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Abstract
We investigate opinion dynamics in a fully-
connected system, consisting of n agents, where
one of the opinions, called correct, represents a
piece of information to disseminate. One source
agent initially holds the correct opinion and re-
mains with this opinion throughout the execution.
The goal of the remaining agents is to quickly agree
on this correct opinion. At each round, one agent
chosen uniformly at random is activated: unless it
is the source, the agent pulls the opinions of ` ran-
dom agents and then updates its opinion according
to some rule. We consider a restricted setting, in
which agents have no memory and they only revise
their opinions on the basis of those of the agents
they currently sample. This setting encompasses
very popular opinion dynamics, such as the voter
model and best-of-k majority rules.
Qualitatively speaking, we show that lack of mem-
ory prevents efficient convergence. Specifically, we
prove that any dynamics requires Ω(n2) expected
time, even under a strong version of the model in
which activated agents have complete access to the
current configuration of the entire system, i.e., the
case ` = n. Conversely, we prove that the sim-
ple voter model (in which ` = 1) correctly solves
the problem, while almost matching the aforemen-
tioned lower bound.
These results suggest that, in contrast to symmetric
consensus problems (that do not involve a notion
of correct opinion), fast convergence on the correct
opinion using stochastic opinion dynamics may re-
quire the use of memory.

1 Introduction
Identifying the specific algorithm employed by a biological
system is extremely challenging. This quest combines empir-
ical evidence, informed guesses, computer simulations, anal-
yses, predictions, and verifications. One of the main diffi-
culties stems from the huge variety of possible algorithms,

which is particularly true when multi-agent systems are con-
cerned [Sumpter, 2010; Feinerman and Korman, 2017b]. To
reduce the space of algorithms, the scientific community of-
ten restricts attention to simple algorithms [Couzin et al.,
2005; Gelblum et al., 2015; Fonio et al., 2016]. However,
even though this restriction reduces the space of algorithms
significantly, the number of simple algorithms still remains
extremely large.

Another direction to reduce the parameter space is to dis-
qualify certain algorithms because they are unable to effi-
ciently handle the challenges induced by the corresponding
scenario [Boczkowski et al., 2018; Feinerman and Korman,
2017a; Bialek et al., 2012]. Analyzing the limits of computa-
tion has been a main focus in theoretical computer science.
Hence, it appears promising to employ lower-bound tech-
niques from this discipline to biologically inspired contexts,
in order to identify which algorithms are less likely to be used,
or alternatively, which parameters of the setting are essen-
tial for efficient computation [Guinard and Korman, 2021;
Boczkowski et al., 2018]. This lower-bound approach may
help identify and characterize phenomena that might be
harder to uncover using more traditional approaches, e.g.,
using simulation-based approaches or differential equations
techniques. The downside of this approach is that it is limited
to analytically tractable settings, which may be too “clean” to
perfectly capture a realistic setting.

Taking a step in the latter direction, we focus on a basic
problem of information dissemination, in which few individ-
uals have pertinent information about the environment, and
other agents wish to learn this information despite having
constrained and random communication [Aspnes and Rup-
pert, 2009; Boczkowski et al., 2019; Bastide et al., 2021; Ko-
rman and Vacus, 2022]. Such information may include, e.g.,
knowledge about a preferred migration route [Franks et al.,
2002; Lindauer, 1957], the location of a food source [Couzin
et al., 2011], or the need to recruit agents for a particular
task [Razin et al., 2013]. In some species, specific signals
are used to broadcast such information, a remarkable exam-
ple being the waggle-dance of honeybees [Franks et al., 2002;
Seeley, 2003]. In many other biological systems, however, it
may be difficult for individuals to distinguish those who have
pertinent information from others in the group [Couzin et al.,
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2005; Razin et al., 2013]. Moreover, in multiple biological
contexts, animals cannot rely on distinct signals and must ob-
tain information by merely observing the behavior of other
animals (e.g., their position in space, speed, etc.). This weak
form of communication, often referred to as passive commu-
nication [Wilkinson, 1992], does not even require animals to
deliberately send communication signals [Cvikel et al., 2015;
Giraldeau and Caraco, 2018]. A key theoretical question is
identifying minimal computational resources that are neces-
sary for information to be disseminated efficiently using pas-
sive communication.

Here, following the work in [Korman and Vacus, 2022],
we consider an idealized model, that is inspired by the
following scenario.

Animals by the pond. Imagine n animals that gather around
a pond to drink water from it. Assume that one side of the
pond, either the northern or the southern side, is preferable
(e.g., because the risk of having predators there is reduced).
However, the preferable side is known to a few animals only.
These informed animals will remain on the preferable side of
the pond. The remaining group members would like to learn
which side of the pond is preferable, but they are unable to
identify the knowledgeable animals. Instead, they can scan
the pond and estimate the number of animals on each side
of it, and then, according to some rule, move from side to
side. Roughly speaking, the main result in [Korman and Va-
cus, 2022] is that there exists a rule that allows all animals to
converge on the preferable side quickly, despite initially be-
ing spread arbitrarily in the pond. The suggested rule essen-
tially says that each agent compares its current sample with
the sample obtained in the previous round; If it sees that more
animals are on one particular side now than they were in the
previous sample, then it moves to that side.

Within the framework described above, we ask whether
knowing anything about the previous samples is really nec-
essary, or whether fast convergence can occur by considering
the current sample alone. Roughly speaking, we show that
indeed it is not possible to converge fast on the correct opin-
ion without remembering information from previous samples.
Next, we describe the model and results in a more formal
manner.

Problem definition. We consider n agents, each of which
holds an opinion in {0, 1, . . . , k}, for some fixed integer k.
One of these opinions is called correct. One source agent1
knows which opinion is correct, and hence holds this opinion
throughout the execution. The goal of non-source agents is
to converge on the correct opinion as fast as possible, from
any initial configuration. Specifically, the process proceeds
in discrete rounds. In each round, one agent is sampled uni-
formly at random (u.a.r) to be activated. The activated agent
is then given access to the opinions of ` agents, sampled u.a.r
(with replacement2) from the multiset of all the opinions in
the population (including the source agent, and the sampling

1All results we present seamlessly extend (up to constants) to a
constant number of source agents.

2All the results directly hold also if the sampling is without re-
placement.

agent itself), for some prescribed integer ` called sample size.
If it is not a source, the agent then revises its current opinion
using a decision rule, which defines the dynamics, and which
is used by all non-source agents. We restrict attention to dy-
namics that are not allowed to switch to opinions that are not
contained in the samples they see. A dynamics is called mem-
oryless if the corresponding decision rule only depends on the
opinions contained in the current sample and on the opinion
of the agent taking the decision. Note that the classical voter
model and majority dynamics are memoryless.

1.1 Our Results
In Section 3, we prove that every memoryless dynamics must
have expected running time Ω(n2) for every constant number
of opinions. A bit surprisingly, our analysis holds even under
a stronger model in which, in every round, the activated agent
has access to the current opinions of all agents in the system.

For comparison, in symmetric consensus3 convergence is
achieved in O(n log n) rounds with high probability, for a
large class of majority-like dynamics and using samples of
constant size [Schoenebeck and Yu, 2018]. We thus have an
exponential gap between the two settings, in terms of the av-
erage number of activations per agent.4

We further show that our lower bound is essentially tight.
Interestingly, we prove that the standard voter model achieves
almost optimal performance, despite using samples of size
` = 1. Specifically, in Section 4, we prove that the voter
model converges to the correct opinion within O(n2 log n)
rounds in expectation and O(n2 log2 n) rounds with high
probability. This result and the lower bound of Section 3 to-
gether suggest that sample size cannot be a key ingredient in
achieving fast consensus to the correct opinion after all.

Finally, we argue that allowing agents to use a relatively
small amount of memory can drastically decrease conver-
gence time. As mentioned earlier in the introduction, this
result has been formally proved in [Korman and Vacus, 2022]
in the parallel setting, where at every round, all agents are
activated simultaneously. We devise a suitable adaptation
of the algorithm proposed in [Korman and Vacus, 2022] to
work in the sequential, random activation model that is con-
sidered in this paper. This adaptation uses samples of size
` = Θ(log n) and Θ(log log n) bits of local memory. Empir-
ical evidence discussed in Section 5 suggests that its conver-
gence time might be compatible with n logO(1) n. In terms
of parallel time (i.e., the average number of activations per
agent), this would imply an exponential gap between this case
and the memoryless case.

1.2 Previous Work
The problem we consider spans a number of areas of poten-
tial interest across several communities. The corresponding
literature is vast and providing an exhaustive review is infea-

3In the remainder, by symmetric consensus we mean the standard
setting in which agents are required to eventually achieve consensus
on any of the opinions that are initially present in the system.

4This measure is often referred to as the parallel time in dis-
tributed computing literature [Czumaj and Lingas, 2023].
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sible here. In the following paragraphs, we discuss previous
contributions that most closely relate to the present work.

Information dissemination with limited communication.
Dissemination is especially difficult when communication
is limited and/or when the environment is noisy or unpre-
dictable. For this reason, a line of recent work in distributed
computing focuses on designing robust protocols, which are
tolerant to faults and/or require minimal assumptions on the
communication patterns. An effective theoretical framework
to address these challenges is that of self-stabilization, in
which problems related to the scenario we consider have
been investigated, such as self-stabilizing clock synchroniza-
tion or majority computations [Aspnes and Ruppert, 2009;
Ben-Or et al., 2008; Boczkowski et al., 2019]. In general
however, these models make few assumptions about mem-
ory and/or communication capabilities and they rarely fit the
framework of passive communication. Extending the self-
stabilization framework to scenarios inspired by biological
distributed systems was recently done in [Korman and Vacus,
2022], with interesting preliminary results discussed earlier
in the introduction.

Opinion dynamics. Opinion dynamics have been exten-
sively used to investigate opinion formation processes result-
ing in stable consensus and/or clustering equilibria [Becchetti
et al., 2020; Coates et al., 2018; Out and Zehmakan, 2021].
One of the most popular opinion dynamics is the voter model,
introduced to study conflicts between species in biology and
in interacting particle systems [Clifford and Sudbury, 1973;
Holley and Liggett, 1975]. The investigation of major-
ity update rules and variants of it [Becchetti et al., 2020;
Berenbrink et al., 2022; Doerr et al., 2011; Mossel et al.,
2014] originated from the study of consensus processes in
spin systems [Krapivsky and Redner, 2003].

The recent past has witnessed increasing interest for biased
variants of opinion dynamics [Anagnostopoulos et al., 2020;
Berenbrink et al., 2022; Cruciani et al., 2021; Lesfari et al.,
2022]. In general, the focus of this line of work is differ-
ent from ours, mostly being on the sometimes complex inter-
play between bias and convergence to an equilibrium, possi-
bly represented by global adoption of one of the opinions. In
contrast, our focus is on how quickly dynamics can converge
to the (unknown) correct opinion when agents only have ac-
cess to random samples of the opinions held by other agents.5

Consensus in the presence of zealot agents. A large body
of work considers opinion dynamics in the presence of zealot
agents, i.e., agents (generally holding heterogeneous opin-
ions) that never depart from their initial opinion [D’Amore
et al., 2022; Masuda, 2015; Moreno et al., 2020; Yildiz et al.,
2013] and may try to influence the rest of the agent popula-
tion. In this case, the process resulting from a certain dynam-
ics can result in equilibria characterized by multiple opinions.
To the best of our knowledge, the main focus of this body of
work is different from ours, mostly concerning the impact

5For reference, it is easy to verify that majority or best-of-k ma-
jority rules [Schoenebeck and Yu, 2018] (which have frequently
been considered in the above literature) in general fail to complete
the dissemination task we consider.

of the number of zealots, their positions in the network and
the topology of the network itself on such equilibria [Fudolig
and Esguerra, 2014; Masuda, 2015; Moreno et al., 2020;
Yildiz et al., 2013].

2 Notations and Preliminaries
We consider a system consisting of n anonymous agents. We
denote by x(t)u the opinion held by agent u at the end of round
t, dropping the superscript whenever it is clear from the con-
text. The configuration of the system at round t is the vector
x(t) with n entries, such that its u-th entry is x(t)u .

We are interested in dynamics that efficiently disseminate
the correct opinion. I.e., (i) they eventually bring the system
into the correct configuration in which all agents share the
correct opinion, and (ii) they do so in as few rounds as possi-
ble. For brevity, we sometimes refer to the latter quantity as
convergence time. If T is the convergence time of an execu-
tion, we denote by T/n the average number of activations per
agent, a measure often referred to as parallel time in the dis-
tributed computing literature [Czumaj and Lingas, 2023]. For
ease of exposition, in the remainder we assume that opinions
are binary (i.e., they belong to {1, 0}). We remark the fol-
lowing: (i) the lower bound on the convergence time given in
Section 3 already applies by restricting attention to the binary
case, and, (ii) it is easy to extend the analysis of the voter
model given in Section 4 to the general case of k opinions
using standard arguments.

Memoryless dynamics. We consider dynamics in which,
beyond being anonymous, non-source agents are memoryless
and identical. We capture these and the general requirements
outlined in Section 1 by the following decision rule, describ-
ing the behavior of agent u

1. u is presented with a uniform sample S of size `;

2. u adopts opinion 1 with probability gxu
(|S|), where |S|

denotes the number of 1’s in sample S.

Here, gxu : {0, . . . , `} → [0, 1] is a function that assigns
a probability value to the number of ones that appear in S.
In particular, gxu assigns probability zero to opinions with no
support in the sample, i.e., gxu(0) = 0 and gxu(`) = 1.6 Note
that, in principle, gxu

may depend on the current opinion of
agent u.

The class of dynamics described by the general rule above
strictly includes all memoryless algorithms that are based on
random samples of fixed size including popular dynamics,
such as the voter model and a large class of quasi-majority
dynamics [Liggett, 2012; Schoenebeck and Yu, 2018; Bec-
chetti et al., 2020].

Markov chains. In the remainder, we consider discrete
time, discrete space Markov chains, whose state space is rep-
resented by an integer interval χ = {z, z + 1, . . . , n}, for
suitable z > 1 and n > z, without loss of generality (the
reason for this labeling of the states will be clear in the next
sections). Let Xt be the random variable that represents the

6In general, dynamics not meeting this constraint cannot enforce
consensus.
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state of the chain at round t > 0. The hitting time [Levin and
Peres, 2017, Section 1] of state x ∈ S is the first time the
chain is in state x, namely:

τx = min{t > 0 : Xt = x}.7

A basic ingredient used in this paper is describing the dy-
namics we consider in terms of suitable birth-death chains, in
which the only possible transitions from a given state i > z
are to the states i, i+1 (if i 6 n−1) and i−1 (if i > z+1). In
the remainder, we denote by pi and qi respectively the proba-
bility of moving to i+1 and the probability of moving to i−1
when the chain is in state i. Note that pn = 0 and qz = 0.
Finally, ri = 1− pi− qi denotes the probability that, when in
state i, the chain remains in that state in the next step.

A birth-death chain for memoryless dynamics. The
global behaviour of a system with z source agents holding
opinion (wlog) 1 and in which all other agents revise their
opinions according to the general dynamics described ear-
lier when activated, is completely described by a birth-death
chain C1 with state space {z, ..., n} and the following transi-
tion probabilities, for i = z, . . . n− 1:

pi = P (Xt+1 = i+ 1 | Xt = i)

=
n− i
n

∑̀
s=0

g0(s)P (|S| = s | Xt = i)

=
n− i
n

Ei [g0(|S|)] , (1)

whereXt is simply the number of agents holding opinion 1 at
the end of round t and where, following the notation of [Levin
and Peres, 2017], for a random variable V defined over some
Markov chain C, we denote by Ei [V ] the expectation of V
when C starts in state i. Eq. (1) follows from the law of total
probability applied to the possible values for |S| and observ-
ing that (a) the transition i→ i+ 1 can only occur if an agent
holding opinion 0 is selected for update, which happens with
probability (n − i)/n, and (b) if such an agent observes s
agents with opinion 1 in its sample, it will adopt that opinion
with probability g0(s). Likewise, for i = z + 1, . . . , n− 1:

qi = P (Xt+1 = i− 1 | Xt = i) =
i− z
n

(1− Ei [g1(|S|)]),
(2)

with the only caveat that, differently from the previous case,
the transition i+1→ i can only occur if an agent with opinion
1 is selected for update and this agent is not a source. For this
chain, in addition to pn = 0 and qz = 0 we also have qn = 0,
which follows since g1(`) = 1.

We finally note the following (obvious) connections be-
tween C1 and any specific opinion dynamics P : (i) the spe-
cific birth-death chain for P is obtained from C1 by specifying
the corresponding g0 and g1 in Eqs. (1) and (2) above; and (ii)
the expected convergence time of P starting in a configura-
tion with i > z agents holding opinion 1 is simply Ei [τn].

7Note that the hitting time in general depends on the initial state.
Following [Levin and Peres, 2017], we specify it when needed.

3 Lower Bound
In this section, we prove a lower bound on the convergence
time of memoryless dynamics. We show that this negative re-
sult holds in a very-strong sense: any dynamics must take
Ω(n2) rounds in expectation, even if the agents have full
knowledge of the current system configuration.

As mentioned in the previous section, we restrict the anal-
ysis to the case of two opinions, namely 0 and 1, w.l.o.g. To
account for the fact that agents have access to the exact con-
figuration of the system, we slightly modify the notation in-
troduced in Section 2, so that here gxu

: {0, . . . , n} → [0, 1]
assigns a probability to the number of ones that appear in the
population, rather than in a random sample of size `. Before
we prove our main result, we need the following two techni-
cal lemmas. Their proofs are omitted due to space constraints
but they can be found in [Becchetti et al., 2023].

Lemma 1. For every N ∈ N, for every x ∈ RN s.t. for
every i ∈ {1, . . . , N}, xi > 0, we have either

∑N
i=1 xi > N

or
∑N
i=1

1
xi

> N .

Lemma 2. Consider any birth-death chain on {0, . . . , n}.
For 1 6 i 6 j 6 n, let ai = qi/pi−1 and a(i : j) =∏j
k=i ak. Then, E0 [τn] >

∑
16i<j6n a(i : j).

Theorem 3. Fix z ∈ N. In the presence of z source agents,
the expected convergence time of any memoryless dynamics is
at least Ω(n2), even when each sample contains the complete
configuration of the opinions in the system, i.e., the case ` =
n.

Proof. Fix z ∈ N. Let n ∈ N, s.t. n > 4z, and let P
be any memoryless dynamics. The idea of the proof is to
show that the birth-death chain associated with P , obtained
from the chain C1 described in Section 2 by specifying g0 and
g1 for the dynamics P , cannot be “fast” in both directions
at the same time. We restrict the analysis to the subset of
states χ = {n/4, . . . , 3n/4}. More precisely, we consider
the two following birth-death chains: (i) C with state space χ,
whose states represent the number of agents with opinion 1,
and assuming that the source agents hold opinion 1; and (ii)
C′ with state space χ, whose states represent the number of
agents with opinion 0, and assuming that the source agents
hold opinion 0. Let τ3n/4 (resp. τ ′3n/4) be the hitting time of
the state 3n/4 of chain C (resp. C′). We will show that

max
(
En/4

[
τ3n/4

]
,En/4

[
τ ′3n/4

])
= Ω(n2).

Let g0, g1 : χ → [0, 1] be the functions describing P over χ.
Following Eqs. (1) and (2) in Section 2, we can derive the
transition probabilities for C as

pi =
n− i
n

g0(i), qi =
i− z
n

(1− g1(i)). (3)

Note that the expectations have been removed as a conse-
quence of agents having “full knowledge” of the configura-
tion. Similarly, for C′, the transition probabilities are

p′i =
n− i
n

(1− g1(n− i)), q′i =
i− z
n

g0(n− i). (4)
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Following the definition in the statement of Lemma 2, we
define ai and a′i for C and C′ respectively. We have

ai =
qi
pi−1

=
i− z

n− i+ 1
· 1− g1(i)

g0(i− 1)
,

and

a′i =
q′i
p′i−1

=
i− z

n− i+ 1
· g0(n− i)

1− g1(n− i+ 1)
.

Observe that we can multiply these quantities by pairs to can-
cel the factors on the right hand side:

an−i+1 · a′i =
i− z
i
· n− i+ 1− z

n− i+ 1
. (5)

(i − z)/i is increasing in i, so it is minimized on χ for i =
n/4. Similarly, (n − i + 1 − z)/(n − i + 1) is minimized
for i = 3n/4. Hence, we get the following (rough) lower
bound from Eq. (5): for every i ∈ χ,

an−i+1 · a′i >
(

1− 4z

n

)2

. (6)

Following the definition in the statement of Lemma 2, we
define a(i : j) and a′(i : j) for C and C′ respectively. From
Eq. (6), we get for any i, j ∈ χ with i 6 j:

a′(i : j) >

(
1− 4z

n

)2(j−i+1)
1

a(n− j + 1 : n− i+ 1)

>

(
1− 4z

n

)n
1

a(n− j + 1 : n− i+ 1)
.

Let c = c(z) = exp(−4z)/2. For n large enough,

a′(i : j) >
c

a(n− j + 1 : n− i+ 1)
. (7)

Let N = n2/8 + n/4. By Lemma 1, either∑
i,j∈χ
i<j

a(i : j) > N,

or (by Eq. (7))∑
i,j∈χ
i<j

a′(i : j) > c
∑
i,j∈χ
i<j

1

a(i : j)
> cN.

By Lemma 2, it implies that either

En/4
[
τ3n/4

]
> N, or En/4

[
τ ′3n/4

]
> cN.

In both cases, there exists an initial configuration for which
at least Ω(n2) rounds are needed to achieve consensus, which
concludes the proof of Theorem 3.

4 The Voter Model Is (Almost) Optimal
The voter model is the popular dynamics in which the random
agent v, activated at round t, pulls another agent u ∈ V u.a.r.
and updates its opinion to the opinion of u.

In this section, we prove that this dynamics achieves con-
sensus within O(n2 log n) rounds in expectation. We prove
the result for z = 1, noting that the upper bound can only im-
prove for z > 1. Without loss of generality, we assume that 1
is the correct opinion.

The modified chain C2. In principle, we could study con-
vergence of the voter model using the chain C1 introduced in
Section 2. Unfortunately, C1 has one absorbing state (the state
n corresponding to consensus), hence it is not reversible, so
that we cannot leverage known properties of reversible birth-
death chains [Levin and Peres, 2017, Section 2.5] that would
simplify the proof. Note, however, that we are interested in
τn, the number of rounds to reach state n under the voter
model. To this purpose, it is possible to consider a second
chain C2 that is almost identical to C1 but reversible. In par-
ticular, the transition probabilities pi and qi of C2 are the same
as in C1, for i = z, . . . , n− 1. Moreover, we have pn = 0 (as
in C1) but qn = 1.8 Obviously, for any initial state i 6 n− 1,
τn has exactly the same distribution in C1 and C2. For this
reason, in the remainder of this section we consider the chain
C2, unless otherwise stated.
Theorem 4. For z = 1, the voter model achieves consensus
to opinion 1 within O(n2 log n) rounds in expectation and
withinO

(
n2 log n log 1

δ

)
rounds with probability at least 1−

δ, for 0 < δ < 1.

Proof. We first compute the general expression for Ez [τn],
i.e., the expected time to reach state n (thus, consensus) in
C2 when the initial state is z, corresponding to the system
starting in a state in which only the source agents hold opinion
1. We then give a specific upper bound when z = 1. First of
all, we recall that, for z source agents we have that Ez [τn] =∑n
k=z+1 Ek−1 [τk]. Considering the general expressions of

the pi’s and qi’s in Eq. (1) and Eq. (2), we soon observe that
for the voter model g0 = g1 = g, since the output does not
depend on the opinion of the agent, and E [g(|S|)] = i/n
whenever the number of agent with opinion 1 in the system is
i. Hence for C2 we have

pi =

{
(n−i)i
n2 , for i = z, . . . , n− 1

0, for i = n

qi =


0, for i = z

(n−i)(i−z)
n2 , for i = z + 1, . . . , n− 1

1, for i = n.

(8)

The proof now proceeds along the following steps.
General expression for Ek−1 [τk]. It is not difficult to see
that

Ek−1 [τk] =
1

qkwk

k−1∑
j=z

wj , (9)

where w0 = 1 and wk =
∏k
i=z+1

pi−1

qi
, for k = z+ 1, . . . , n.

Indeed, the wk’s satisfy the detailed balanced conditions
pk−1wk−1 = qkwk for k = z + 1, . . . , n, since

pk−1wk−1 = pk−1
qk
pk−1

k∏
i=z+1

pi−1
qi

= qkwk.

and Eq. (9) follows proceeding like in [Levin and Peres, 2017,
Section 2.5].

8Setting qn = 1 is only for the sake of simplicity, any positive
value will do.
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Computing Ek−1 [τk] for C2. First of all, considering the
expressions of pi and qi in Eq. (8), for k = z + 1, . . . , n − 1
we have

wk =
k∏

i=z+1

(n− i+ 1)(i− 1)

(i− z)(n− i)

=
k∏

i=z+1

n− i+ 1

n− i
·

k∏
i=z+1

i− 1

i− z
=
n− z
n− k

·
k∏

i=z+1

i− 1

i− z
.

Hence

wk =

{
n−z
n−kf(k), for k = z + 1, . . . , n− 1

(n−z)(n−1)
n2 f(n− 1), for k = n,

where f(k) =
∏k
i=z+1

i−1
i−z .

The case z = 1. In this case, the formulas above simplify
and, for k = z + 1, . . . , n− 1, we have

Ek−1 [τk] =
n2

(k − 1)f(k)

k−1∑
j=1

f(j)

n− j
=

n2

k − 1

k−1∑
j=1

1

n− j
,

where the last equality follows from the fact that f(z) =
f(z + 1) = · · · = f(k) = 1, whenever z = 1. Moreover, for
k = n we have

En−1 [τn] =
1

qnwn

n−1∑
j=1

wj =

(
n

n− 1

)2 n−1∑
j=1

n− 1

n− j

=
n

n− 1
Hn−1 = O(log n),

where Hk denotes the k-th harmonic number. Hence, for z =
1 we have

E1 [τn] =

n∑
k=2

Ek−1 [τk]

= n2
n−1∑
k=2

1

k − 1

k−1∑
j=1

1

n− j
+O(log n), (10)

where in the second equality we took into account that
En−1 [τn] = O(log n). Finally, it is easy to see that

n−1∑
k=2

1

k − 1

k−1∑
j=1

1

n− j
= O(log n) (11)

Indeed, if we split the sum at bn/2c, for k 6 bn/2c we have

bn/2c∑
k=2

1

k − 1

k−1∑
j=1

1

n− j
6
bn/2c∑
k=2

1

k − 1

k−1∑
j=1

2

n
= O(1) (12)

and for k > bn/2c we have

n−1∑
k=bn/2c+1

1

k − 1

k−1∑
j=1

1

n− j
6

n−1∑
k=bn/2c+1

2

n

n−1∑
j=0

1

n− j

=
n−1∑

k=bn/2c+1

2

n
Hn = O(log n) . (13)

From Eqs. (12) and (13) we get Eq. (11), and the first part of
the claim follows by using in Eq. (10) the bound in Eq. (11).

To prove the second part of the claim, we use a standard
argument. Consider dlog 1

δ e consecutive time intervals, each
consisting of s = 2dE1 [τn]e = O(n2 log n) consecutive
rounds. For i = 1, . . . , s − 1, if the chain did not reach state
n in any of the first i − 1 intervals, then the probability that
the chain does not reach state n in the i-th interval is at most
1/2 by Markov’s inequality. Hence, the probability that the
chain does not reach state n in any of the intervals is at most
(1/2)

log(1/δ)
= δ.

4.1 Handling Multiple Opinions
Consider the case in which the set of possible opinions is
{1, . . . , k} for k > 2, with 1 the correct opinion without loss
of generality. We collapse opinions 2, . . . , k into one class,
i.e., opinion 0 without loss of generality. We then consider
the random variable Xt, giving the number of agents hold-
ing opinion 1 at the end of round t. Clearly, the configura-
tion in which all agents hold opinion 1 is the only absorbing
state under the voter model and convergence time is defined
as min{t > 0 : Xt = n}. For a generic number i of agents
holding opinion 1, we next compute the probability pi of the
transition i→ i+ 1 (for i 6 n− 1) and the probability qi of
the transition i→ i− 1 (for i > z + 1):

pi = P (Xt+1 = i+ 1 | Xt = i) =
n− i
n
· i
n
,

where the first factor in the right hand side of the above equal-
ity is the probability of activating an agent holding an opinion
other than 1, while the second factor is the probability that
said agent in turn copies the opinion of an agent holding the
correct opinion. Similarly, we have:

qi = P (Xt+1 = i− 1 | Xt = i) =
i− z
n
· n− i

n
,

with the first factor in the right hand side the probability of
sampling a non-source agent holding opinion 1 and the sec-
ond factor the probability of this agent in turn copying the
opinion of an agent holding any opinions other than 1.

The above argument implies that if we are interested in the
time to converge to the correct opinion, variable Xt is what
we are actually interested in. On the other hand, it is im-
mediately clear that the evolution of Xt is described by the
birth-death chain C1 introduced in Section 2 (again with n as
the only absorbing state) or by its reversible counterpart C2.
This in turn implies that the analysis of Section 4 seamlessly
carries over to the case of multiple opinions.

5 Faster Dissemination With Memory
In this section, we give experimental evidence suggesting that
dynamics using a modest amount of memory can achieve con-
sensus in an almost linear number of rounds.

The dynamics that we use is derived from the algorithm
of [Korman and Vacus, 2022], and called “Follow The Trend”
(FtT). It uses a sample size of ` = 10 log n and works for an
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Figure 1: “Follow the Trend” versus the voter model. Av-
erage convergence time (in parallel rounds) is depicted for
different values of n, over 100 iterations each, for z = 1
source agent. Blue lines with circular markers correspond to
our candidate dynamics (FtT). Orange lines with triangular
markers correspond to the voter model. Full lines depict ini-
tial configurations in which all opinions are drawn uniformly
at random from {0, 1}. Dashed lines depict initial configura-
tions in which the correct opinion is 0 and all other opinions
are 1. Dotted lines depict initial configurations in which all
opinions are drawn uniformly at random from {0, . . . , 9}.

arbitrary number of opinions k9. We start by giving an infor-
mal description of the dynamics. While each agent is acti-
vated once every n rounds in average according to the model
definition, it only becomes busy once every ` activations when
following FtT (this behavior is implemented by an internal
clock). Let us denote by A(s, i, u) the number of samples
corresponding to opinion i observed by Agent u during its
sth “busy” activation. Upon the sth busy activation, Agent u
adopts the opinion maximizing A(s, i, u) − A(s − 1, i, u)
(hence following the “emerging trend”). In case of a tie,
two scenarios are possible: if the current opinion of the agent
maximizes A(s, i, u)−A(s− 1, i, u), then the agent remains
with it; otherwise, the tie is broken uniformly at random.

The FtT dynamics is then compared experimentally to the
voter model. Results are summed up in Figure 1, in terms of
parallel rounds (one parallel round corresponds to n activa-
tions). They suggest that the expected convergence time of
FtT is about Θ(polylogn) parallel rounds. In terms of par-
allel time, this represents an exponential gap when compared
to the lower bound in Theorem 3 established for memoryless
dynamics.

More details regarding the dynamics and its simulations
can be found in [Becchetti et al., 2023].

9The factor 10 in the sample size can be replaced by any suffi-
ciently large constant.

6 Discussion and Future Work
This work investigates the role played by memory in multi-
agent systems that rely on passive communication and aim to
achieve consensus on an opinion held by few “knowledgable”
individuals [Korman and Vacus, 2022; Couzin et al., 2005;
Ayalon et al., 2021]. Under the model we consider, we prove
that incorporating past observations in the current decision is
necessary for achieving fast convergence even if the obser-
vations regarding the current opinion configuration are com-
plete. The same lower bound proof can in fact be adapted
to any process that is required to alternate the consensus (or
semi-consensus) opinion, i.e., to let the population agree (or
almost agree) on one opinion, and then let it agree on the
other opinion, and so forth. Such oscillating behaviour is fun-
damental to sequential decision making processes [Ayalon et
al., 2021].

The ultimate goal of this line of research is to reflect on bi-
ological processes and derive lower bounds on biological pa-
rameters. However, despite the generality of our model, more
work must be done to obtain concrete biological conclusions.
Conducting an experiment that fully adheres to our model, or
refining our results to apply to more realistic settings remains
for future work. Candidate experimental settings that appear
to be promising include fish schooling [Couzin et al., 2005;
Couzin et al., 2011],collective sequential decision-making in
ants [Ayalon et al., 2021], and recruitment in ants [Razin et
al., 2013]. If successful, such an outcome would be highly
pioneering from a methodological perspective. Indeed, to the
best of our knowledge, a concrete lower bound on a biologi-
cal parameter that is achieved in an indirect manner via math-
ematical considerations has never been obtained.

Acknowledgements
This project has received funding from:

• The European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 research and innovation
programme (grant agreement No 834861).

• The European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 research and innovation
programme (grant agreement No 648032).

• Spoke 1 “FutureHPC & BigData” of the Italian Re-
search Center on High-Performance Computing, Big
Data and Quantum Computing (ICSC) funded by MUR
Missione 4 Componente 2 Investimento 1.4: Potenzi-
amento strutture di ricerca e creazione di “campioni
nazionali” di R&S (M4C2-19) - Next Generation EU
(NGEU).

• Partially supported by the ERC Advanced Grant 788893
AMDROMA “Algorithmic and Mechanism Design Re-
search in Online Markets”, the EC H2020RIA project
“SoBigData++” (871042), and the MIUR PRIN project
ALGADIMAR “Algorithms, Games, and Digital Mar-
kets.

References
[Anagnostopoulos et al., 2020] Aris Anagnostopoulos, Luca

Becchetti, Emilio Cruciani, Francesco Pasquale, and Sara

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

35



Rizzo. Biased opinion dynamics: When the devil is in the
details. In 29th International Joint Conference on Artificial
Intelligence, pages 53–59, 2020.

[Aspnes and Ruppert, 2009] James Aspnes and Eric Rup-
pert. An introduction to population protocols. Middleware
for Network Eccentric and Mobile Applications, pages 97–
120, 2009.

[Ayalon et al., 2021] Oran Ayalon, Yigal Sternklar, Ehud Fo-
nio, Amos Korman, Nir S Gov, and Ofer Feinerman. Se-
quential decision-making in ants and implications to the
evidence accumulation decision model. Frontiers in ap-
plied mathematics and statistics, page 37, 2021.

[Bastide et al., 2021] Paul Bastide, George Giakkoupis, and
Hayk Saribekyan. Self-stabilizing clock synchronization
with 1-bit messages. In ACM-SIAM Symposium on Dis-
crete Algorithms, pages 2154–2173. SIAM, 2021.

[Becchetti et al., 2020] Luca Becchetti, Andrea E. F.
Clementi, and Emanuele Natale. Consensus dynamics:
An overview. SIGACT News, 51(1):58–104, 2020.

[Becchetti et al., 2023] Luca Becchetti, Andrea Clementi,
Amos Korman, Francesco Pasquale, Luca Trevisan, and
Robin Vacus. On the role of memory in robust opinion
dynamics. arXiv preprint arXiv:2302.08600, 2023.

[Ben-Or et al., 2008] Michael Ben-Or, Danny Dolev, and
Ezra N Hoch. Fast self-stabilizing byzantine tolerant
digital clock synchronization. In 27th ACM symposium
on Principles of Distributed Computing, pages 385–394,
2008.

[Berenbrink et al., 2022] Petra Berenbrink, Martin Hoefer,
Dominik Kaaser, Pascal Lenzner, Malin Rau, and Daniel
Schmand. Asynchronous opinion dynamics in social net-
works. In 21st International Conference on Autonomous
Agents and Multiagent Systems, pages 109–117, 2022.

[Bialek et al., 2012] William Bialek, Andrea Cavagna, Irene
Giardina, Thierry Mora, Edmondo Silvestri, Massimiliano
Viale, and Aleksandra M Walczak. Statistical mechanics
for natural flocks of birds. Proceedings of the National
Academy of Sciences, 109(13):4786–4791, 2012.

[Boczkowski et al., 2018] Lucas Boczkowski, Emanuele
Natale, Ofer Feinerman, and Amos Korman. Limits on
reliable information flows through stochastic populations.
PLoS computational biology, 14(6):e1006195, 2018.

[Boczkowski et al., 2019] Lucas Boczkowski, Amos Kor-
man, and Emanuele Natale. Minimizing message size
in stochastic communication patterns: fast self-stabilizing
protocols with 3 bits. Distributed Computing, 32(3), 2019.

[Clifford and Sudbury, 1973] Peter Clifford and Aidan Sud-
bury. A model for spatial conflict. Biometrika, 60(3):581–
588, 1973.

[Coates et al., 2018] Adam Coates, Liangxiu Han, and An-
thony Kleerekoper. A unified framework for opinion dy-
namics. In 17th International Conference on Autonomous
Agents and MultiAgent Systems, AAMAS 2018, pages
1079–1086, 2018.

[Couzin et al., 2005] Iain D Couzin, Jens Krause, Nigel R
Franks, and Simon A Levin. Effective leadership and
decision-making in animal groups on the move. Nature,
433(7025):513–516, 2005.

[Couzin et al., 2011] Iain D Couzin, Christos C Ioannou,
Güven Demirel, Thilo Gross, Colin J Torney, Andrew
Hartnett, Larissa Conradt, Simon A Levin, and Naomi E
Leonard. Uninformed individuals promote democratic
consensus in animal groups. Science, 334(6062):1578–
1580, 2011.

[Cruciani et al., 2021] Emilio Cruciani, Hlafo Alfie Mimun,
Matteo Quattropani, and Sara Rizzo. Phase transitions
of the k-majority dynamics in a biased communication
model. In ACM International Conference on Distributed
Computing and Networking, pages 146–155. ACM, 2021.

[Cvikel et al., 2015] Noam Cvikel, Katya Egert Berg, Eran
Levin, Edward Hurme, Ivailo Borissov, Arjan Boonman,
Eran Amichai, and Yossi Yovel. Bats aggregate to improve
prey search but might be impaired when their density be-
comes too high. Current Biology, 25(2):206–211, 2015.

[Czumaj and Lingas, 2023] Artur Czumaj and Andrzej Lin-
gas. On parallel time in population protocols. Information
Processing Letters, 179:106314, 2023.

[D’Amore et al., 2022] Francesco D’Amore, Andrea E. F.
Clementi, and Emanuele Natale. Phase transition of a non-
linear opinion dynamics with noisy interactions. Swarm
Intell., 16(4):261–304, 2022.

[Doerr et al., 2011] Benjamin Doerr, Leslie Ann Goldberg,
Lorenz Minder, Thomas Sauerwald, and Christian Schei-
deler. Stabilizing consensus with the power of two choices.
In 23rd ACM Symposium on Parallelism in Algorithms and
Architectures, 2011.

[Feinerman and Korman, 2017a] Ofer Feinerman and Amos
Korman. The ants problem. Distributed Computing,
30(3):149–168, 2017.

[Feinerman and Korman, 2017b] Ofer Feinerman and Amos
Korman. Individual versus collective cognition in social
insects. Journal of Experimental Biology, 220(1):73–82,
2017.

[Fonio et al., 2016] Ehud Fonio, Yael Heyman, Lucas
Boczkowski, Aviram Gelblum, Adrian Kosowski, Amos
Korman, and Ofer Feinerman. A locally-blazed ant trail
achieves efficient collective navigation despite limited in-
formation. Elife, 5:e20185, 2016.

[Franks et al., 2002] Nigel R Franks, Stephen C Pratt, Ea-
monn B Mallon, Nicholas F Britton, and David JT
Sumpter. Information flow, opinion polling and collective
intelligence in house–hunting social insects. Philosophi-
cal Transactions of the Royal Society of London. Series B:
Biological Sciences, 357(1427):1567–1583, 2002.

[Fudolig and Esguerra, 2014] Mikaela Irene D Fudolig and
Jose Perico H Esguerra. Analytic treatment of consen-
sus achievement in the single-type zealotry voter model.
Physica A: Statistical Mechanics and its Applications,
413:626–634, 2014.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

36



[Gelblum et al., 2015] Aviram Gelblum, Itai Pinkoviezky,
Ehud Fonio, Abhijit Ghosh, Nir Gov, and Ofer Feinerman.
Ant groups optimally amplify the effect of transiently in-
formed individuals. Nature Communications, 6(1):1–9,
2015.

[Giraldeau and Caraco, 2018] Luc-Alain Giraldeau and
Thomas Caraco. Social foraging theory. In Social
Foraging Theory. Princeton University Press, 2018.

[Guinard and Korman, 2021] Brieuc Guinard and Amos Ko-
rman. Intermittent inverse-square lévy walks are opti-
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