
Scalable Verification of Strategy Logic through Three-valued Abstraction
Francesco Belardinelli1 , Angelo Ferrando2 , Wojciech Jamroga3 , Vadim Malvone4 , Aniello

Murano5

1Imperial College London, United Kingdom
2University of Genoa, Italy

3SnT, University of Luxembourg & Institute of Computer Science, Polish Academy of Sciences
4Telecom Paris, France

5University of Naples Federico II, Italy
francesco.belardinelli@imperial.ac.uk, angelo.ferrando@unige.it, w.jamroga@ipipan.waw.pl,

vadim.malvone@telecom-paris.fr, aniello.murano@unina.it

Abstract
The model checking problem for multi-agent sys-
tems against Strategy Logic specifications is known
to be non-elementary. On this logic several frag-
ments have been defined to tackle this issue but
at the expense of expressiveness. In this paper,
we propose a three-valued semantics for Strategy
Logic upon which we define an abstraction method.
We show that the latter semantics is an approx-
imation of the classic two-valued one for Strat-
egy Logic. Furthermore, we extend MCMAS, an
open-source model checker for multi-agent specifi-
cations, to incorporate our abstraction method and
present some promising experimental results.

1 Introduction
In multi-agent systems, logics for strategic reasoning play
a key role. In this domain, one of the success stories is
Alternating-time Temporal Logic (ATL∗)[Alur et al., 2002],
which can express cooperation and competition among teams
of agents in order to achieve temporal goals, such as fairness,
liveness, safety requirements. In fact, ATL∗ extends the well
known branching-time temporal logic CTL∗ [Halpern and
Shoham, 1986] by generalizing the existential E and univer-
sal A path quantifiers of CTL∗ with the strategic modalities
⟨⟨C⟩⟩ and [[C]], where C is a coalition of agents. However,
it has been observed that ATL∗ suffers from a number of
limitations that, on the one hand, make the model-checking
and satisfiability problems decidable (both are 2ExpTime-
complete); but, on the other hand, make the logic too weak
to express key game-theoretic concepts, such as Nash equi-
libria [Mogavero et al., 2012]. To overcome these limita-
tions, Strategy Logic (SL) [Mogavero et al., 2014; Chatter-
jee et al., 2010] has been put forward. A key aspect of SL is
to consider strategies as first-order objects that can be exis-
tentially or universally quantified over by means of the strat-
egy quantifiers ∃x and ∀x, respectively. Then, by means of
a binding operator (a, x), a strategy x can be associated to
a specific agent a. This allows to reuse strategies as well
as to share them among different agents. Since its intro-
duction, SL has proved to be a powerful formalism: it can

express complex solution concepts, including Nash equilib-
ria, and subsumes all previously introduced logics for strate-
gic reasoning, including ATL∗. The high expressivity of
SL has spurred its analysis in a number of directions and
extensions, such as prompt [Aminof et al., 2016], graded
[Aminof et al., 2018], fuzzy [Bouyer et al., 2019], probabilis-
tic [Aminof et al., 2019], and imperfect [Berthon et al., 2021;
Belardinelli et al., 2020] strategic reasoning.

As one may expect, the high expressivity of SL comes
at a price. Indeed, its model-checking problem turns out
to be non-elementary [Mogavero et al., 2014]. Moreover,
the model checking procedure is not immune to the well-
known state-space explosion, as faithful models of real-world
systems are intrinsically complex and often infeasible even
to generate, let alone verify. These issues call for tech-
niques to make model checking SL amenable at least in
practice. A technique that has been increasingly used in
industrial settings to verify hardware and software systems
is state abstraction, which allows to reduce the state space
to manageable size by clustering “similar” concrete states
into abstract states. Abstraction has been first introduced
for stand-alone systems [Clarke et al., 1994], then extended
to two-agent system verification [Grumberg et al., 2007;
Shoham and Grumberg, 2004; Bruns and Godefroid, 2000;
Aminof et al., 2012]. Recently, abstraction approaches
have been investigated for multi-agent systems w.r.t. ATL∗

specifications [Kouvaros and Lomuscio, 2017; Belardinelli
et al., 2019; Belardinelli and Lomuscio, 2017; Jamroga et
al., 2016; Jamroga et al., 2020; Belardinelli et al., 2023;
Ferrando and Malvone, 2023; Belardinelli et al., 2022;
Belardinelli et al., 2018; Belardinelli and Malvone, 2020;
Ferrando and Malvone, 2021; Ferrando and Malvone, 2022].
A natural direction is then to investigate a form of abstraction
suitable for Strategy Logic as well.

Our Contribution. In this paper we introduce the first no-
tion of three-valued abstraction for SL. The contribution of
this paper is threefold. First, in Sec. 3 we define a three-
valued semantics for SL where, besides the standard truth
values true ⊤ and false ⊥, we have a third value undefined
u that models situations where the verification procedure is
not able to return a conclusive answer. Second, in Sec. 4 we

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

46

introduce an abstraction procedure for SL, which can reduce
significantly the size of the state space of SL models, although
at the cost of making some formulas undefined. The main
theoretical result is the Preservation Theorem 4.2, which al-
lows us to model check SL formulas in the three-valued ab-
straction and then lift any defined answer to the original two-
valued model. Third, in Sec. 6 we evaluate empirically the
trade-off between state-space reduction and definiteness, by
applying our abstraction procedure to a scheduling scenario.
What we observe empirically is a significant reduction of the
model size, which allows us to verify instances that are not
amenable to current model checking tools.

Related Work. The present contribution is inspired by a
long tradition of works on the abstraction of MAS models,
including through three-valued semantics. An abstraction-
refinement framework for the temporal logic CTL over a
three-valued semantics was first studied in [Shoham and
Grumberg, 2004; Shoham and Grumberg, 2007], and then
extended to the full µ-calculus [Grumberg et al., 2007] and
hierarchical systems [Aminof et al., 2012]. Three-valued ab-
stractions for the verification of Alternating-time Temporal
Logic have been put forward in [Ball and Kupferman, 2006;
Lomuscio and Michaliszyn, 2014; Lomuscio and Michal-
iszyn, 2015; Lomuscio and Michaliszyn, 2016]. In [Ball and
Kupferman, 2006; Shoham and Grumberg, 2004] ATL∗ is
interpreted under perfect information; while [Lomuscio and
Michaliszyn, 2014; Lomuscio and Michaliszyn, 2015; Lo-
muscio and Michaliszyn, 2016] consider non-uniform strate-
gies [Raimondi and Lomuscio, 2005]. Finally, [Jamroga et
al., 2016; Jamroga et al., 2020] introduce a multi-valued se-
mantics for ATL∗ that is a conservative extension of the clas-
sical two-valued variant. Related to this line, three-valued
logics have been extensively applied to system verification,
including [Bruns and Godefroid, 1999; Huth et al., 2001;
Godefroid and Jagadeesan, 2003]

Clearly, we build in this long line of works, but the expres-
siveness of SL raises specific challenges that the authors of
the contributions above need not to tackle. We briefly men-
tion them here and refer to specific sections for further details.
First, we have to introduce individual must and may actions
and strategies as under- and over- approximations of the be-
haviours of our agents. Second, the loosely-coupled nature
of agents requires to consider non-deterministic transitions in
the abstraction (Sec. 4). Third, the arbitrary alternation of ex-
istential and universal strategy quantifiers makes proving the
Preservation Theorem 4.2 significantly more challenging, and
complicates our experiments in verifying three-valued SL in
the two-valued model-checking tool MCMAS (Sec. 6).

2 Reasoning about Strategies
In this section we recall the definitions of basic notions for
Strategy Logic [Mogavero et al., 2014].

2.1 Syntax
Strategy Logic (SL) syntactically extends LTL with two strat-
egy quantifiers, the existential ∃x and universal ∀x, and an
agent binding (a, x), where a is an agent and x a variable. In-
tuitively, these additional elements can be respectively read as

“there exists a strategy x”, “for all strategies x”, and “bind
agent a to the strategy associated with the variable x”. Since
negated quantifiers often prove problematic in many valued
settings, we restrict the syntax of SL to formulas in Negation
Normal Form (NNF), without loss of expressiveness. In that
case, the universal strategic quantifier ∀x and the temporal
operator “Release” R are added as primitives, and negation is
allowed only at the level of literals. Note that every formula
of SL can be equivalently transformed to one in NNF, with at
most a linear blowup [Mogavero et al., 2014].
Definition 2.1 (SL Syntax). Given the set AP of atoms, vari-
ables Var, and agents Ag, the formal syntax of SL is defined
as follows, where p ∈ AP, x ∈ Var, and a ∈ Ag:

φ ::= p | ¬p | φ ∧ φ | φ ∨ φ | ∃xφ | ∀xφ | (a, x)φ |
Xφ | φ Uφ | φRφ

We introduce the derived temporal operators as usual:
Fφ = ⊤Uφ (“eventually”) and Gφ = ⊥Rφ (“always”).

Usually, predicate logics need the concepts of free and
bound placeholders in order to formally define their seman-
tics. In SL, since strategies can be associated to both agents
and variables, we introduce the set of free agents/variables
free(φ) as the subset of Ag ∪ Var containing (i) all agents a
for which there is no binding (a, x) before the occurrence
of a temporal operator, and (ii) all variables x for which
there is a binding (a, x) but no quantification ∃x or ∀x. A
formula φ without free agents (resp., variables), i.e., with
free(φ) ∩ Ag = ∅ (resp., free(φ) ∩ Var = ∅), is called
agent-closed (resp., variable-closed). If φ is both agent- and
variable-closed, it is a sentence.

2.2 Two-valued Semantics
We now provide a formal semantics to Strategy Logic.
Models. To model the behaviour of multi-agent systems, we
use a variant of concurrent game structures [Alur et al., 2002].
Definition 2.2 (CGS). A concurrent game structure (CGS) is
a tuple G = ⟨Ag,St , s0, Act, τ, AP, V ⟩ such that (i) Ag is a
finite, non-empty set of agents. (ii) St is a finite, non-empty
set of states, with initial state s0 ∈ St . (iii) Act is a finite,
nonempty set of actions. We use ACT = Act|Ag| for the
set of all joint actions (a.k.a. action profiles), i.e., tuples of
individual actions, played synchronously by all agents. (iv)
τ : St × ACT → 2St is the transition function assigning
successor states {s′, s′′, . . . } = τ(s, α⃗) to each state s ∈ St
and joint action α⃗ ∈ ACT . We assume that the transitions in
a CGS are deterministic, i.e., τ(s, α⃗) is always a singleton.1
(v) AP is a set of atomic propositions, and (vi) V : St ×
AP → {⊤,⊥} is a two-valued labelling function.

By Def. 2.2 a CGS describes the interactions of a groupAg
of agents, starting from the initial state s0 ∈ St , according to
the transition function τ . We use G as a subscript for AgG,
StG, etc., whenever the model is not clear from the context.

1The deterministic transitions in a CGS are usually defined by a
function of type τ : St × ACT → St . We use a slightly differ-
ent (but equivalent) formulation. This will make it easier for us to
extend it to nondeterministic transitions in three-valued models (see
Def. 3.1).

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

47

Note that the CGSs used in the semantics of Strategy Logic
assume that all the actions are available to every agent at ev-
ery state [Mogavero et al., 2014]. This is because a strategy
assigned to variable x can be later associated with any agent
a by means of the binding operator (a, x). As a consequence,
the available strategies (and hence also the available actions)
are the same for every agent.

Tracks, Paths, Strategies. We denote the i-th element of
a tuple v as vi, the prefix of v of lenght i as v≤i, and with
last(v) as the last element of v. A track is a finite nonempty
sequence of states ρ ∈ St+ such that, for all 0 ≤ i ≤ |ρ| − 1,
there is an action profile α⃗ ∈ ACT with (ρ)i+1 ∈ τ((ρ)i, α⃗).
Similarly, a path is an infinite sequence of states π ∈ Stω

such that, for all i ∈ N , there is α⃗ ∈ ACT with (π)i+1 ∈
τ((π)i, α⃗). The set Trk ⊆ St+ contains all the tracks in the
model, and Trk(s) the tracks starting at state s ∈ St . The
sets Pth and Pth(s) are defined analogously. We denote the
prefix of a path π up to position i ∈ N as π≤i.

A strategy is a partial function f : Trk → Act that maps
each track in its domain to an action. Intuitively, a strat-
egy is a conditional plan that, for some tracks of G, pre-
scribes an action to be executed. A strategy is memoryless
(or positional), if last(ρ) = last(ρ′) implies f(ρ) = f(ρ′),
that is, the strategy only depends on the last state. The set
Str = Trk → Act (resp., Str(s) = Trk(s) → Act) con-
tains all strategies (resp., strategies starting from s).

Assignments. Let Var be the set of variables. An assignment
is a partial function χ : Var ∪ Ag → Str mapping variables
and agents in its domain to strategies. An assignment χ is
complete if it is defined on all agents, i.e., Ag ⊆ dom(χ). The
set Asg = Var ∪ Ag → Str contains all assignments. More-
over, Asg(X) =X→ Str indicates the subset of X-defined
assignments, i.e., assignments defined on X ⊆ Var ∪ Ag.

As in first-order logic, in order to quantify over strategies
or bind a strategy to an agent, we update an assignment χ
by associating an agent or a variable l with a new strategy f .
Let χ ∈ Asg be an assignment, f ∈ Str a strategy and l ∈
Var∪Ag either an agent or a variable. Then, χ[l 7→ f] ∈ Asg
denotes the new assignment that returns f on l and the same
value that χ would return on the rest of its domain.

Outcome Plays of a Strategy. A play is the unique outcome
of the game settled by all agent strategies engaged in it. For-
mally, given a state s ∈ St and a complete assignment χ ∈
Asg(s), the function play(χ, s) returns the path π ∈ Pth(s)
such that, for all i ∈ N , it holds that {πi+1} = τ(πi, α⃗),
where α⃗(a) = χ(a)(π≤i) for each a ∈ Ag.

We now define the translation of an assignment together
with a related path (resp. state). It is used to keep track, at a
certain stage of the play, of the current state and its updated
assignment. For a path π and an assignment χ ∈ Asg, the i-th
global translation of (χ, π) with i ∈ N is the pair (χ, π)i =
(χπ≤i

, πi) of an assignment and a state. Moreover, for a state
s ∈ St , we define (χ, s)i = (χ, play(χ, s))i.

As in the case of components of a model, in order to avoid
any ambiguity, we sometimes use the name of the model as a
subscript of the sets and functions introduced above.

Satisfaction. The (two-valued) satisfaction relation for SL
is defined as follows.

Definition 2.3 (Two-valued Satisfaction). Given a model G,
for all SL formulas φ, states s ∈ St , and assignments
χ ∈ Asg with free(φ) ⊆ dom(χ), the satisfaction relation
(G,χ, s) |=2 φ is inductively defined as follows:

• (G,χ, s) |=2 p iff V (s, p) = ⊤, for p ∈ AP.

• Boolean operators are interpreted as usual.

• (G,χ, s) |=2 ∃ xφ iff for some strategy f ∈ Str(s),
(G,χ[x 7→ f], s) |=2 φ.

• (G,χ, s) |=2 ∀xφ iff for all strategies f ∈ Str(s),
(G,χ[x 7→ f], s) |=2 φ.

• (G,χ, s) |=2 (a, x)φ iff (G,χ[a 7→ χ(x)], s) |=2 φ.

• Finally, if the assignment χ is also complete, it holds that:

– (G,χ, s) |=2 Xφ iff (G, (χ, s)1) |=2 φ;
– (G,χ, s) |=2 φ1Uφ2 iff for some index i ∈ N ,

(G, (χ, s)i) |=2 φ2 and, for all j < i, it holds that
(G, (χ, s)j) |=2 φ1;

– (G,χ, s) |=2 φ1Rφ2 iff, for all i ∈ N , (G, (χ, s)i) |=2

φ2 or there is j ≤ i such that (G, (χ, s)i) |=2 φ1.

Due to the semantics of the Next X , Until U , and Release
R operators, LTL semantics is clearly embedded into the SL
one. Furthermore, since the satisfaction of a sentence φ does
not depend on assignments, we omit them and write (G, s) |=
φ, when s is a generic state in St , and G |= φ when s = s0.

Note that we can easily define the memoryless variant of
strategy logic by restricting the clauses for operators ∃x and
(a, x) to memoryless strategies.

Finally, we define the (two-valued) model checking prob-
lem for SL as determining whether an SL formula ϕ holds in
a CGS G, that is, whether G |=2 ϕ. We conclude this section
by stating the related complexity result.

Theorem 2.4 ([Mogavero et al., 2014]). The model checking
problem for Strategy Logic is non-elementary.

3 Three-Valued Strategy Logic
In this section we introduce a novel three-valued semantics
for Strategy Logic starting by extending CGSs.

3.1 Three-Valued CGSs
We extend (two-valued) CGSs with must and may transi-
tions as under- and over-approximations of the strategic abil-
ities of agents.

Definition 3.1 (Three-valued CGS). A three-valued CGS is a
tupleG=⟨Ag,St , s0, Actmay, Actmust, τmay, τmust, AP, V ⟩,
where:

• Ag,St , s0, AP are defined as in Def. 2.2.

• Actmay and Actmust provide respectively the upper and
lower approximation of the available actions. We assume
that Actmust ⊆ Actmay . The sets of may and must ac-
tion profiles are given by ACTmay = (Actmay)|Ag| and
ACTmust = (Actmust)|Ag|, respectively.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

48

• τmay : St ×ACTmay → 2St is the may transition func-
tion, and τmust : St × ACTmay → 2St the must transi-
tion function. Note that both functions are possibly non-
deterministic and are defined on all the potential action
profiles in the system, i.e., ACTmay . However, we only
require that they return nonempty successor sets on their
respective action profiles. That is, τmay(s, α⃗) ̸= ∅ for
every state s ∈ St and action profile α⃗ ∈ ACTmay ,
and τmust (s, α⃗) ̸= ∅ for every state s ∈ St and ac-
tion profile α⃗ ∈ ACTmust.2 Moreover, it is required
that τmust (s, α⃗) ⊆ τmay(s, α⃗) for every s ∈ St and
α⃗ ∈ ACTmay . In other words, every must transition
is also a may transition, but not necessarily viceversa.

• The labelling function V : St × AP → {⊥,⊤,u} maps
now each pair of a state and an atom to a truth value of
“true,” “false,” or “undefined.”

The notions of tracks, paths, and the definitions of sets
Trk ,Trk(s),Pth,Pth(s) carry over from Section 2.2.

May/Must Strategies and their Outcomes. A may-
strategy (resp. must-strategy) is a function f : Trk →
Actmay (resp. Actmust) that maps each track to a may
(resp. must) action. Note that each must-strategy is a may-
strategy, but not necessarily the other way around. Moreover,
we can define memoryless may- and must-strategies in the
standard way. The sets Strmay and Strmust are defined anal-
ogously to Section 2.2.

Given a state s ∈ St and a profile of (may and/or must)
strategies, represented by a complete assignment χ ∈ Asg,
we define two kinds of outcome sets, playsmay(χ, s) and
playsmust (χ, s). The former over-approximates the set of
paths that can really occur when executing χ from s, while the
latter under-approximates it. Typically, we will use playsmay

to establish that the value of a temporal formula φ is ⊤ (if
φ holds in all such paths), and playsmust for ⊥ (if φ is false
in at least one path). Formally, the function playsmay(χ, s)
returns the paths π ∈ Pth(s) such that, for all i ∈ N , it holds
that πi+1 ∈ τmay(πi, α⃗), where α⃗(a) = χ(a)(π≤i) for each
a ∈ Ag. The definition of playsmust (χ, s) is analogous, only
with τmust being used instead of τmay .

3.2 Three-valued Semantics
We now define the Three-valued satisfaction relation for
Strategy Logic.

Definition 3.2 (Three-valued Satisfaction). Given a 3-valued
model G, for all SL formulas φ, states s ∈ St , and assign-
ments χ ∈ Asg(s) with free(φ) ⊆ dom(χ), the satisfaction
relation (G,χ, s |=3 φ)= tv is inductively defined as follows.

• (G,χ, s |=3 p) = V (s, p), for p ∈ AP.

• Boolean operators are interpreted as in Łukasiewicz’s three
valued logic [Łukasiewicz, 1920].

• For ϕ = ∃xφ,

– (G,χ, s |=3 ϕ) = ⊤ iff (G,χ[x 7→ f], s |=3 φ) = ⊤ for
some must-strategy f ∈ Strmust (s);

2Note that the function τmust is total because we assume the
empty set as an element of the co-domain.

– (G,χ, s |=3 ϕ) = ⊥ iff (G,χ[x 7→ f], s |=3 φ) = ⊥ for
all may-strategies f ∈ Strmay(s);

– otherwise, (G,χ, s |=3 ϕ) = u.

• For ϕ = ∀xφ,

– (G,χ, s |=3 ϕ) = ⊤ iff for all may-strategies f ∈
Strmay(s), (G,χ[x 7→ f], s |=3 φ) = ⊤;

– (G,χ, s |=3 ϕ) = ⊥ iff for some must-strategy f ∈
Strmust (s), (G,χ[x 7→ f], s |=3 φ) = ⊥;

– otherwise, (G,χ, s |=3 ϕ) = u.

• (G,χ, s |=3 (a, x)φ) = (G,χ[a 7→ χ(x)], s |=3 φ).

• Finally, if the assignment χ is also complete, we define:

– (G,χ, s |=3 Xφ) = ⊤ iff for all π ∈ playsmay(χ, s), we
have (G, (χ, π)1 |=3 φ) = ⊤;

– (G,χ, s |=3 Xφ) = ⊥ iff for some π ∈ playsmust (χ, s),
we have (G, (χ, π)1 |=3 φ) = ⊥;

– otherwise, (G,χ, s |=3 Xφ) = u.

– (G,χ, s |=3 φ1Uφ2) = ⊤ iff for all π ∈ playsmay(χ, s),
there is i ∈ N such that (G, (χ, π)i |=3 φ2) = ⊤, and
for all j < i we have (G, (χ, π)j |=3 φ1) = ⊤;

– (G,χ, s |=3 φ1Uφ2) = ⊥ iff for some π ∈
playsmust (χ, s) and all i ∈ N , we have (G, (χ, π)i |=3

φ2) = ⊥ or there exists j < i such that (G, (χ, π)j |=3

φ1) = ⊥;
– otherwise, (G,χ, s |=3 φ1Uφ2) = u.

– (G,χ, s |=3 φ1Rφ2) = ⊤ if for all π ∈ playsmay(χ, s)
and i ∈ N , we have (G, (χ, π)i |=3 φ2) = ⊤ or there
exists j ≤ i such that (G, (χ, π)j |=3 φ1) = ⊤;

– (G,χ, s |=3 φ1Rφ2) = ⊥ iff for some π ∈
playsmust (χ, s) and i ∈ N , we have (G, (χ, π)i |=3

φ2) = ⊥ and for all j ≤ i, we have (G, (χ, π)j |=3

φ1) = ⊥;
– otherwise, (G,χ, s |=3 φ1Rφ2) = u.

Again, we can define the memoryless, three-valued satis-
faction relation for SL by restricting the clauses for operators
∃x, ∀x, and (a, x) to memoryless strategies. Similarly to Sec-
tion 2, if ϕ is a sentence, then (G, s |=3 φ) = (G,χ, s |=3 φ)
for any assignment χ, and (G |=3 φ) = (G, s0 |=3 φ).

We now show that our three-valued semantics in Def. 2.3
is a conservative extension of the standard two-valued inter-
pretation in Sec. 2.

Theorem 3.3 (Conservativeness). Let G be a standard CGS,
that is, Actmay = Actmust , τmay = τmust are functions,
and the truth value of every atom is defined (i.e., it is equal to
either ⊤ or ⊥). Then, for every formula ϕ in SL,

(G,χ, s |=3 ϕ) = ⊤ ⇔ (G,χ, s) |=2 ϕ (1)

(G,χ, s |=3 ϕ) = ⊥ ⇔ (G,χ, s) ̸|=2 ϕ (2)

Proof. The result follows from the fact that in standard CGS
the clauses for the three-valued satisfaction relation collapse
to those for two-valued satisfaction, whenever Actmay =
Actmust , τmay = τmust are functions, and the truth value
of every atom is defined.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

49

Remark 3.4 (Model checking). For any syntactic fragment
L of SL, model checking of L with 3-valued semantics can
be reduced to 2-valued model checking of L by a construc-
tion similar to [Jamroga et al., 2016, Theorem 4]. Note also
that 2-valued model checking for L is a special case of its 3-
valued counterpart, due to Theorem 3.3. Thus, the decidabil-
ity and complexity for 2-valued model checking in fragments
of SL carry over to 3-valued verification.

4 Three-valued Abstraction for SL
Here, we define the 3-valued state abstraction for CGS. The
idea is to cluster the states of a CGS (called the concrete
model) according to a given equivalence relation ≈, e.g.,
one provided by a domain expert. Typically, two states are
deemed equivalent if they agree on the evaluation of atoms,
possibly just the atoms appearing on a given formula ϕ to be
checked. In some cases, such an equivalence relation might
be too coarse and therefore more domain-dependent informa-
tion could be taken into account.

Then, the sets of may (resp. must) actions and the may
(resp. must) transitions are computed in such a way that
they always overapproximate (resp. underapproximate) the
actions and transitions in the concrete model. Formally, the
abstraction is defined as follows.

Definition 4.1 (Abstraction). Let G = ⟨Ag,St , s0, Act, τ,
AP, V ⟩ be a CGS, and ≈⊂ St × St an equiva-
lence relation. We write [s] for the equivalence
class of ≈ that contains s. The abstract model of
G w.r.t. ≈ is defined as the 3-valued CGS A(G) =
⟨A(Ag),A(St),A(s0),Amay(Act),Amust (Act),Amay(τ),
Amust (τ),A(AP),A(V)⟩, with:

• A(Ag) = Ag and A(AP) = AP .

• A(St) = {[s] | s ∈ St} with A(s0) = [s0].

• Amay(Act) = Act.

• Amay(τ) = τmay : A(St) × (Amay(Act))|A(Ag)| →
2A(St) such that τmay([s], α⃗) =
{[ssucc] | ∃s′ ∈ [s] ∃s′succ ∈ [ssucc] . s

′
succ ∈ τ(s′, α⃗)}).

• Amust (τ) = τmust : A(St) × (Amay(Act))|A(Ag)| →
2A(St) such that τmust ([s], α⃗) =
{[ssucc] | ∀s′ ∈ [s] ∃s′succ ∈ [ssucc] . s

′
succ ∈ τ(s′, α⃗)}).

• Amust (Act) is a maximal3 set Actmust ⊆ Act such that
∀s ∈ St ∀α⃗ ∈ (Actmust)|A(Ag)| . τmust ([s], α⃗) ̸= ∅.
Note that a unique maximal set does not always exist.
In such cases, a natural heuristics would be to choose
the maximal subset of actions with the largest cardinal-
ity, breaking ties lexicographically in case there are still
multiple solutions.

• A(V)([s], p) =

{ ⊤ if V (s′, p) = ⊤ for all s′ ∈ [s]
⊥ if V (s′, p) = ⊥ for all s′ ∈ [s]
u otherwise.

Note that A(G) can be computed in polynomial time w.r.t.
the size of G, assuming the above heuristics for Amust (Act).

3with respect to set inclusion.

We now prove that the abstraction preserves classical truth
values. Given a strategy f in G, we define the set of
corresponding may-strategies in A(G) by abstrmay(f) =
{f† | f†([s0], . . . , [sn]) = f(s′0, . . . , s

′
n) for some s′0 ∈

[s0], . . . , s
′
n ∈ [sn]}. Moreover, abstrmust (f) =

abstrmay(f) ∩ Strmust . Note that abstrmay(f) is always
nonempty. Also, abstrmust (f) is either empty or a singleton.

Conversely, given a (may or must) strategy f in A(G),
we define the set of corresponding concrete strategies inG by
concr(f) = {f∗ | f∗(s0, . . . , sn) = f([s0], . . . , [sn])}. No-
tice that concr(f) is always a singleton for must strategies,
and either empty or a singleton for may strategies. We lift
abstrmay , abstrmust , concr to sets of strategies in the stan-
dard way. Clearly, f ∈ concr(abstrmay(f)) for any con-
crete strategy, and f ∈ abstrmust (concr(f)) for any must-
strategy. We lift the notation to assignments analogously. Ob-
serve that, in every χ∗ ∈ concr(χ[x 7→ f]), x is assigned
with f∗ ∈ concr(f).

Theorem 4.2 (Preservation). Let G be a CGS and A(G) its
abstraction induced by equivalence relation ≈. Then, for ev-
ery formula ϕ in SL, every (may or must) assignment χ and
state s in A(G), every assignment χ∗ ∈ concr(χ), and state
t ∈ s in G, it holds that:

((A(G), χ, s) |=3 ϕ) = ⊤ ⇒ (G,χ∗, t) |=2 ϕ (3)

((A(G), χ, s) |=3 ϕ) = ⊥ ⇒ (G,χ∗, t) ̸|=2 ϕ (4)

Proof. The proof is by induction on the structure of ϕ.
Induction base (ϕ = p): ((A(G), χ, s) |=3 ϕ) = ⊤ iff
A(V)(s, p) = ⊤, iff for all t ∈ s, V (t, p) = ⊤, that is,
(G,χ∗, t) |=2 ϕ. The case for ⊥ is proved similarly. The
case of ϕ = ¬p is analogous.

Case ϕ = ψ1 ∧ ψ2: ((A(G), χ, s) |=3 ϕ) = ⊤ iff
((A(G), χ, s) |=3 ψ1) = ⊤ and ((A(G), χ, s) |=3 ψ2) = ⊤.
By induction, for all χ∗ ∈ concr(χ) and t ∈ s, (G,χ∗, t) |=2

ψ1 and (G,χ∗, t) |=2 ψ2. Thus, (G,χ∗, t) |=2 ψ1 ∧ ψ2.
Further, ((A(G), χ, s) |=3 ϕ) = ⊥ iff ((A(G), χ, s) |=3

ψ1) = ⊥ or ((A(G), χ, s) |=3 ψ2) = ⊥. By induction, for
all χ∗ ∈ concr(χ) and t ∈ s, (G,χ∗, t) ̸|=2 ψ1 or for all
χ∗ ∈ concr(χ) and t ∈ s, (G,χ∗, t) ̸|=2 ψ2. Thus, for all
χ∗ ∈ concr(χ) and t ∈ s, (G,χ∗, t) ̸|=2 ψ1 ∧ ψ2. The case
of ϕ = ψ1 ∨ ψ2 is analogous.

Case ϕ = ∃xψ: (A(G), χ, s |=3 ϕ) = ⊤ iff for some must-
strategy f ∈ Strmust (s), (A(G), χ[x 7→ f], s |=3 ψ) = ⊤.
By induction, for all χ∗ ∈ concr(χ[x 7→ f]) and t ∈ s, it
holds that (G,χ∗, t) |=2 ψ. Assume that concr(χ[x 7→ f])
is nonempty, and consider the sole concrete strategy f∗ ∈
concr(f). Clearly, χ∗ = χ∗[x 7→ f∗] for every χ∗ ∈
concr(χ[x 7→ f]). Thus, (G,χ∗[x 7→ f∗], t) |=2 ψ, and
hence also (G,χ∗, t) |=2 ∃xψ. Assume now, to the contrary,
that concr(χ[x 7→ f]) is empty. In that case, (G,χ∗[x 7→
f∗], t) |=2 ψ holds vacuously for all χ∗ = χ∗[x 7→ f∗], and
hence again (G,χ∗, t) |=2 ∃xψ.

Further, (A(G), χ, s |=3 ϕ) = ⊥ iff for every may-
strategy f ∈ Strmay(s), (A(G), χ[x 7→ f], s |=3 ψ) =
⊥. Take any concrete strategy g in G, and consider any
g† ∈ abstrmay(f). By the above, (A(G), χ[x 7→ g†], s |=3

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

50

ψ) = ⊥. Thus, by induction, (G,χ∗, t) ̸|=2 ψ for all
χ∗ ∈ concr(χ[x 7→ g†]) and t ∈ s. Similarly to the pre-
vious paragraph, either (i) concr(χ[x 7→ g†]) is nonempty
and χ∗[x 7→ g] ∈ χ∗, thus (G,χ∗[x 7→ g], t) ̸|=2 ψ for all
such χ∗, or (ii) the same statement holds vacuously. In both
cases, (G,χ∗, t) ̸|=2 ∃xψ.

The cases ϕ = ∀xψ and ϕ = (a, x)ψ are analogous.

Case ϕ = Xψ: (A(G), χ, s |=3 ϕ) = ⊤ iff for all π ∈
playsmay(χ, s), we have (G, (χ, π)1) |=3 ψ) = ⊤. By in-
duction, (G,χ∗, t) |=2 ψ for every π ∈ playsmay(χ, s),
χ∗ ∈ concr(χπ≤1

) and t ∈ (π)1. Take any state t′ ∈ s
and assignment χ′ in G such that χ′

π∗
≤1

= χ∗ for some
π∗ ∈ plays(χ′, t′). Since may paths in A(G) overapprox-
imate paths in G, we get that (G,χ′, t′) |=2 Xψ.

Further, (A(G), χ, s |=3 ϕ) = ⊥ iff for some π ∈
playsmust (χ, s), we have (G, (χ, π)1 |=3 φ) = ⊥. By induc-
tion, there is π ∈ playsmust (χ, s) such that (G,χ∗, t) ̸|=2 ψ
for every χ∗ ∈ concr(χπ≤1

) and t ∈ (π)1. Take any state
t′ ∈ s and assignment χ′ in G. Since must paths in A(G)
underapproximate paths in G, there must be a path π∗ ∈
plays(χ′, t′) such that χ′

π∗
≤1

= χ∗. Thus, (G,χ′, t′) ̸|=2 Xψ.

The cases ϕ = ψ1Uψ2 and ϕ = ψ1Rψ2 are analogous.

Corollary 4.3. For any CGS G and SL formula ϕ:

(A(G) |=3 ϕ) = ⊤ ⇒ G |=2 ϕ

(A(G) |=3 ϕ) = ⊥ ⇒ G ̸|=2 ϕ

It is easy to see that the above results hold also for the se-
mantic variant of SL based on memoryless strategies.

5 Implementation
We implemented a prototype tool in Java4, which accepts
CGSs and SL properties as input, on top of MCMAS, the
de facto standard model checker for MAS [Lomuscio et al.,
2015]. Specifically, our tool exploits MCMAS as a black-
box, for performing the actual verification step. In fact, our
tool focuses on the abstraction procedure for the verification
of SL formulas (as presented in this paper), while their veri-
fication is obtained through MCMAS.

From a practical perspective, there are various aspects to
report, that can be summarised as (i) input/output of the tool;
(ii) abstraction of the CGS; (iii) verification in MCMAS.

(i) The implementation allows for the definition of CGSs
as external JSON5 formatted input files. In this way, any end
user may easily interact with the tool, independently from
the CGS’s internal representation (i.e., the corresponding data
structures). As CGSs, also the definition of the SL formula to
check is handled as an external parameter to the tool. Once
the verification ends, the outcome is returned to the user.

(ii) As presented in the paper, in order to improve the ver-
ification performance, the CGS is first abstracted. The ab-
straction is obtained by clustering multiple states into a sin-
gle abstract state of the CGS. This step is based on an equiv-

4https://github.com/AngeloFerrando/3-valuedSL
5https://www.json.org/

alence relation (≈), as presented in Definition 4.1. An ab-
stract state may be labeled by atoms. As presented in Defi-
nition 4.1, an atom holds (resp. does not hold) in the abstract
state iff it holds (resp. does not hold) in all the concrete states
which have been collapsed into the abstract state. Otherwise,
the atom is considered undefined. Note that, since atoms can
hold, not hold, or being undefined in a state, they are explic-
itly labeled in each state. In practice, this is obtained by dupli-
cating each atom p into atoms p⊤ and p⊥, which correspond
to p holding or not holding in a certain state of the abstract
CGS; whereas being undefined can be marked by having nei-
ther p⊤ nor p⊥ present in the abstract state.

(iii) The abstract CGS is then verified in MCMAS against
an SL formula. In more detail, our tool exploits the MCMAS
extension for SL[1G], i.e., the one goal fragment [Cermák
et al., 2015], and the MCMAS extension for SLK, i.e., an
epistemic extension of SL, [Cermák et al., 2014].

Note that, to make use of the MCMAS model checker, our
CGSs need to be first translated into Interpreted Systems [Fa-
gin et al., 1995]. In fact, MCMAS does not support CGSs,
and it expects Interpreted Systems expressed using a domain
specific language called Interpreted Systems Programming
Language (ISPL). Thus, a pre-processing step before call-
ing MCMAS is always required, where the CGS of interest
is first automatically translated into its ISPL representation.
This is only a technical detail, since CGSs and Interpreted
Systems are equally expressive [Belardinelli et al., 2020;
Goranko and Jamroga, 2004].

It is important to report that the ISPL generation is per-
formed on standard CGSs, not on their abstraction. Indeed,
the abstract CGSs as described in Definition 4.1 cannot be
used in MCMAS straight away, but need to be reprocessed
first. To generate a CGS which can then be verified into MC-
MAS, the tool splits the 3-valued CGS into two CGSs. Such
a split is determined by the SL formula under evaluation; that
is, given an SL formula φ, we extract two sets of agents, E
and U , whose strategies are only existentially and universally
quantified in φ, respectively. By using these two sets, we split
the 3-valued CGS into two CGSs: one CGS where agents in
E usemust-strategies, while agents in U usemay-strategies;
one CGS where agents in E use may-strategies, while agents
in U use must-strategies. The first CGS can be used to prove
the satisfaction of φ, while the second CGS can be used to
prove the violation of φ. This follows from Definition 2.3,
third and fourth bullet points.

As a consequence of how the verification is performed in
practice, we remark an important difference between the the-
ory presented in this paper and its implementation: the im-
plementation handles SL formulas with arbitrary alternation
of universal (∀x) and existential (∃x) quantifiers, as long as
for each agent (a) in the formula, there is one single binding
(a, x). Even though at the theoretical level our abstraction
method can handle all SL formulas, at the implementation
level this is not the case. In fact, our tool is based on MC-
MAS, and because of that, we cannot handle formulas where
the agents need to swap between universally and existentially
quantified strategies. This would require to modify MCMAS
internally, which we leave as future work.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

51

https://github.com/AngeloFerrando/3-valuedSL
https://www.json.org/

Processes CGS 3-valued CGS

States Transitions
Verification
Time [sec]
(SL[1G])

Verification
Time [sec]

(SLK)
States Transitions

[Must]
Transitions

[May]
Abstraction
Time [sec]

Verification
Time [sec]
(SL[1G])

Verification
Time [sec]

(SLK)
2 9 40 0.48 0.18 5 16 18 0.01 0.10 0.03
3 21 232 3725.56 2863.75 6 24 27 0.03 0.12 0.13
4 49 1376 T.O T.O 7 34 38 0.10 0.24 0.19
5 113 7904 T.O T.O 8 46 51 0.31 0.72 0.69
6 257 43520 T.O T.O 9 60 66 1.24 2.08 1.12
7 577 230528 T.O T.O 10 76 83 10.88 5.66 4.99
8 1281 1182208 T.O T.O 11 94 102 107.89 8.40 6.67
9 2817 5903872 T.O T.O 12 114 123 1087.14 29.37 26.81

Table 1: Experimental results for the scheduler case study (T.O. stands for Time Out).

Figure 1: CGS compression in the scheduler case study.

6 Experiments
We carried out the experiments on a machine with the fol-
lowing specifications: Intel(R) Core(TM) i7-7700HQ CPU
@ 2.80GHz, 4 cores 8 threads, 16 GB RAM DDR4. The case
study we experimented on consists in a scheduler, where N
agents, i.e., processes (called Pi for 1 ≤ i ≤ N) compete to
get CPU time, while an Arbiter agent decides which process
to grant access (one at a time). The full description of the
example can be found in [Cermák et al., 2018]. The corre-
sponding CGS can be parameterised over the number N of
processes. Naturally, such parameter largely influences the
size and complexity of the resulting CGS. Table 1 reports ex-
perimental results we obtained by applying our tool to the
scheduler case study. We considered the verification of the
same SL formula φ verified in [Cermák et al., 2018], that is:

φ = ∀x, y⃗(Arbiter, x)(P1, y1) . . . (Pn, yn)
G¬

∨n
i=1

∨n
j=i+1 rsi ∧ rsj

Intuitively, φ asserts that at most one process (Pi) owns the
resource (rs) at any given point in time. In Table 1, each row
refers to a fixed number of processes, from 2 to 9, used to gen-
erate the corresponding CGS. Each row also reports the num-
ber of states and transitions of the CGS, and the time required
to perform its verification in MCMAS, both on the original
CGS and its 3-valued abstraction, for comparison. For the
latter, the time required to generate such an abstraction is re-
ported. For the experiments with the scheduler, the abstrac-
tion is assumed to be guided by an expert of the system. In
more detail, all states where at least one process is waiting
to be selected by the scheduler are clustered together. This
choice, as apparent in Table 1, largely reduces the number of
states and transitions of the CGS. Nonetheless, this does not
prevent the verification process to correctly conclude the sat-
isfaction of φ on both the CGS and its 3-valued version, i.e.,
the abstraction does not remove any information necessary to
determine the satisfaction of φ. Table 1 also reports the ex-

ecution time required for the actual verification of both the
CGS and its 3-valued abstraction. As we can observe, with-
out the abstraction step, the verification of the CGS times out
when 3 processes are considered. In fact, MCMAS cannot
model check φ in less than 3 hours, which was set as the time
out (both for the SL[1G] and SLK extensions of MCMAS).
Instead, thanks to the abstraction, the verification can be per-
formed for up to 9 (a more realistic number of processes).
Note that, the verification of the 3-valued CGS could have
been performed for even larger numbers of processes. How-
ever, the CGS with 10 processes did not fit into the available
memory of the machine used for the experiments; so, it was
not possible to apply our technique to generate its 3-valued
abstraction. Nonetheless, we expect the tool to handle even
the case with 10 processes via abstraction. Figure 1 reports
the data compression obtained in the scheduler case study. It
is immediate to observe the huge compression obtained via
abstraction. Indeed, the larger is the number of processes in-
volved, the more significant is such compression. Note that,
for more than 6 processes, the abstraction produces a CGS
with ∼99% less states and transitions. Besides φ, we experi-
mented with other specifications as well. Specifically, we car-
ried out experiments over a large set of randomly-generated
SL formulas. The goal of these experiments is to understand
how many times our tool would return a conclusive answer
(i.e., not u). We automatically synthesised 10,000 different
SL formulas and verified them in the scheduler case study;
where we kept the same abstraction as for Table 1. Over the
10,000 different SL formulas, the tool was capable of pro-
viding a defined truth value (either true or false) in the 83%
of cases. Of course, this is a preliminary evaluation, which
needs to be corroborated through additional experiments, also
involving further real-world scenarios. Nonetheless, the re-
sults we obtained are promising, and allow us to empirically
show the effectiveness of our approach, not only from a data-
compression perspective, but also from a computational one.

7 Conclusion
The high complexity of the verification problem for Strategy
Logic hinders the development of practical model checking
tools and therefore its application in critical, real-life scenar-
ios. As a consequence, it is of upmost importance to develop
techniques to alleviate this computational burden and allow
the use of Strategy Logic in concrete use cases, such as the
scheduler scenario here analysed. This contribution is meant
to be the first step in this direction.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

52

Acknowledgements
W. Jamroga acknowledges the support of NCBR Poland,
NCN Poland, and FNR Luxembourg under projects
STV (POLLUX-VII/1/2019), SpaceVote (POLLUX-
XI/14/SpaceVote/2023), and SAI (2020/02/Y/ST6/00064).
A. Murano acknowledges the support of the PNNR FAIR
project, the InDAM project “Strategic Reasoning in Mecha-
nism Design”, and the PRIN 2020 Project RIPER.

References
[Alur et al., 2002] R. Alur, T.A. Henzinger, and O. Kupfer-

man. Alternating-Time Temporal Logic. JACM,
49(5):672–713, 2002.

[Aminof et al., 2012] B. Aminof, O. Kupferman, and A. Mu-
rano. Improved model checking of hierarchical systems.
Inf. Comput., 210:68–86, 2012.

[Aminof et al., 2016] B. Aminof, A. Murano, S. Rubin, and
F. Zuleger. Prompt alternating-time epistemic logics. In
Fifteenth International Conference on the Principles of
Knowledge Representation and Reasoning (KR), pages
258–267, 2016.

[Aminof et al., 2018] B. Aminof, V. Malvone, A. Murano,
and S. Rubin. Graded modalities in strategy logic. Inf.
Comput., 261:634–649, 2018.

[Aminof et al., 2019] B. Aminof, M. Kwiatkowska,
B. Maubert, A. Murano, and S. Rubin. Probabilistic
strategy logic. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence,
IJCAI 2019, Macao, China, August 10-16, 2019, pages
32–38. ijcai.org, 2019.

[Ball and Kupferman, 2006] T. Ball and O. Kupferman. An
abstraction-refinement framework for multi-agent sys-
tems. In Proceedings of the 21st Annual IEEE Symposium
on Logic in Computer Science (LICS06), pages 379–388.
IEEE, 2006.

[Belardinelli and Lomuscio, 2017] F. Belardinelli and
A. Lomuscio. Agent-based abstractions for verify-
ing alternating-time temporal logic with imperfect
information. In Proceedings of the 16th Conference
on Autonomous Agents and MultiAgent Systems, AA-
MAS 2017, São Paulo, Brazil, May 8-12, 2017, pages
1259–1267. ACM, 2017.

[Belardinelli and Malvone, 2020] F. Belardinelli and
V. Malvone. A three-valued approach to strategic abilities
under imperfect information. In Proceedings of the 17th
International Conference on Principles of Knowledge
Representation and Reasoning, KR 2020, Rhodes, Greece,
September 12-18, 2020, pages 89–98, 2020.

[Belardinelli et al., 2018] F. Belardinelli, A. Lomuscio, and
V. Malvone. Approximating perfect recall when model
checking strategic abilities. In Principles of Knowledge
Representation and Reasoning: Proceedings of the Six-
teenth International Conference, KR 2018, Tempe, Ari-
zona, 30 October - 2 November 2018, pages 435–444.
AAAI Press, 2018.

[Belardinelli et al., 2019] F. Belardinelli, A. Lomuscio, and
V. Malvone. An abstraction-based method for verifying
strategic properties in multi-agent systems with imperfect
information. In Proceedings of AAAI, 2019.

[Belardinelli et al., 2020] F. Belardinelli, A. Lomuscio,
A. Murano, and S. Rubin. Verification of multi-agent sys-
tems with public actions against strategy logic. Artif. In-
tell., 285:103302, 2020.

[Belardinelli et al., 2022] F. Belardinelli, A. Lomuscio,
V. Malvone, and E. Yu. Approximating perfect recall when
model checking strategic abilities: Theory and applica-
tions. J. Artif. Intell. Res., 73:897–932, 2022.

[Belardinelli et al., 2023] F. Belardinelli, A. Ferrando, and
V. Malvone. An abstraction-refinement framework for ver-
ifying strategic properties in multi-agent systems with im-
perfect information. Artif. Intell., 316:103847, 2023.

[Berthon et al., 2021] R. Berthon, B. Maubert, A. Murano,
S. Rubin, and M. Y. Vardi. Strategy logic with imperfect
information. ACM Trans. Comput. Log., 22(1):5:1–5:51,
2021.

[Bouyer et al., 2019] P. Bouyer, O. Kupferman, N. Markey,
B. Maubert, A. Murano, and G. Perelli. Reasoning about
quality and fuzziness of strategic behaviours. In S. Kraus,
editor, Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI 2019,
Macao, China, August 10-16, 2019, pages 1588–1594. ij-
cai.org, 2019.

[Bruns and Godefroid, 1999] G. Bruns and P. Godefroid.
Model checking partial state spaces with 3-valued tempo-
ral logics. In Proceedings of Computer Aided Verification
(CAV), pages 274–287, 1999.

[Bruns and Godefroid, 2000] G. Bruns and P. Godefroid.
Generalized model checking: Reasoning about partial
state spaces. In Proceedings of the 11th International Con-
ference on Concurrency Theory (CONCUR00), volume
1877 of LNCS, pages 168–182. Springer-Verlag, 2000.

[Cermák et al., 2014] P. Cermák, A. Lomuscio, F. Mo-
gavero, and A. Murano. MCMAS-SLK: A model checker
for the verification of strategy logic specifications. In Pro-
ceedings of the 26th International Conference on Com-
puter Aided Verification (CAV14), volume 8559 of Lec-
ture Notes in Computer Science, pages 525–532. Springer,
2014.

[Cermák et al., 2015] P. Cermák, A. Lomuscio, F. Mo-
gavero, and A. Murano. Verifying and synthesising multi-
agent systems against one-goal strategy logic specifica-
tions. In Proceedings of the 29th AAAI Conference on
Artificial Intelligence (AAAI15), pages 2038–2044. AAAI
Press, 2015.

[Cermák et al., 2018] P. Cermák, A. Lomuscio, F. Mo-
gavero, and A. Murano. Practical verification of multi-
agent systems against SLK specifications. Inf. Comput.,
261:588–614, 2018.

[Chatterjee et al., 2010] K. Chatterjee, T.A. Henzinger, and
N. Piterman. Strategy Logic. IC, 208(6):677–693, 2010.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

53

[Clarke et al., 1994] E.M. Clarke, O. Grumberg, and D.E.
Long. Model checking and abstraction. ACM Transactions
on Programming Languages and Systems, 16(5):1512–
1542, 1994.

[Fagin et al., 1995] R. Fagin, J.Y. Halpern, Y. Moses, and
M.Y. Vardi. Reasoning about Knowledge. MIT Press,
1995.

[Ferrando and Malvone, 2021] A. Ferrando and V. Malvone.
Strategy RV: A tool to approximate ATL model checking
under imperfect information and perfect recall. In AAMAS
’21: 20th International Conference on Autonomous Agents
and Multiagent Systems, Virtual Event, United Kingdom,
May 3-7, 2021, pages 1764–1766. ACM, 2021.

[Ferrando and Malvone, 2022] A. Ferrando and V. Malvone.
Towards the combination of model checking and runtime
verification on multi-agent systems. In Proc. of PAAMS
2022, volume 13616 of Lecture Notes in Computer Sci-
ence, pages 140–152. Springer, 2022.

[Ferrando and Malvone, 2023] A. Ferrando and V. Malvone.
Towards the verification of strategic properties in multi-
agent systems with imperfect information. In 22nd Inter-
national Conference on Autonomous Agents and Multia-
gent Systems, AAMAS 2023 (to appear), 2023.

[Godefroid and Jagadeesan, 2003] P. Godefroid and R. Ja-
gadeesan. On the expressiveness of 3-valued models. In
Proceedings of the 4th International Conference on Verifi-
cation, Model Checkig, and Abstract Interpretation (VM-
CAI03), volume 2575 of LNCS, pages 206–222. Springer-
Verlag, 2003.

[Goranko and Jamroga, 2004] V. Goranko and W. Jamroga.
Comparing semantics for logics of multi-agent systems.
Synthese, 139(2):241–280, 2004.

[Grumberg et al., 2007] O. Grumberg, M. Lange,
M. Leucker, and S. Shoham. When not losing is
better than winning: Abstraction and refinement for the
full mu-calculus. Inf. Comput., 205(8):1130–1148, 2007.

[Halpern and Shoham, 1986] J. Y. Halpern and Y. Shoham.
A propositional modal logic of time intervals. In Proceed-
ings 1st Annual IEEE Symposium on Logic in Computer
Science, LICS86, Cambridge, MA, USA, 16–18 June 1986,
pages 279–292, Washington, DC, 1986. IEEE Computer
Society Press.

[Huth et al., 2001] M. Huth, R. Jagadeesan, and D. Schmidt.
Modal transition systems: A foundation for three-valued
program analysis. ACM Transactions on Programming
Languages and Systems, pages 155–169, 2001.

[Jamroga et al., 2016] W. Jamroga, B. Konikowska, and
W. Penczek. Multi-valued verification of strategic abil-
ity. In Proceedings of the 2016 International Conference
on Autonomous Agents & Multiagent Systems, Singapore,
May 9-13, 2016, pages 1180–1189, 2016.

[Jamroga et al., 2020] W. Jamroga, B. Konikowska,
D. Kurpiewski, and W. Penczek. Multi-valued ver-
ification of strategic ability. Fundam. Informaticae,
175(1-4):207–251, 2020.

[Kouvaros and Lomuscio, 2017] P. Kouvaros and A. Lomus-
cio. Parameterised verification of infinite state multi-agent
systems via predicate abstraction. In Satinder Singh and
Shaul Markovitch, editors, Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, February 4-9,
2017, San Francisco, California, USA, pages 3013–3020.
AAAI Press, 2017.

[Lomuscio and Michaliszyn, 2014] A. Lomuscio and
J. Michaliszyn. An abstraction technique for the verifi-
cation of multi-agent systems against ATL specifications.
In Proceedings of the 14th International Conference on
Principles of Knowledge Representation and Reasoning
(KR14), pages 428–437. AAAI Press, 2014.

[Lomuscio and Michaliszyn, 2015] A. Lomuscio and
J. Michaliszyn. Verifying multi-agent systems by model
checking three-valued abstractions. In Proceedings of the
14th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS15), pages 189–198, 2015.

[Lomuscio and Michaliszyn, 2016] A. Lomuscio and
J. Michaliszyn. Verification of multi-agent systems via
predicate abstraction against ATLK specifications. In
Proc. of the 15th Int. Conference on Autonomous Agents
and Multiagent Systems (AAMAS16), 2016.

[Lomuscio et al., 2015] A. Lomuscio, H. Qu, and F. Rai-
mondi. MCMAS: A model checker for the verification of
multi-agent systems. Software Tools for Technology Trans-
fer, 2015. http://dx.doi.org/10.1007/s10009-015-0378-x.

[Łukasiewicz, 1920] Jan Łukasiewicz. O logice tro-
jwartosciowej [On three-valued logic]. Ruch Filozoficzny,
5:170–171, 1920.

[Mogavero et al., 2012] F. Mogavero, A. Murano, G. Perelli,
, and M.Y. Vardi. What makes ATL* decidable? a decid-
able fragment of strategy logic. In Proceedings of CON-
CUR, pages 193–208, 2012.

[Mogavero et al., 2014] F. Mogavero, A. Murano, G. Perelli,
and M. Y. Vardi. Reasoning about strategies: On the
model-checking problem. ACM Transactions in Compu-
tational Logic, 15(4):34:1–34:47, 2014.

[Raimondi and Lomuscio, 2005] F. Raimondi and A. Lo-
muscio. The complexity of symbolic model checking
temporal-epistemic logics. In Proceedings of Concur-
rency, Specification & Programming (CS&P), pages 421–
432. Warsaw University, 2005.

[Shoham and Grumberg, 2004] S. Shoham and O. Grum-
berg. Monotonic abstraction-refinement for CTL. In Pro-
ceedings of the 10th International Conference on Tools
and Algorithms for the Construction and Analysis of Sys-
tems (TACAS04), volume 2988 of Lecture Notes in Com-
puter Science, pages 546–560. Springer, 2004.

[Shoham and Grumberg, 2007] S. Shoham and O. Grum-
berg. A game-based framework for CTL counterexamples
and 3-valued abstraction-refinement. ACM Trans. Comput.
Log., 9(1):1, 2007.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

54

	Introduction
	Reasoning about Strategies
	Syntax
	Two-valued Semantics

	Three-Valued Strategy Logic
	Three-Valued CGSs
	Three-valued Semantics

	Three-valued Abstraction for SL
	Implementation
	Experiments
	Conclusion

