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Abstract
Opinion diffusion is a crucial phenomenon in social
networks, often underlying the way in which a col-
lection of agents develops a consensus on relevant
decisions. Voter models are well-known theoreti-
cal models to study opinion spreading in social net-
works and structured populations. Their simplest
version assumes that an updating agent will adopt
the opinion of a neighboring agent chosen at ran-
dom. These models allow us to study, for example,
the probability that a certain opinion will fixate into
a consensus opinion, as well as the expected time it
takes for a consensus opinion to emerge.
Standard voter models are oblivious to the opinions
held by the agents involved in the opinion adoption
process. We propose and study a context-dependent
opinion spreading process on an arbitrary social
graph, in which the probability that an agent aban-
dons opinion a in favor of opinion b depends on
both a and b. We discuss the relations of the model
with existing voter models and then derive theoret-
ical results for both the fixation probability and the
expected consensus time for two opinions, for both
the synchronous and the asynchronous update mod-
els.

1 Introduction
The voter model is a well-studied stochastic process defined
on a graph to model the spread of opinions (or genetic muta-
tions, beliefs, practices, etc.) in a population [Liggett, 1985;
Hassin and Peleg, 2001]. In a voter model, each node main-
tains a state, and when a node requires updating, it will im-
port its state from a randomly chosen neighbor. Updates can
be asynchronous, with one node activating per step [Liggett,
1985], or synchronous, with all nodes activating in paral-
lel [Hassin and Peleg, 2001]. The voter model on a graph
has been introduced in the 1970s to model opinion dynam-
ics. The case of a complete graph is also very well-known in
population genetics, where it was introduced even earlier to
study the spread of mutations in a population [Ewens, 2012;
Nowak, 2006].

Mathematically, among the main quantities of interest in
the study of voter models, there are the fixation probability

of an opinion—the probability of reaching a configuration in
which each node adopts such opinion—and the expected con-
sensus (or absorption) time—the expected number of steps
before all nodes agree on an opinion. Such quantities could
in principle be computed for any n-node graph by defining
a Markov chain on a set of Cn configurations, where C is
the number of opinions, but such an approach is computa-
tionally infeasible even for moderate values of n. Therefore,
a theoretical analysis of a voter process will often focus on
obtaining upper and lower bounds for these quantities, still
drawing heavily on the theory of Markov chains [Aldous and
Fill, 2002; Levin et al., 2009], but with somewhat different
approaches and tools for the synchronous and asynchronous
cases.

A limitation of the standard voter process is that the dy-
namics is oblivious to the states of both the agent u that is up-
dating and of the neighbor that u copies its state from, and the
copying always occurs. One could easily imagine a situation
(for example, in politics) where an agent holding opinion a is
more willing to adopt the opinion b of a neighbor rather than
to adopt opinion c. In general, the probability of abandoning
opinion a in favor of opinion b might depend on both a and b.
This motivates the study of biased voter models [Berenbrink
et al., 2016; Sood et al., 2008] and in particular motivates us
to introduce a voter model with an opinion adoption proba-
bility that depends on the context, that is, on the opinions of
both agents involved in an opinion spreading step.

We define and study extensions of the voter model that al-
low the opinion adoption probability to depend on the pair
of opinions involved in an update step. We consider both an
asynchronous variant and a synchronous variant of a context-
dependent voter model with two opinions, 0 and 1. We as-
sume that an agent holding opinion c ∈ {0, 1} is willing to
copy the opinion of an agent holding opinion c′ ∈ {0, 1} with
some probability αc,c′ , which models the bias in the update.
We study both the fixation probabilities and the expected con-
sensus time.

1.1 Our Findings
In general, a seemingly minor feature as the form of bias we
consider has a profound impact on the analytical tractability
of the resulting model. While the unbiased case1 can still be

1The model is unbiased when α0,1 = α1,0.
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connected to a variant of the voter model and analyzed ac-
cordingly with some extra work, the same is not possible for
the biased case. Specifically, in Section 3 we prove that a
lazy variant of the voter model is equivalent (i.e., it produces
the same distribution over possible system’s configurations)
to the unbiased variant of the model we consider. The proof,
given in the full paper version2 for the synchronous case, uses
a coupling between the Markov chains that describe the two
models. For the asynchronous case, this allows us to directly
leverage known connections between the asynchronous voter
model and random walks (Proposition 1). For the case of
the clique, this general result can be improved, providing ex-
plicit, tight bounds on expected consensus time (Theorem 1).
In the synchronous case, the above connection is not immedi-
ate (i.e., Proposition 1 does not apply) and analyzing expected
time to consensus requires adapting arguments that have been
used for continuos Markov chains to the synchronous, dis-
crete setting (Theorem 2).

The biased case is considerably harder to analyze, the main
reason being that it is no longer possible to collapse the
Markov chain describing the system (whose state space is in
general the exponentially large set of all possible configura-
tions) to a “simpler” chain, e.g., a random walk on the un-
derlying network, not even in the case of the clique. Despite
these challenges, some trends emerge from specific cases. In-
terestingly, it is possible to derive the exact fixation proba-
bilities for the class of regular networks, highlighting a non-
linear dependence on the bias (Theorem 3), while an asymp-
totically tight analysis for the clique (Theorem 4) suggests
that the presence of a bias may have a positive impact on
achieving faster consensus in dense networks. Though seem-
ingly intuitive, this last aspect is not a shared property of bi-
ased opinion models in general [Montanari and Saberi, 2010;
Anagnostopoulos et al., 2022]. The behavior of the model
is considerably more complex and technically challenging in
the synchronous, biased case. In particular, the preliminary
results that we obtain highlight a general dependence of fixa-
tion probabilities (Proposition 2) and, notably, expected con-
sensus time (Theorem 5) on both the bias and the initial con-
figuration.

1.2 Related Work
For the sake of space, we mostly discuss results that are most
closely related to the setting we consider.

Voter and Voter-Like Models. Due to its versatility, the
voter model has been defined multiple times across dif-
ferent disciplines and has a vast literature. As mentioned
in the introduction, the special case of the voter model
on a complete graph was first introduced in mathemati-
cal genetics, being closely related to the so-called Wright-
Fisher and Moran processes [Moran, 1958; Kimura, 1962;
Ewens, 2012]. The first asynchronous formulation of a voter
model on a connected graph has been proposed in the prob-
ability and statistics community in the 1970s [Liggett, 1985;
Donnelly and Welsh, 1983], while [Hassin and Peleg, 2001]
was the first study of this model in a synchronous setting. A
classic result of these papers is that the fixation probability of

2http://arxiv.org/abs/2305.07377

an opinion c is equal to the weighted fraction of nodes holding
opinion c, where the weight of a node is given by its degree
[Hassin and Peleg, 2001; Sood et al., 2008].

The expected consensus time of the voter model is much
more challenging to derive exactly, even for highly structured
graphs. In the asynchronous case, it has often been studied by
approximating the process with a continuous diffusion partial
differential equation [Ewens, 2012; Sood et al., 2008; Baxter
et al., 2008]. For two opinions on the complete graph, this
yields the approximation

T (n) ≈ n2h(k/n) (1)

where T (n) is the expected consensus time on the n-clique,
k is the number of nodes initially holding the first opinion
and h(p) = −p ln p − (1 − p) ln(1 − p) [Sood et al., 2008;
Ewens, 2012]. To the best of our knowledge, however,
no error bound was known for such diffusion approxima-
tions3. Another approach is to use the duality between
voter model and coalescing random walks [Liggett, 1985;
Donnelly and Welsh, 1983], which involves no approxima-
tions, but the resulting formulas are hard to interpret, and to
paraphrase Donnelly and Welsh [Donnelly and Welsh, 1983],
“an exact evaluation of the expected absorption time for a
general regular graph is a horrendous computation”. As for
approximations, expected consensus time for the voter model
can be bounded byO((davg/dmin)(n/Φ)), where davg and dmin
are, respectively, the average and minimum degrees [Beren-
brink et al., 2016]. Most relevant to our discussion is the
biased voter model considered by Berenbrink et al. [Beren-
brink et al., 2016], in which the probability of adoption of an
alternative opinion c′ depends on c′ (and only on c′). While
our model is different if we consider more than 2 opinions,
there are several other differences with respect to [Berenbrink
et al., 2016] even in the binary case. In particular, Beren-
brink et al. only consider the synchronous setting, they as-
sume there is a “preferred” opinion that is never rejected and
that there is a constant gap between the adoption probabilities
of the preferred opinion and of the non-preferred one. Finally,
they only consider the case where the number k of nodes
initially holding the preferred opinion is at least Ω(log n).
Thus, for example, their results do not apply in the neutral
case (α01 = α10) or when k is, say,

√
log n. Our results for

the biased, synchronous case (Theorem 5) are complemen-
tary to those in [Berenbrink et al., 2016]. While their results
are stronger when the above assumptions hold, ours address
the general and challenging case of an arbitrary initial config-
uration.
Pull vs Push. We only reviewed here models where nodes
“pull” the opinion from their neighbor, since both the stan-
dard voter model and our generalization follow this rule,
but we remark that “push” models, also known as invasion
processes, have also been defined and studied on connected
graphs [Lieberman et al., 2005; Dı́az et al., 2016]. The asyn-
chronous push model is sometimes called the (generalized)
Moran process [Dı́az et al., 2016; Nowak, 2006]. We re-
mark that while the pull and push models are interchangeable

3For the n-clique, we show that (1) is correct within an additive
O(n) term. See Theorem 1 (Section 3.1).
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on regular graphs, on irregular graphs their behavior can be
markedly different.

Other Biased Opinion Dynamics. We are aware of only
a few analytically rigorous studies of biased opinion dynam-
ics, including biased variants of the voter model [Sood et al.,
2008; Berenbrink et al., 2016; Anagnostopoulos et al., 2022;
Cruciani et al., 2021; Durocher et al., 2022], sometimes
framed within an evolutionary game setting [Montanari and
Saberi, 2010]. In general, these contributions address differ-
ent models, be it because of the way in which bias in incor-
porated within the voting rule, the opinion dynamics itself or
the temporal evolution of the process (e.g., synchronous vs
asynchronous). We remark that all these aspects can deeply
affect the overall behavior of the resulting dynamics. Specif-
ically, as observed in a number of more or less recent contri-
butions [Anagnostopoulos et al., 2022; Cruciani et al., 2021;
Cooper et al., 2018; Hindersin and Traulsen, 2014], even mi-
nor changes in the model that would intuitively produce con-
sistent results with a given baseline can actually induce fun-
damental differences in the overall behavior, so that it is in
general hard to predict if and when results for one model
more or less straightforwardly carry over to another model,
even qualitatively. Less related to the spirit of this work, a
large body of research addresses biased opinion dynamics
using different approaches, based on approximations and/or
numerical simulations. Examples include numerical simula-
tions for large and more complex scenarios [Hindersin and
Traulsen, 2014], mean-field or higher-order [Peralta et al.,
2021] and/or continuous approximations [Assaf and Mobilia,
2012]. While these approaches can afford investigation of
richer and more complex evolutionary game settings (e.g.,
[Peralta et al., 2021]), they typically require strong simpli-
fying assumptions to ensure tractability, so that it is harder (if
not impossible) to derive rigorous results.

2 Model Formulation
Notation. For a natural number k, let [k] :=
{0, 1, 2, . . . , k − 1}. If G = (V,E) is a graph, we
write NG(u) (or simply N(u) if G can be inferred from the
context) for the set of neighbors of node u in G. We write du
for the degree of node u.

Model. We define an opinion dynamics model on networks.
The parameters of the model are: i) an underlying topology,
given by a graph G on n nodes, with symmetric adjacency
matrix A = (auv)u,v∈[n], where auv ∈ {0, 1}; ii) a number of
opinions (or colors) C ⩾ 2; iii) an opinion acceptance matrix
(αc,c′)c,c′∈[C], where αc,c′ ∈ [0, 1]. The initial opinion of
each agent (node) u is encoded by some x

(0)
u ∈ [C].

For any node u ∈ [n], we define an update process
Update(u) consisting of the following steps (summarized
in Algorithm 1):

1. Sample: Sample a neighbor v of u uniformly at random,
i.e., according to the distribution (au1/du, . . . , aun/du)
where auv = 1 if {u, v} ∈ E and auv = 0 otherwise.
Here du = |N(u)| =

∑
v∈[n]auv is the degree of u.

2. Compare: Compare u’s opinion c = xu with v’s opin-
ion c′ = xv .

Algorithm 1 Update(u)

1: Sample v ∈ N(u)
2: c← xu; c

′ ← xv

3: Sample θ ∈ [0, 1]
4: if θ < αc,c′ then
5: xu ← xv

6: return accept
7: return reject

3. Accept/reject: With probability αc,c′ , set xu ← xv; in
this case we say u accepts v’s opinion. Otherwise, we
say u rejects v’s opinion.

We consider two variants of the model, differing in how
the updates are scheduled. In one iteration of the asyn-
chronous variant, u ∈ [n] is sampled uniformly at random and
Update(u) is applied. In one iteration of the synchronous
variant, each node u ∈ [n] applies Update(u) in parallel.
We denote by x

(t)
u the random variable encoding the opinion

of node u after t iterations of either the synchronous or the
asynchronous dynamics (depending on the context).

The acceptance probabilities αc,c′ are parameters of the
model. We note that the parameters αc,c′ with c = c′ are
irrelevant for the dynamics, since a node sampling a neigh-
bor of identical opinion will not change opinion, irrespective
of whether it accepts the neighbor’s opinion or not. Hence,
to specify the opinion acceptance matrix C(C − 1) param-
eters are sufficient; we can assume that the diagonal entries
are equal to 1. In particular, when C = 2 it is enough to
specify α01 and α10. When α01 = α10 = 1, the model boils
down to the standard voter model [Hassin and Peleg, 2001;
Liggett, 1985].

In the rest of this work we assume C = 2. In this case,
we say that the model is unbiased if the opinion acceptance
matrix is symmetric, i.e., α01 = α10, and biased otherwise.

Quantities of Interest. The fixation probability of opinion
1 is the probability that there exists an iteration t such that
x
(t)
u = 1 for all u ∈ [n]. The consensus time is the index of

the first iteration t such that x(t)
u = x

(t)
v for all u, v ∈ [n].

3 The Unbiased Setting
Before embarking on the biased case, which is substantially
more complex, in this section we review or prove directly
results for the unbiased setting (α01 = α10). We consider the
asynchronous and the synchronous variants separately. In all
formulas of this section, α = α01 = α10.

3.1 Asynchronous Variant
The main, intuitive observation about the unbiased asyn-
chronous variant of our model is that the model can equiv-
alently be described by a suitable, “lazy” voter model, where
each iteration is either an idle iteration (with probability 1−α)
or an iteration of the standard asynchronous voter model
(with probability α).

This in turn implies that, for the fixation probability one
can simply disregard the idle iterations and therefore obtain
the same fixation probability as for the standard asynchronous
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voter model. In an arbitrary topology, this was derived by
Sood et al. [Sood et al., 2008]: if we call ϕavoter the fixation
probability of the asynchronous voter model, then

ϕavoter =

∑
u∈[n] dux

(0)
u∑

u∈[n] du
, (2)

where x
(0)
u and du are respectively the initial opinion and the

degree of node u. Since x
(0)
u ∈ {0, 1}, the fixation proba-

bility ϕavoter is proportional to the volume of nodes initially
holding opinion 14.

In the analysis of the expected consensus time, instead, one
cannot ignore the idle iterations, but since they occur with
probability 1 − α independently of other random choices,
their effect is simply that of slowing down the standard asyn-
chronous voter process by a factor 1/α. This intuitive ar-
gument can be formalized through a standard Markov chain
coupling argument (see Appendix B).
Proposition 1. In the unbiased asynchronous case, the fixa-
tion probability is the same as for the standard asynchronous
voter model. The expected consensus time is T avoter/α,
where T avoter is the expected consensus time of the standard
asynchronous voter model.
On the n-Clique Topology. As discussed in the introduc-
tion, a very natural question is: how large is the expected
consensus time on the n-clique as a function of n? De-
spite this question having been studied multiple times be-
fore, in the literature there are either diffusion approxima-
tions with unknown error [Ewens, 2012], or exact formulas
involving multiple partial summations that are hard to in-
terpret asymptotically [Glaz, 1979]. By further analyzing a
result of Glaz [Glaz, 1979], we derive here an explicit for-
mula with bounded error that is easy to interpret, which in
fact agrees with the diffusion approximation up to lower order
terms, thus also showing that at least in this case, the diffusion
approximation (1) yields a correct estimate.

In the unbiased asynchronous model, the expected consen-
sus time on the clique is the same as the mean absorption time
of the underlying birth-death process, the state of which is
summarized by the number of nodes holding opinion 1. Call
Tk(n) the expected consensus time when starting from a con-
figuration with k nodes holding opinion 1, and the remaining
n − k holding opinion 0. We prove that Tk(n) = O(n2/α),
more precisely:
Theorem 1. If α01 = α10 = α (for some α > 0), then for
each k = 1, . . . , n− 1,

Tk(n) =
1

α
n2h(k/n) +O(n/α),

where h(p) := −p ln p− (1− p) ln(1− p) ⩽ ln 2.

Proof. On an n-clique, the process is equivalent to a birth-
and-death chain [Levin et al., 2009] on n + 1 states

4We note incidentally that the fixation probability can also be
computed by suitably relating the asynchronous model to the transi-
tion matrix of the lazy random walk we discuss in Section 3.2. This
connection is only mentioned here and made rigorous in the full pa-
per version (Appendix A).

0, 1, 2, . . . , n (representing the number of nodes with opin-
ion, say, 1). Let us define the following quantities:

• pk = α01k(n − k)/n(n − 1) is the probability that the
number of nodes holding opinion 1 increases from k to
k + 1 when 0 ⩽ k < n,

• qk = α10k(n − k)/n(n − 1) is the probability that the
number of nodes holding opinion 1 decreases from k to
k − 1 when 0 < k ⩽ n.

Note that pk = qk for all k due to the assumption α01 = α10.
Define the vector T (n) as T (n) = (T1(n), . . . , Tn−1(n))

⊤

and consider the matrix

B=


p1 + q1 −p1 0 . . . 0
−q2 p2 + q2 −p2 . . . 0

...
. . . . . . . . .

...
0 . . . 0 −qn−1 pn−1 + qn−1

.

The matrix B is constructed so that BT (n) = 1, where 1 is
the all-1 vector. This holds because of the recurrence

Tk(n) = 1+ (1− pk − qk)Tk(n)+ qkTk−1(n)+ pkTk+1(n)

for the mean consensus times. Therefore, T (n) = B−11.
The matrix B can be explicitly inverted thanks to its tridi-
agonal structure; an explicit computation (see Appendix C)
yields

Tk(n) =
n− 1

α
((n− k)(Hn−1 −Hn−k) + k(Hn−1 −Hk−1)) ,

where Hk is the k-th harmonic number, Hk =
∑k

j=1 1/j.
Recalling the asymptotic expansion Hn = lnn+γ+O(1/n),
where γ is the Euler-Mascheroni constant,

Tk(n) =
n− 1

α
((n− k)(Hn −Hn−k) + k(Hn −Hk))+O

(n

α

)
=

n(n− 1)

α

((
1− k

n

)
ln

n

n− k
+

k

n
ln

n

k

)
+O(n/α)

=
n2

α
h(k/n) +O(n/α),

where h(p) = −p ln p− (1−p) ln(1−p), which is such that
0 ⩽ h(p) ⩽ ln 2 for every p ∈ [0, 1].

3.2 Synchronous Variant
The analysis of the synchronous variant in the unbiased set-
ting relies on the tight connection between the unbiased case
of the opinion dynamics we consider and (lazy) random walks
on networks.

Connections to Lazy Random Walks. We next provide an
equivalent formulation of our model, which reveals an in-
teresting and useful connection to lazy random walks. To
this purpose, consider the following, alternative dynamics, in
which the behavior of the generic node u at each iteration is
the following:

• Node u independently tosses a coin with probability of
“heads” equal to α;

• If “heads”, u samples a neighbor v u.a.r. and copies v’s
opinion; otherwise u does nothing and keeps her opin-
ion.
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Let us call M1 the synchronous model described in Sec-
tion 2 andM2 the dynamics described above. ThenM1 and
M2 are equivalent in the sense that, if they start from the
same initial state, they generate the same probability distribu-
tion over all possible configurations of the system at any itera-
tion t. Intuitively speaking this is true since inM1 each node
first samples a neighbor and then it decides whether or not
to copy its opinion according to the outcome of a coin toss,
while inM2 each node first tosses a coin to decide whether
or not to copy the opinion of one of the neighbors and then
it samples the neighbor. Since the outcome of the coin toss
and the choice of the neighbor are independent random vari-
ables, they produce the same distribution on the new opinion
of the node when commuted. In the full paper version (Ap-
pendix D) we formalize the above equivalence and we prove
it by appropriately coupling the two processes using an in-
ductive argument.

Model M2 is interesting, since it describes a (lazy) voter
model. As such (and as we explicitly show in the proof
of Theorem 2), it is equivalent, in a probabilistic sense,
to n lazy, coalescing random walks on the underlying net-
work. This connection allows us to extrapolate the prob-
ability of consensus to a particular opinion and to adapt
techniques that have been used to analyze the consensus
time of the standard voter model [Hassin and Peleg, 2001;
Aldous and Fill, 2002].

Theorem 2. Assume modelM2 starts in a configuration in
which all nodes of a subset W ⊂ V have opinion 1 and all
other nodes have opinion 0. Let ϕ and T cons denote fixation
probability (of opinion 1) and time to consensus, resp. Then:
(I) ϕ = (

∑
u∈W du)/(

∑
u∈V du), (II) E [T cons] ⩽ βnT

hit,
where T hit is the maximum expected hitting time associated
with the graph and βn = O(1) when α ⩽ 1/2, while βn =
lnn+ 3 when α > 1/2.

Sketch of the proof. We here only give a short idea of the
proof and we defer a full-detailed proof to the full paper ver-
sion (Appendix E).

The proof of (I) follows from the observation that, if we
call p(t) the vector p(t) = (p1(t), . . . , pn(t)) where pi(t) is
the probability that node i has opinion 1 at round t conditional
on the configuration at the previous round x(t−1), then for ev-
ery round t it holds that E

[
x(t+1) |x(t)

]
= p(t+1) = Px(t)

where P is the transition matrix of a lazy simple random
walk on the underlying graph. Iterating the above equality
we have that limt→∞ E

[
x(t) |x(0)

]
= π⊺x(0)1, where π

is the stationary distribution of the random walk. Finally,
the formula for ϕ follows from the fact that, for each node
i, limt→∞ E

[
x
(t)
i |x(0)

]
equals the probability that node i

ends up with opinion 1 and from the fact that the stationary
probability of a simple random walk being on a node i is pro-
portional to the degree of i.

The proof of (II) is an adaptation to our (discrete) case of
the proof strategy for the continuous case described in [Al-
dous and Fill, 2002, Section 14.3.2]: we leverage on the re-
lation between the convergence time of M2 and the maxi-
mum meeting time of two lazy random walks and, by using

an appropriate martingale, we show that the maximum meet-
ing time is upper bounded by the maximum hitting time (see
Appendix E).

4 The Biased Setting
Without loss of generality, in the rest of this section we as-
sume α01 ̸= α10 and we let r = α01/α10. In general, the
biased setting is considerably harder to address, since the con-
nection between our model and lazy random walks no longer
applies in this setting, nor does it seem easy to track the evo-
lution of the expected behavior of the model in a way that is
mathematically useful.

4.1 Asynchronous Variant
In the asynchronous case, we give a result for the fixation
probability holding for regular graphs, thanks to an equiva-
lence with the fixation probability for the n-clique (see Ap-
pendix F). We also bound the expected consensus time in the
specific case of the n-clique. The asynchronous variant of
the process on the n-clique is equivalent to a birth-and-death
chain on n+1 states 0, 1, 2, . . . , n representing the number of
nodes with opinion 1. Now, however, the transition probabili-
ties will not be symmetric. In fact, the transition probabilities
can be specified by {pk, qk, rk}nk=0 where pk + qk + rk = 1,
and:

• pk is the probability that the number of nodes holding
opinion 1 increases from k to k + 1 when 0 ⩽ k < n,

• qk is the probability that the number of nodes holding
opinion 1 decreases from k to k − 1 when 0 < k ⩽ n,

• rk is the probability that the number of nodes holding
opinion 1 remains k when 0 ⩽ k ⩽ n.

Due to our definition of the opinion dynamics, we have p0 =
qn = 0 and, for 0 < k < n,

pk =

(
1− k

n

)
· k

n− 1
· α01 = α01

k(n− k)

n(n− 1)
,

qk =
k

n
· n− k

n− 1
· α10 = α10

k(n− k)

n(n− 1)
,

rk = 1− (α01 + α10)
k(n− k)

n(n− 1)
.

Theorem 3. Let r = α01/α10 and let ϕk be the fixation prob-
ability of opinion 1 on a regular n-nodes graph starting from
a state in which k nodes hold opinion 1. Then, for r /∈ {0, 1},

ϕk =
1− r−k

1− r−n
. (3)

Proof. Thanks to the equivalence of the fixation probability
between a regular n-nodes graph and an n-clique (see Ap-
pendix F), and by the analysis of a general birth-death process
(see for example [Nowak, 2006, Section 6.2]), we get

ϕk =
1 +

∑k−1
i=1

∏i
j=1 γj

1 +
∑n−1

i=1

∏i
j=1 γj

,

where γj = qj/pj = α10/α01 = 1/r for all j. Hence

ϕk =
1 +

∑k−1
i=1 r−i

1 +
∑n−1

i=1 r−i
=

1 + 1−r−k

1−r−1 − 1

1 + 1−r−n

1−r−1 − 1
=

1− r−k

1− r−n
.
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Note that when r → 1, we can evaluate ϕk by applying
L’Hôpital’s rule to (3) and get ϕk = k/n, which is consis-
tent with the results for the unbiased setting. When r = 0,
nodes can only switch from opinion 1 to opinion 0, so clearly
ϕk = 0; this is also consistent with (3) when r → 0.

It is interesting to note that the expression from (3) co-
incides with the fixation probability in the standard Moran
process [Nowak, 2006, Chapter 6] when mutants (say, nodes
with opinion 1) have a relative fitness equal to α01/α10, and
in the initial configuration there are k mutants out of n nodes.
In other words, on an n-nodes regular graph the ratio α01/α10

can be interpreted as a fitness of sorts, even though there is no
notion of fitness or selection built in our model (recall that
nodes are activated uniformly at random).

For the n-clique we are also able to bound the expected
consensus time. While the logic of the proof is similar to
the one of Theorem 1, the proof itself is considerably more
involved in the asymmetric setting, leading to qualitatively
different results—namely, an O(n log n) instead of an O(n2)
worst case bound. The reader is deferred to the full paper
version (Appendix G) for full details.

Theorem 4. If Tk(n) is the expected consensus time in the
n-clique when starting from a state with k nodes holding
opinion 1, and α01, α10 are constants, then for each k =
1, . . . , n− 1,

Tk(n) = O(n log n),

and for some values of k the above bound is tight.

4.2 Synchronous Variant
In order to bound the fixation probabilities, denote by x(t) ∈
{0, 1}n the state of the system at time t. Conditioned on the
state vector x(t), the probability that x(t+1)

u = 1 can be ex-
pressed as follows:

P
(
x(t+1)
u = 1 |x(t)

)
=

1− α10

(
1−

∑
v∈V auvx

(t)
v

du

)
if x(t)

u = 1

α01

∑
v∈V auvx

(t)
v

du
if x(t)

u = 0.

This follows since the probability that node u samples a
neighbor with opinion 1 is

∑
v auvx

(t)
v /du and:

• when x
(t)
u = 1, then x

(t+1)
u = 1 iff either u samples a

neighbor with opinion 1, or u samples a neighbor with
opinion 0 and does not accept its opinion (these two
events are disjoint);

• when x
(t)
u = 0, then x

(t+1)
u = 1 iff u samples a neighbor

with opinion 1 and accepts its opinion.
We did not exploit the graph topology so far. In the case

of the n-clique (with loops, to simplify some expressions), let
k(t) be the number of nodes with opinion 1 at time t. Special-
izing the formulas derived above we get

P
(
x(t+1)
u = 1 |x(t)

)
=

{
1− α10

(
1− k(t)

n

)
if x(t)

u = 1

α01
k(t)

n if x(t)
u = 0.

Note that the expression above depends only on k(t) and x
(t)
u ,

and not on the entire state x(t). The process is thus equivalent
to sampling, at each step t, k(t) Bernoulli random variables
(r.v.) with parameter βk := 1−α10(1−k(t)/n), and n−k(t)

bernoulli r.v. with parameter γk := α01k
(t)/n. Collectively,

the outcomes of these r.v. constitute the new state x(t+ 1).
Then,

E
[
k(t+1) | k(t)

]
= (n−k(t))α01

k(t)

n
+ k(t)

(
1− α10(1−

k(t)

n
)

)
which, posing y(t) = k(t)/n, can be written as

E
[
y(t+1) | y(t)

]
= y(t) + (α01 − α10)y

(t)(1− y(t)). (4)

Proposition 2. Assume α01 ⩽ α10. Then the fixation prob-
ability of opinion 0 is at least the fraction of agents holding
opinion 0.

Proof. Under the assumption α01 ⩽ α10,

E
[
y(t+1)

]
= E

[
E
[
y(t+1) | y(t)

]]
= E

[
y(t)

]
+ (α01 − α10)E

[
y(t)(1− y(t))

]
⩽ E

[
y(t)

]
.

Hence, the succession (E
[
y(t)

]
)t is monotone and bounded

and attains a limit. This limit must coincide with the
fixation probability, because y(t) converges in distribution
to a bernoulli random variable y(∞) and E

[
y(∞)

]
=

P
(
y(∞) = 1

)
= P

(
∃t : y(t) = 1

)
equals the fixation prob-

ability. Since E
[
y(0)

]
= y(0) = k(0)/n, the fixation proba-

bility of opinion 1 must be at most k(0)/n, so that of opinion
0 is at least 1− k(0)/n.

Regarding the expected consensus time, we show the fol-
lowing by using the technique of drift analysis [Lengler and
Steger, 2018].

Theorem 5. If Tk(n) is the expected consensus time in the n-
clique when starting from a configuration with k nodes hold-
ing opinion 1, and α01 = α10 − ϵ, then

Tk(n) ⩽
nk

ϵ(n− 1)
.

In particular, Tk(n) ⩽ min(2k/ϵ, n/ϵ) for each k =
1, 2, . . . , n− 1.

Proof. We adapt a proof of [Lengler and Steger, 2018, The-
orem 2.1] to our setting, since their result is not suitable for
systems with more than one absorbing state. In the remain-
der, we assume α01 < α10, we let ϵ = α10 − α01, and we let
z(t) = k(t)/n, i.e., z(t) is the fraction of agents with opinion
1 at time t. We begin by defining the following stopping time:

T := inf{t ⩾ 0 : z(t) ∈ {0, 1}}.

This definition is akin to the one given in [Lengler and
Steger, 2018, Theorem 2.1], but it accounts for the pres-
ence of two absorbing states in the Markov chain defined
by z(t). Moreover, z(t) = z(t−1) for every t > T , since
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z(t) does not change after absorption (regardless of the ab-
sorbing state). We next note that for every t, z(t) ∈ S ={
0, 1

n , . . . , 1−
1
n , 1

}
. Moreover, for every s ∈ S we have

E
[
z(t+1) | z(t) = s

]
= s− ϵs(1− s), whence:

E
[
z(t) − z(t+1) | z(t) = s

]
= ϵs(1− s),

with the last quantity at least ϵ 1
n

(
1− 1

n

)
for s ∈ S \ {0, 1}.

Next:

E
[
z(t+1) | T > t

]
=

n−1∑
s=1

E
[
z(t+1) | z(t) = s

n

]
·P

(
z(t) =

s

n
| T > t

)
,

where the first equality follows since, for s ̸∈ {0, 1}, z(t) = s
implies T > t. Similarly to the proof of [Lengler and Steger,
2018, Theorem 2.1], the equality above implies

E
[
z(t) − z(t+1) | T > t

]
⩾ ϵ

1

n

(
1− 1

n

)
. (5)

We let δ = ϵ 1
n

(
1− 1

n

)
for conciseness. We next have:

E
[
z(t)

]
(a)
= E

[
z(t) | T > t

]
P (T > t)+

+P
(
z(t) = 1 | T ⩽ t

)
·P (T ⩽ t)

and therefore

E
[
z(t+1)

]
(a)
= E

[
z(t+1) | T > t

]
·P (T > t)+

+P
(
z(t+1) = 1 | T ⩽ t

)
·P (T ⩽ t)

(b)

⩽
(
E
[
z(t) | T > t

]
− δ

)
·P (T > t)+

+P
(
z(t+1) = 1 | T ⩽ t

)
·P (T ⩽ t)

(c)
= E

[
z(t)

]
−P

(
z(t) = 1 | T ⩽ t

)
·P (T ⩽ t)+

+P
(
z(t+1) = 1 | T ⩽ t

)
·P (T ⩽ t)− δ ·P (T > t) .

In the derivations above, (a) simply follows from the law
of total probability, considering that T ⩽ t implies z(t) ∈
{0, 1}, (b) follows from (5), while (c) follows by replacing
the equation of E

[
z(t)

]
into the last step of the derivation.

Next, we note that

P
(
z(t+1) = 1 | T ⩽ t

)
= P

(
z(t) = 1 | T ⩽ t

)
by definition of the z(t), whence we obtain:

δ ·P (T > t) ⩽ E
[
z(t)

]
−E

[
z(t+1)

]
. (6)

Now, observe that (6) is exactly [Lengler and Steger, 2018,
(2.4) in Theorem 2.1]. From this point, the proof proceeds ex-
actly as in [Lengler and Steger, 2018, (2.4) in Theorem 2.1],
so that we finally have:

E [T ] ⩽
z(0)

δ
=

nk

ϵ(n− 1)
,

if at time t = 0 we have k agents with opinion 1.

5 Conclusions and Outlook
Natural directions for future work include considering more
opinions and general topologies.

More Opinions. The case of more opinions presents no
major challenges in the unbiased case, both in its asyn-
chronous and synchronous variants, something we did not
discuss for the sake of space. In this case, one can simply
focus on one opinion at a time, collapsing the remaining opin-
ions into an “other” class. Proceeding this way, it is easy to
extend the results we presented in Section 3 to the general
case: for k > 2 opinion, the fixation probability for opinion
i is

∑
u∈W du∑

u du
, where W is the subset of nodes with opinion

i in the initial configuration. The biased case is considerably
harder and the technical barriers are twofold: one is the gen-
eral difficulty of characterizing the expected change of the
global state in the biased setting even in the case of 2 opin-
ions (see next paragraph). The other is the possible presence
of rock-paper-scissors like dynamics that may arise depend-
ing on the distribution of the opinion biases.

General Topologies. As also suggested by previous work,
albeit for different models [Montanari and Saberi, 2010;
Anagnostopoulos et al., 2022; Lesfari et al., 2022], we be-
lieve the biased case might give rise to diverse and possi-
bly counterintuitive behaviors. In general, a crucial tech-
nical challenge is characterizing the evolution of the global
state across consecutive steps, since this in general de-
pends on the current configuration in a way that is highly
topology-dependent and hard to analyze. Some recent results
[Schoenebeck and Yu, 2018; Shimizu and Shiraga, 2020] pro-
posed techniques relying on variants of the expander mixing
lemma to investigate quasi-majority dynamics on expanders.
Unfortunately, these techniques do not obviously extend to
the biased voter models we consider. Indeed and interest-
ingly, the class of dynamics these techniques apply to does
not even include the standard voter model as a special case.

In general, we believe that extending and/or improving our
results for the biased setting might require refining impor-
tant techniques, such as those of [Schoenebeck and Yu, 2018;
Shimizu and Shiraga, 2020] or the ones discussed in [Lengler
and Steger, 2018].
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