness. In fact, we show that this model strictly generalizes
not only our initial public-goods model, but also the private-
goods model of Banerjee et al. [2022a], and our positive re-
sult in this very broad model (almost) implies theirs.

1.2 Related Work
Allocation of private goods. The majority of the prior
work on online fair division has focused on private goods,
for which achieving even basic notions of fairness comes
at the cost of extreme inefficiency in the absence of any
predictions regarding agents’ values for future goods [Be-
nade et al., 2018; Zeng and Psomas, 2020]. Banerjee et
al. [2022a] show that total value predictions can be lever-
aged to achieve improved fairness guarantees with respect
to the Nash social welfare objective. Note that assuming
access to predictions of agents’ total values for all goods
is related to work which assumes that the values of each
agent are normalized to add up to 1 [Gkatzelis et al., 2021;
Barman et al., 2022] or that they are drawn randomly from
a normalized distribution [Bogomolnaia et al., 2019]. Our
techniques are motivated by the set-aside greedy algorithm
in [Banerjee et al., 2022a] and we generalize their finding
that predictions help improve fairness guarantees to a more
general setting with public goods. This introduces new chal-
lenges which we briefly touch on below.
Algorithm design. Banerjee et al. [2022a] act on the pri-
vate good in each round by allocating half of it equally among
the agents and the other half greedily to maximize the pre-
dicted Nash welfare. In our model, the overall budget B cru-
cially connects the different rounds. A natural extension of
their approach would be to decouple the rounds by setting
an “artificial” per-round budget of B/T , but it is easy to see
that this would incur Ω(T/B) proportional fairness, which is
much worse than the O(log(T/B)) approximation we obtain.

To achieve our optimal approximation guarantee for pub-
lic goods, we instead need to 1) Implement the “set-aside
step” in a more careful way (see Algorithm 1), and 2) Dy-
namically control the amount of budget used by the “greedy
step” by adding a linear penalty to the optimization problem
solved in each stage. The resulting algorithm is quite differ-
ent: whereas the previous algorithm always spends a budget
of 1

2 in each round on the greedy allocation, our algorithm
may spend as little as 0 (in rounds where the values are low),
as much as 1 − B

2T (in rounds where the values are high), or
any amount in between.
Lower bounds. Our lower bounds (Theorem 1 and 4) are
novel and non-trivial. The worst-case instances we design
have a very different structure than the instances used by
Banerjee et al. [2022a] because in our instances some of
the agents “cooperate” (i.e., they want the algorithm to al-
locate to the common public goods they like), which is
an aspect missing in the context of private goods. We
also point out that their lower bounds are slightly loose
(Ω(log1−ϵ N) and Ω(log1−ϵ T )) whereas ours are asymptoti-
cally tight (Ω(logN) and Ω(log(T/B))).
Allocation of public goods. Much of the literature on pub-
lic goods focuses on the offline setting – agents have ap-
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proval preferences, and we have a fixed budget (i.e., the of-
fline version of the setting in Section 3). This offline version
has been studied under various names, such as probabilistic
voting [Bogomolnaia et al., 2005], fair mixing [Aziz et al.,
2019], fair sharing [Duddy, 2015], portioning [Brandl et al.,
2021], and randomized single-winner voting [Ebadian et al.,
2022b]. The latter shows that with access to only ranked pref-
erences, Θ(log T ) is the best possible proportional fairness
in the offline setting. Interestingly, we show that incomplete
information resulting from online arrivals leads to the same
Θ(log T ) proportional fairness.

Multi-winner voting extends this by selecting a subset of k
candidates, which is the offline version of our model in Sec-
tion 4 with B = k. Multi-winner voting can be extended
to fair public decision-making [Conitzer et al., 2017; Garg et
al., 2021] and participatory budgeting [Aziz and Shah, 2021;
Fain et al., 2016], which are further generalized by the public
good model of Fain et al. [2018]. These generalizations allow
more complex feasibility restrictions on the allocations than
our budget constraint, but work in the offline setting. Freeman
et al. [2017] consider optimizing the Nash welfare in a model
similar to ours. However, they do not provide any approxima-
tion guarantees; instead, they study natural online algorithms
from an axiomatic viewpoint. The work of Do et al. [2022]
also studies the allocation of indivisible public goods that ar-
rive online, but from an axiomatic approach or by making
distributional assumptions. Oren and Lucier [2014] also con-
sider the allocation of indivisible public goods, but in the
setting where the agents arrive online rather than the goods.
Lastly, Lackner [2020] studies voting over rounds from an
axiomatic approach for the indivisible case.

Primal-dual analysis. Our competitive ratios are derived
using primal-dual analyses (see [Buchbinder and Naor, 2009]
for an excellent overview). Almost all of this work deals with
additive objective functions. Two notable exceptions to this
are the work of Devanur and Jain [2012], who show how to
extend these approaches to non-linear functions of additive
rewards, as well as Azar et al. [2016], who consider a vari-
ant of the proportional allocation objective, but require addi-
tional boundedness conditions on the valuations. Bamas et
al. [2020] show how to adapt primal-dual analyses to incor-
porate predictions for several single-agent problems.

2 Model
We study an online resource allocation problem with N
agents and T rounds. Our algorithms observe N , but they
might not know the number of rounds T , in advance. We
study both horizon-aware algorithms which know T and
horizon-independent algorithms which do not. For simplic-
ity we use [k] to denote the set {1, . . . , k} for a given k ∈ N.

Online arrivals. In the basic version of the model, in each
round t ∈ [T ], a public good, which we refer to as good t,
“arrives”. Upon its arrival, we learn the value vi,t ⩾ 0 of
every agent i ∈ [N ] for it. In Section 5, we extend the model
to allow a batch of L public goods arriving in each round.

Online allocations. When good t arrives, the online algo-
rithm must irrevocably decide the allocation xt ∈ [0, 1] to

good t, before the next good arrives.1 We use x = (xt)t∈[T ]

to denote the final allocation computed by the online algo-
rithm. In the absence of any further constraints, the decision
would be simple: allocate as much as possible to every good
by setting xt = 1 for each t ∈ [T ]. However, the extent to
which the algorithm can allocate these goods is limited by an
overall budget constraint:

∑T
t=1 xt ⩽ B, where B ⩾ 0 is a

fixed budget known to the online algorithm in advance.
Linear agent utilities. Choosing to allocate xt to good t
simultaneously yields utility vi,t · xt to every agent i ∈ [N ].
Moreover, we assume that agent utilities are additive across
goods, i.e., the final utility of agent i is given by ui(x) =∑T

t=1 vi,t · xt. This class of linear agent utilities is widely
studied and it admits several natural interpretations, depend-
ing on the application of interest. In applications like budget
division, each public good t is a project (e.g., an infrastruc-
ture project), and xt is the amount of a resource (e.g., time
or money) invested in the project. In applications such as
participatory budgeting or voting, each public good t is an al-
ternative or a candidate, and xt is the (marginal) probability
of it being selected (indeed, one can compute a lottery over
subsets of goods of size at most B under which the marginal
probability of selecting each good t is precisely xt).

When working with fractions x/y with x, y ⩾ 0, we adopt
the convention that x/y = 1 when both x = y = 0, while
x/y = +∞ if y = 0 and x > 0. We use Hk = 1 + 1

2 + 1
3 +

. . .+ 1
k to denote the k-th harmonic number.

2.1 Proportional Fairness
We want the allocation x computed by our online algorithm
to be fair. In this work, we use the notion of proportional
fairness, which is a quantitative fairness notion that was first
proposed in the context of rate control in communication net-
works [Kelly et al., 1998].
Definition 1 (Proportional Fairness). For α ⩾ 1, allocation
x is called α-proportionally fair if for every other allocation
w we have 1

N

∑N
i=1

ui(w)
ui(x)

⩽ α. If x is 1-proportionally fair,
we simply refer to it as proportionally fair2. We say that an
online algorithm is α-proportionally fair if it always produces
an α-proportionally fair allocation.

It is known that in the offline setting, where all agent val-
ues are known up front, a 1-proportionally fair allocation x
always exists, and this is the lowest possible value of pro-
portional fairness [Fain et al., 2018]. It is also known that
proportional fairness is a strong guarantee that implies several
other guarantees sought in the literature. Below, we show two
examples: the core and Nash social welfare.
Proportional fairness implies the core. For α ⩾ 1, allo-
cation x is said to be in the α-core if there is no subset of
agents S and allocation w such that |S|

N · ui(w) ⩾ α · ui(x)
for all i ∈ S and at least one of these inequalities is strict. We
say that an online algorithm is α-core if it always produces

1In this work we focus on deterministic algorithms, but this is
w.l.o.g. since we consider fractional allocations.

2The 1-proportional fair criterion is more commonly (but equiv-
alently) written as 1

N

∑N
i=1

ui(w)−ui(x)
ui(x)

⩽ 0.
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an allocation in the α-core. The following is a well-known
relation between proportional fairness and the core.
Proposition 1. For α ⩾ 1, every α-proportionally fair allo-
cation is in the α-core.
Proportional fairness implies optimal Nash welfare. A
common objective function studied in multi-agent systems is
the Nash social welfare, which aggregates individual agent
utilities into a collective measure by taking the geometric
mean. That is, the Nash social welfare of allocation x is given

by NSW(x) =
(∏N

i=1 ui(x)
)1/N

. For α ⩾ 1, we say that
allocation x achieves an α-approximation of the Nash wel-
fare if NSW(w)

NSW(x) ⩽ α for all allocations w. We say that an
online algorithm achieves an α-approximation of the Nash
welfare if it always produces an allocation that achieves an
α-approximation of the Nash welfare. It is also well-known
that α-proportional fairness implies an α-approximation of
the Nash welfare (in particular, a proportionally fair alloca-
tion has the maximum possible Nash welfare).
Proposition 2. For α ⩾ 1, if allocation x is α-proportionally
fair, then x achieves an α-approximation of the Nash welfare.

We remark that the upper bounds derived in this work hold
for the stronger notion of proportional fairness, while the
lower bounds hold even for the weaker notion of Nash wel-
fare approximation.

2.2 Set-Aside Greedy Algorithms
In order to compute (approximately) proportionally fair al-
locations, we consider a family of online algorithms, called
Set-Aside Greedy Algorithms. Recent work [Banerjee et al.,
2022a; Barman et al., 2022] has demonstrated how such al-
gorithms can be used to get strong performance guarantees
for the online allocation of private goods; we show that with
considerable modifications, they can also achieve compelling
fairness guarantees for allocating public goods.

At a high level, a set-aside greedy algorithm divides the
overall budget B into two equal portions.

1. The first half, called the set-aside budget, is used to al-
locate yt ∈ [0, 1] to each good t in such a manner that∑T

t=1 yt ⩽ B/2 and this portion of the allocation guar-
antees each agent i a certain minimum utility of ∆i (i.e.,∑T

t=1 vi,t · yt ⩾ ∆i). For example, if yt = B/(2T ) for
each t ∈ [T ], then we can use ∆i =

B
2T ·

∑T
t=1 vi,t. This

ensures that in the proportional fairness definition (Defi-
nition 1), the ratio ui(w)

ui(x)
is not excessively large for any

agent i.
2. The second half, called the greedy budget, is used to al-

locate zt ∈ [0, 1 − yt] to each good t in such a man-
ner that

∑T
t=1 zt ⩽ B/2. This portion of the budget

is used in a adaptive greedy-like fashion toward online
optimization of the desired objective.

We refer to yt and zt as semi-allocations to good t, and the
final allocation of good t is determined by combining these
two semi-allocations, i.e., xt = yt+zt. An important quantity
in both our algorithm and its analysis is the promised utility
to an agent, defined as follows.

Definition 2 (Promised Utility). The semi-allocations
y1, . . . , yT guarantee that by the end of the algorithm each
agent i will receive a utility of

∑T
t=1 vi,t · yt ⩾ ∆i from

the set-aside portion of the budget. By round t the algo-
rithm has already set semi-allocations z1, . . . , zt−1 using the
greedy portion of the budget, and needs to now decide zt.
At this stage, as a function of zt, the algorithm can guaran-
tee that each agent i will eventually receive utility at least
ũi,t(zt) = ∆i +

∑t
τ=1vi,τ · zτ , even if they do not benefit

from any more of the greedy budget. We refer to this as the
promised utility.

3 Warm Up: Binary Utilities and Unit Budget
Before presenting our main results, we first build some intu-
ition regarding our online setting and the proportional fairness
objective by considering the interesting special case where
agents have binary utilities for goods (i.e., vi,t ∈ {0, 1} for
each i, t) and the total budget is B = 1. In this setting, which
is motivated by approval voting, we say that agent i “likes”
good t if vi,t = 1, and does not like good t otherwise. Note
that with B = 1, the budget constraint is

∑T
t=1 xt ⩽ 1, which

means xt can be interpreted as the fraction of an available re-
source (e.g., time or money) that is dedicated to good t.

First, in the trivial case with a single agent (N = 1), we
can simply set xt = 1 when the first good t liked by the agent
arrives, which easily yields (exact) proportional fairness.

It is tempting to extend this idea to the case of N > 1
agents. However, we find that even in this restricted scenario
with binary utilities and unit budget, no online algorithm
achieves o(logN)-proportional fairness, or even the weaker
guarantee of o(logN)-approximation of the Nash welfare. In
fact, this remains true even if the algorithm is horizon-aware
(i.e., knows T in advance) and knows precisely how many
goods each agent will like in total. Intuitively, this is because
we show that no online algorithm can sufficiently distinguish
between instances where many agents like the same goods
and those where agents like mostly disjoint goods. We defer
the proof to our full version [Banerjee et al., 2022b].

Theorem 1. With binary agent utilities (vi,t ∈ {0, 1} , ∀i, t)
and unit budget (B = 1), every online algorithm is
Ω(logN)-proportionally fair (in fact, achieves Ω(logN)-
approximation of the Nash welfare), even if the algorithm
is horizon-aware and knows in advance the total number of
goods each agent will like.

Next, we provide a set-aside greedy algorithm that achieves
O(logN) proportional fairness (and therefore, O(logN)-
NSW optimality), thus establishing Θ(logN) as the best pos-
sible approximation in this restricted scenario. We remark
that this restricted case of binary utilities and unit budget al-
ready poses an interesting challenge since a constant approx-
imation ratio is not possible. However, an O(logN) approx-
imation is still quite reasonable as it does not depend on the
horizon T (which can typically be very large) and in practice
the number of agents N is reasonably small. We also remark
that we achieve the O(logN) upper bound using a horizon-
independent algorithm, while the lower bound of Theorem 1
holds even when the algorithm is horizon-aware.
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Our algorithm, SETASIDEGREEDY-BINARY, works as fol-
lows: it uses the set-aside portion of the budget to set yt =
1/(2N) whenever good t is the first liked good of at least one
agent (note that

∑
t yt ⩽ 1/2). This ensures that each agent

i gets utility at least ∆i = 1/(2N). Based on this, the al-
gorithm uses the following expression of promised utility to
agent i in round t: ũi,t(zt) = 1

2N +
∑t

τ=1vi,τ · zτ . On the
other hand, zt is chosen to be the smallest possible value such
that, for each agent i, the ratio of her value vi,t for good t to
her promised utility ũi,t(zt) is at most a target quantity. For a
formal outline, see our full version [Banerjee et al., 2022b].

The theorem below shows that algorithm
SETASIDEGREEDY-BINARY is O(logN) proportion-
ally fair for binary utilities and unit budget. We defer the
proof to our full version [Banerjee et al., 2022b].
Theorem 2. Algorithm SETASIDEGREEDY-BINARY with
α ⩾ 2 ln(2N) realizes an α-proportional fair allocation.

4 General Utilities and Budget
Having built some intuition about the online setting and the
proportional fairness objective by considering the restricted
special case of the problem wherein all values vi,t are in
{0, 1} and the budget is B = 1, we now turn to the more
general model described in Section 2. Recall that this model
generalizes the setting in Section 3 in two ways:

1. Agent values vi,t can be any (non-negative) real number.

2. The budget constraint is
∑T

t=1 xt ⩽ B, for an arbitrary
B ⩾ 0, so the per-round constraint of xt ⩽ 1, for each
t ∈ [T ], is no longer redundant.

4.1 The Case for Predictions
In this general case, we prove that the problem becomes
significantly more difficult: without access to any predic-
tions, every online algorithm is Ω(T/B)-proportionally fair
(in fact, achieves Ω(T/B)-approximation of the Nash wel-
fare), in stark contrast to the O(logN)-proportional fairness
guarantee in the previous section. The proof is on our full
version [Banerjee et al., 2022b].
Proposition 3. Under general agent values and budget B,
every online algorithm is Ω(T/B)-proportionally fair (in
fact, achieves Ω(T/B)-approximation of the Nash welfare).

The hardness instance used above is specifically engi-
neered to exploit the fact that the algorithm has no informa-
tion about the future. However, in most practical settings, it
is reasonable to assume that the algorithm has access to some
information about the input. This could come from historical
data, stochastic assumptions, or simply from properties of the
problem at hand (e.g. if vi,t represents the monetary value
that agent i has for good t, then we may have bounds on how
large vi,t can be.)

Motivated by this, we turn to the growing literature on
prediction-augmented algorithms, and allow the algorithm
access to additional side-information about agents’ valua-
tions. Clearly, if all values (vi,t)i∈[N ],t∈[T ] are available be-
forehand, then the problem is trivial; the challenge lies in
understanding what minimal additional information (or ‘pre-
diction’) can lead to sharp improvements in performance,

and how robust these improvements are to errors in these
predictions. To this end, we now adapt an idea introduced
by [Banerjee et al., 2022a] for online allocation with private
goods, and assume that the algorithm has side information
about each agent’s total value for all the goods.
Definition 3 (Total Value Predictions). For any agent i, we
define her total value to be Vi =

∑T
t=1 vi,t. For ci, di ⩾ 1, Ṽi

is said to be a [ci, di]-prediction of Vi if Ṽi ∈
[

1
di
Vi, ciVi

]
.

In other words, ci and di denote the multiplicative factors
by which the prediction Ṽi may overestimate and underesti-
mate the value of Vi. When ci = di = 1, we call them perfect
predictions. In the next section, we assume that we have ac-
cess to Ṽi for each agent i, with ci and di parameterizing the
robustness of our algorithm, i.e., the degradation in its per-
formance due to worsening predictions. Our algorithm does
need to know (an upper bound on) the di’s for tuning one
of its parameters; it does not however need to know the ci’s
(these are only used in the analysis).

4.2 Proportional Fairness with Predictions
Using the above notion of predictions, we design algorithm
SETASIDEGREEDY-GENERAL a variant of our earlier Set-
Aside Greedy algorithm that has a dramatically better pro-
portional fairness guarantee compared to the hardness result
of Ω(T/B) in Proposition 3. Given perfect predictions, our
algorithm achieves a proportional fairness of O(log(T/B)).
Moreover, SETASIDEGREEDY-GENERAL turns out to be re-
markably robust to prediction errors; for example, all our
asymptotic guarantees remain unchanged as long as all the
ci = O(1) and di = O(log(T/B)).

We formally specify our SETASIDEGREEDY-GENERAL in
our full version [Banerjee et al., 2022b], but at a high-level, it
works as follows. As before, the algorithm splits the budget
into two parts, and the total allocation of the good in round t is
obtained by adding the contributions (semi-allocations) from
each part, i.e., xt = yt + zt. The semi-allocation from the
first (set-aside) part is yt = B/(2T ) for each t ∈ [T ]. This
portion of the allocation guarantees each agent i utility at least
∆i = B

2T · Vi. Next, in each round t ∈ [T ], the algorithm
uses the second the part of the budget to compute a greedy
semi-allocation zt. This is done by choosing zt to optimize a
function of the agents’ predicted promised utilities.
Definition 4 (Predicted Promised Utility). Given a prediction
Ṽi of the total value of agent i, the predicted promised utility
of agent i in round t ∈ [T ] is defined as ũi,t(zt) =

B
2T · Ṽi +∑t

τ=1 vi,τ · zτ . We omit z1, . . . , zt−1 from the argument of
ũi,t since they are fixed prior to round t.

Note that this quantity can be computed by the algorithm,
as a function of zt it wants to choose, since it has knowledge
of Ṽi (prediction) and semi-allocations {zτ}τ<t from the pre-
vious rounds. We use these predicted promised utilities to
achieve the following guarantee.
Theorem 3. For any α ⩾ 4 ln

(
2T
B

)
+ 4

N

∑
i ln(di), al-

gorithm SETASIDEGREEDY-GENERAL produces a feasible
allocation x, which satisfies maxw

1
N

∑N
i=1

ui(w)
ci·ui(x)

⩽ α,

where the maximum is over all feasible allocations w.
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This result is almost subsumed by our positive result (The-
orem 5) for the more general model in the next section, in
which we allow a batch of L public goods to arrive in each
round; setting L = 1 recovers the bounds derived in this
section. The only difference is that in the algorithm for the
batched model (Algorithm 1), the greedy semi-allocation step
is a convex optimization problem, which can be solved up to
an ϵ error; for the single-good-per-round case, we are able to
replace this with a combinatorial step in SETASIDEGREEDY-
GENERAL that can be performed exactly in polynomial time.
This requires us to show that the greedy semi-allocations
computed by this combinatorial step satisfy the same prop-
erties that a solution to the convex optimization problem
would have satisfied. We defer this discussion to our full ver-
sion [Banerjee et al., 2022b].

Let us consider the implications of Theorem 3. The ex-
pression in the statement of Theorem 3 is not exactly the pro-
portional fairness objective, since the term for each agent i is
scaled with a (potentially different) factor ci. Applying the
arguments in Section 2.1, we can turn this into an approxi-
mation of proportional fairness, the core, and the Nash social
welfare. The proof is in the supplementary material.

Corollary 1. For any α ⩾ 4 ln
(
2T
B

)
+ 4

N

∑
i ln(di), the al-

location realized by SETASIDEGREEDY-GENERAL is

1. (α · maxi∈[N ] ci)-proportionally fair, and hence in the
(α ·maxi∈[N ] ci)-core

2. (α · (
∏

i∈[N ] ci)
1
N )-approximation of the Nash welfare.

4.3 Hardness with Predictions
Theorem 3 shows that in online allocation of public goods
with general values and budget, having access to reason-
able predictions of each agent’s total value can lead to a
dramatic improvement in the proportional fairness guarantee
from Ω(T/B) to O(log(T/B))). Given the size of the side
information (which lies in RN , since we need one prediction
per agent) relative to the ambient size of the input (which lies
in RNT , with one valuation per agent per round), this is a
surprising improvement in performance.

One may wonder whether these predictions are so strong
that one can do even better. The following result shows, how-
ever, that even with a single agent, and perfect knowledge
of her total value V1, any online algorithm is Ω(log(T/B))-
proportionally fair. Thus SETASIDEGREEDY-GENERAL is
essentially optimal for our setting. The proof is in our full
version [Banerjee et al., 2022b].

Theorem 4. For N = 1 agent, every online algorithm
is Ω(log(T/B))-proportionally fair (in fact, achieves an
Ω(log(T/B))-approximation for the Nash welfare), even
with perfect knowledge of horizon T and the total value of
the agent Ṽ1 = V1 =

∑T
t=1 vi,t.

5 Extension to Batched Arrivals
In this section, we present our most general setting, which
we refer to as the batched public goods model. This not only
generalizes the single good per round model of Section 2, but
also the setting of [Banerjee et al., 2022a] with private goods.

In each round t ∈ [T ], a batch of L public goods arrive
(as opposed to a single public good). Upon their arrival, the
algorithm learns the value vi,l,t ⩾ 0 of each agent i ∈ [N ]
for each good l ∈ [L] in the batch. It then must irrevocably
decide the allocation xl,t ∈ [0, 1] to each good l in the batch,
before the next round. We use xt = (xl,t)l∈[L] to denote the
allocation in round t, and x = (xt)t∈[T ] to denote the final
allocation. We also incorporate two types of constraints on
the allocation x:

1. (Per-round constraint)
∑L

l=1 xl,t ⩽ 1 for all t ∈ [T ].

2. (Overall constraint)
∑T

t=1

∑L
l=1 xl,t ⩽ B for B ⩾ 0

known to the algorithm in advance.
The allocation xl,t to good l in round t yields utility vi,l,t ·xl,t

to every agent i. We assume that agent utilities are addi-
tive, i.e., the final utility of agent i is given by ui(x) =∑T

t=1

∑L
l=1 vi,l,t ·xl,t. Our aim, as before, is to realize an α-

proportionally fair allocation (Definition 1 does not require
any modifications except using these new utility functions)
for the smallest possible α.

Note that the overall constraint is the same as in the model
in Section 2 with a single good per round. However, in the
batched model, the per-round constraint can place additional
restriction on how much budget can be spent in any single
round. Note also that choosing the per-round bound to be 1 is
without loss of generality; in particular, since agent utilities
are linear, having a per-round constraint of b can be reduced
to our setting by scaling each allocation, as well as the total
budget, by a factor of b. Finally, the per-round constraint be-
comes vacuous if B ⩽ 1, and the overall constraint becomes
vacuous if B ⩾ T ; therefore, we assume, without loss of
generality, that 1 ⩽ B ⩽ T .
This model captures the following special cases. Before
we dive into the algorithm and analysis, we briefly mention
some special cases of interest which this model generalizes.

1. Single public good. When L = 1, we trivially recover
the setting of Section 4, where there is one public good
in each round.

2. Single private good. When L = N , B = T , and
vi,l,t = 0 if i ̸= j, we recover the setting studied by
[Banerjee et al., 2022a]. In their setting, there is a single
private good arriving in each round, which the algorithm
needs to split among the N agents. When cast in our
model, vi,i,t is the value that agent i has for the good in
round t, and xi,t is the fraction of good t that agent i is
allocated. They only study per-round constraints, so one
of our contributions is a generalization of their result to
the budgeted setting.

3. Batched private goods. When L = L′ ·N , B = T , and
vi,l,t = 0 if i ̸≡ j (mod N), we capture a setting where
there are L′ private goods arriving in each round, and
the algorithm can (fractionally) allocate at most 1 good
in total among the agents in each round.

5.1 The Set-Aside Greedy Algorithm for Batched
Public Goods

We present Algorithm 1 for the batched public goods model
which generalizes our guarantees from Section 4 and, partly,
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Algorithm 1 Set-Aside Greedy Algorithm for Batched Public
Goods
Input: Target proportional-fairness level α; total value pre-
dictions (Ṽi)i∈[N ]

1: Define q = α
2B .

2: for all t = 1 to T do
3: Given values {vi,l,t}i∈[N ],l∈[L], find ‘favorite goods’

set Ft as follows: Initialize Ft ← ∅.
4: for all i = 1 to N do
5: Let li ← argmaxl{vi,l,t} (breaking ties arbitrarily),

and update Ft ← Ft ∪ {li}.
6: end for
7: Set-aside part. Set yl,t = B

2|Ft|T · 1{l ∈ Ft}.
8: Greedy part. Let (zt, λt) be an optimal solution to

the following optimization problem:
Maximize 1

N

∑N
i=1 ln (ũi,t(z)) + λq subject to∑L

l=1 zl + λ = 1− B
2T and z, λ ⩾ 0.

9: Allocate xl,t = yl,t + zl,t.
10: end for

the work of Banerjee et al. [2022a] as well. First, we need to
extend predicted promised utilities to the batched model.
Definition 5 (Predicted Promised Utility). The predicted
promised utility of agent i in round t is

ũi,t(z1, . . . , zt) =
B

2min{N,L}T
· Ṽi +

t∑
τ=1

L∑
l=1

vi,l,τzl,τ .

For clarity, we will often omit the dependence on
z1, . . . , zt−1 and just write ũi,t(zt).

At a high level, Algorithm 1 takes in as input a target ap-
proximation factor α (which will be set according to Theo-
rem 5) and proceeds as follows. In round t, let Ft be the set
of ‘favorite goods’, which satisfies that for each agent i, there
exists some good l ∈ Ft such that l is among the most pre-
ferred goods of i in round t. Note that this guarantees that
|Ft| ⩽ min{N,L}. The algorithm allocates xl,t = yl,t+zl,t,
where the set-aside allocation is yl,t = B

2|Ft|T · 1{l ∈ Ft} for
each l ∈ [L] and the greedy allocation zt is computed by an
optimization problem. Note that the objective function max-
imized is concave and the constraints are linear. Hence, this
is a convex optimization problem, which can be solved up to
any ϵ > 0 accuracy in time that is polynomial in the input size
and 1/ϵ. For simplicity, we present our proof assuming that
the optimization problem is solved exactly, but solving it up
to a constant error does not change our proportional fairness
guarantee asymptotically.

The purpose of the yt part of the allocation is to guarantee
each agent a minimum share of their total utility Vi: Since
|Ft| ⩽ min{N,L}, every agent i is guaranteed to receive at
least maxl{vi,l,t} · B

2min{N,L}T utility from the yt set-aside
semi-allocation in each round t. Summing over all T rounds,
each agent is guaranteed to receive at least an overall utility
of Vi · B

2min{N,L}T from the set-aside semi-allocation. Algo-
rithm 1 achieves the following guarantee; for the proof see
our full version [Banerjee et al., 2022b].

Theorem 5. In the batched public goods model, for
any α ⩾ 4 ln

(
2min{N,L}T

B

)
+ 4

N

∑
i ln(di), Algo-

rithm 1 produces a feasible allocation x, which satisfies
maxw

1
N

∑N
i=1

ui(w)
ci·ui(x)

⩽ α, where the maximum is over all
feasible allocations w.

Using exactly the same proof as that of Corollary 1, we
obtain the following guarantees for Algorithm 1 with respect
to proportional fairness, the core, and the Nash social welfare.

Corollary 2. For α ⩾ 4 ln
(

2min{N,L}T
B

)
+ 4

N

∑
i ln(di),

Algorithm 1 is
1. (α · maxi ci)-proportionally fair, and hence in the (α ·

maxi ci)-core.

2. achieves (α · (
∏

i∈[N ] ci)
1
N )-approximation of the Nash

social welfare.
Recall that the private goods setting of Banerjee et

al. [2022a] is a special case of our setting in which L =
N , B = T , and the valuation matrix of the N agents
for the N public goods in each round is a diagonal ma-
trix. For this special case, our Nash welfare approxi-
mation is O((

∏
i∈[N ] ci)

1/N · (lnN + (1/N) ·
∑

i ln di)).
The Nash welfare approximation obtained by Banerjee et
al. [2022a] is almost the same, except that lnN is replaced
by min {lnN, lnT}. Thus, for T = Ω(N), our result strictly
generalizes theirs and they prove this bound to be almost
tight. For T = o(N), they derive a better approximation that
depends on lnT instead of lnN , (and it is unknown if this is
tight). It would be interesting to see if our result can also be
improved in this case.

6 Discussion and Future Directions
While we focus on the proportional fairness objective, a
natural question is whether our results can be extended to
other non-linear objective functions, such as generalized p-
mean welfare measures [Barman et al., 2022; Ebadian et al.,
2022a]. An other interesting direction for future research is
to develop a better understanding of appropriate types of pre-
dictions for online fair division. For example, what if the
algorithm is also provided with a prediction regarding the
total value of each good across all agents, but not specify-
ing which of the agents will like it and by how much? A
related question to the one above is in regards to the pro-
cess for generating agent valuations. In our model, the val-
ues V = (vi,t)i∈[N ],t∈[T ] are allowed to arrive in an adver-
sarial order. What if we consider slightly more optimistic
models such as the random-order model or the stochastic
model [Borodin and El-Yaniv, 2005]?
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Moulin, and Fedor Sandomirskiy. A simple online fair
division problem. CoRR, abs/1903.10361, 2019.

[Borodin and El-Yaniv, 2005] Allan Borodin and Ran El-
Yaniv. Online computation and competitive analysis. cam-
bridge university press, 2005.

[Brandl et al., 2021] Florian Brandl, Felix Brandt, Dominik
Peters, and Christian Stricker. Distribution rules under di-
chotomous preferences: Two out of three ain’t bad. In
Proceedings of the 22nd ACM Conference on Economics
and Computation (EC), pages 158–179, 2021.

[Brandt et al., 2016] Felix Brandt, Vincent Conitzer, Ulle
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